• This record comes from PubMed

Blockade of alpha2-adrenergic receptors in the caudal raphe region enhances the renal sympathetic nerve activity response to acute intermittent hypercapnia in rats

. 2022 Mar 25 ; 71 (1) : 159-169. [epub] 20220119

Language English Country Czech Republic Media print-electronic

Document type Journal Article

The study investigated the role of alpha2-adrenergic receptors of the caudal raphe region in the sympathetic and cardiovascular responses to the acute intermittent hypercapnia (AIHc). Urethane-anesthetized, vagotomized, mechanically ventilated Sprague-Dawley rats (n=38) were exposed to the AIHc protocol (5×3 min, 15 % CO2+50 % O2) in hyperoxic background (50 % O2). alpha2-adrenergic receptor antagonist-yohimbine was applied intravenously (1 mg/kg, n=9) or microinjected into the caudal raphe region (2 mM, n=12) prior to exposure to AIHc. Control groups of animals received saline intravenously (n=7) or into the caudal raphe region (n=10) prior to exposure to AIHc. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were monitored before exposure to the AIHc protocol (T0), during five hypercapnic episodes (THc1-5) and at 15 min following the end of the last hypercapnic episode (T15). Following intravenous administration of yohimbine, RSNA was significantly greater during THc1-5 and at T15 than in the control group (P<0.05). When yohimbine was microinjected into the caudal raphe region, AIHc elicited greater increases in RSNA during THc1-5 when compared to the controls (THc1: 138.0+/-4.0 % vs. 123.7+/-4.8 %, P=0.032; THc2: 137.1+/-5.0 % vs. 124.1+/-4.5 %, P=0.071; THc3: 143.1+/-6.4 % vs. 122.0±4.8 %, P=0.020; THc4: 146.1+/-6.2 % vs. 120.7+/-5.7 %, P=0.007 and THc5: 143.2+/-7.7 % vs. 119.2+/-7.2 %, P=0.038). During THc1-5, significant decreases in HR from T0 were observed in all groups, while changes in MAP were observed in the group that received yohimbine intravenously. These findings suggest that blockade of the alpha2-adrenegic receptors in the caudal raphe region might have an important role in sympathetic responses to AIHc.

See more in PubMed

Makeham JM, Goodchild AK, Costin NS, Pilowsky PM. Hypercapnia selectively attenuates the somato-sympathetic reflex. Respir Physiol Neurobiol. 2004;140:133–143. doi: 10.1016/j.resp.2003.11.003. PubMed DOI

Dogas Z, Stuth EA, Hopp FA, McCrimmon DR, Zuperku EJ. NMDA receptor-mediated transmission of carotid body chemoreceptor input to expiratory bulbospinal neurones in dogs. J Physiol. 1995;487:639–651. doi: 10.1113/jphysiol.1995.sp020906. PubMed DOI PMC

Oikawa S, Hirakawa H, Kusakabe T, Nakashima Y, Hayashida Y. Autonomic cardiovascular responses to hypercapnia in conscious rats: the roles of the chemo- and baroreceptors. Auton Neurosci. 2005;117:105–114. doi: 10.1016/j.autneu.2004.11.009. PubMed DOI

Takakura AC, Moreira TS. Contribution of excitatory amino acid receptors of the retrotrapezoid nucleus to the sympathetic chemoreflex in rats. Exp Physiol. 2011;96:989–999. doi: 10.1113/expphysiol.2011.058842. PubMed DOI

Guyenet PG. Regulation of breathing and autonomic outflows by chemoreceptors. Compr Physiol. 2014;4:1511–1562. doi: 10.1002/cphy.c140004. PubMed DOI PMC

Richerson GB. Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat Rev Neurosci. 2004;5:449–461. doi: 10.1038/nrn1409. PubMed DOI

Andrzejewski K, Budzinska K, Kaczynska K. Effect of 6-OHDA on hypercapnic ventilatory response in the rat model of Parkinson’s disease. Physiol Res. 2019;68:285–293. doi: 10.33549/physiolres.933949. PubMed DOI

Baker TL, Fuller DD, Zabka AG, Mitchell GS. Respiratory plasticity: Differential actions of continuous and episodic hypoxia and hypercapnia. Respir Physiol. 2001;129:25–35. doi: 10.1016/s0034-5687(01)00280-8. PubMed DOI

Kinkead R, Bach KB, Johnson SM, Hodgeman BA, Mitchell GS. Plasticity in respiratory motor control: intermittent hypoxia and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems. Comp Biochem Physiol A Mol Integr Physiol. 2001;130:207–218. doi: 10.1016/s1095-6433(01)00393-2. PubMed DOI

Stipica I, Pavlinac Dodig I, Pecotic R, Dogas Z, Valic Z, Valic M. Periodicity during hypercapnic and hypoxic stimulus is crucial in distinct aspects of phrenic nerve plasticity. Physiol Res. 2016;65:133–143. doi: 10.33549/physiolres.933012. PubMed DOI

Stipica Safic I, Pecotic R, Pavlinac Dodig I, Dogas Z, Valic Z, Valic M. Phrenic long-term depression evoked by intermittent hypercapnia is modulated by serotonergic and adrenergic receptors in raphe nuclei. J Neurophysiol. 2018;120:321–329. doi: 10.1152/jn.00776.2017. PubMed DOI

Valic M, Pecotic R, Pavlinac Dodig I, Valic Z, Stipica I, Dogas Z. Intermittent hypercapnia-induced phrenic long-term depression is revealed after serotonin receptor blockade with methysergide in anaesthetized rats. Exp Physiol. 2016;101:319–331. doi: 10.1113/EP085161. PubMed DOI

Huang J, Lusina S, Xie T, Ji E, Xiang S, Liu Y, Weiss JW. Sympathetic response to chemostimulation in conscious rats exposed to chronic intermittent hypoxia. Respir Physiol Neurobiol. 2009;166:102–106. doi: 10.1016/j.resp.2009.02.010. PubMed DOI

Moreira TS, Takakura AC, Colombari E, Guyenet PG. Central chemoreceptors and sympathetic vasomotor outflow. J Physiol. 2006;577:369–386. doi: 10.1113/jphysiol.2006.115600. PubMed DOI PMC

Takakura AC, Colombari E, Menani JV, Moreira TS. Ventrolateral medulla mechanisms involved in cardiorespiratory responses to central chemoreceptor activation in rats. Am J Physiol Regul Integr Comp Physiol. 2011;300:R501–R510. doi: 10.1152/ajpregu.00220.2010. PubMed DOI

Madirazza K, Pecotic R, Pavlinac Dodig I, Valic M, Dogas Z. Hyperoxia blunts renal sympathetic nerve activity response to acute intermittent hypercapnia in rats. J Physiol Pharmacol. 2019;70:737–746. doi: 10.26402/jpp.2019.5.09. PubMed DOI

Barnett WH, Abdala AP, Paton JF, Rybak IA, Zoccal DB, Molkov YI. Chemoreception and neuroplasticity in respiratory circuits. Exp Neurol. 2017;287:153–164. doi: 10.1016/j.expneurol.2016.05.036. PubMed DOI PMC

Guyenet PG, Stornetta RL, Abbott SB, Depuy SD, Fortuna MG, Kanbar R. Central CO2 chemoreception and integrated neural mechanisms of cardiovascular and respiratory control. J Appl Physiol (1985) 2010;108:995–1002. doi: 10.1152/japplphysiol.00712.2009. PubMed DOI PMC

Guyenet PG, Stornetta RL, Souza G, Abbott SBG, Shi Y, Bayliss DA. The retrotrapezoid nucleus: Central chemoreceptor and regulator of breathing automaticity. Trends Neurosci. 2019;42:807–824. doi: 10.1016/j.tins.2019.09.002. PubMed DOI PMC

Moreira TS, Takakura AC, Damasceno RS, Falquetto B, Totola LT, Sobrinho CR, Ragioto DT, Zolezi FP. Central chemoreceptors and neural mechanisms of cardiorespiratory control. Braz J Med Biol Res. 2011;44:883–889. doi: 10.1590/s0100-879x2011007500094. PubMed DOI

Biancardi V, Bicego KC, Almeida MC, Gargaglioni LH. Locus coeruleus noradrenergic neurons and CO2 drive to breathing. Pflugers Arch. 2008;455:1119–1128. doi: 10.1007/s00424-007-0338-8. PubMed DOI

Elam M, Yao T, Thoren P, Svensson TH. Hypercapnia and hypoxia: chemoreceptor-mediated control of locus coeruleus neurons and splanchnic, sympathetic nerves. Brain Res. 1981;222:373–381. doi: 10.1016/0006-8993(81)91040-4. PubMed DOI

Samuels ER, Szabadi E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part II: physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans. Curr Neuropharmacol. 2008;6:254–285. doi: 10.2174/157015908785777193. PubMed DOI PMC

Jacobs BL, Martin-Cora FJ, Fornal CA. Activity of medullary serotonergic neurons in freely moving animals. Brain Res Brain Res Rev. 2002;40:45–52. doi: 10.1016/s0165-0173(02)00187-x. PubMed DOI

Allen GV, Cechetto DF. Serotoninergic and nonserotoninergic neurons in the medullary raphe system have axon collateral projections to autonomic and somatic cell groups in the medulla and spinal cord. J Comp Neurol. 1994;350:357–366. doi: 10.1002/cne.903500303. PubMed DOI

Loewy AD, Neil JJ. The role of descending monoaminergic systems in central control of blood pressure. Fed Proc. 1981;40:2778–2785. PubMed

Morrison SF. Raphe pallidus excites a unique class of sympathetic preganglionic neurons. Am J Physiol. 1993;265:R82–R89. doi: 10.1152/ajpregu.1993.265.1.R82. PubMed DOI

Pilowsky PM, Lung MS, Spirovski D, McMullan S. Differential regulation of the central neural cardiorespiratory system by metabotropic neurotransmitters. Philos Trans R Soc Lond B Biol Sci. 2009;364:2537–2552. doi: 10.1098/rstb.2009.0092. PubMed DOI PMC

Bago M, Marson L, Dean C. Serotonergic projections to the rostroventrolateral medulla from midbrain and raphe nuclei. Brain Res. 2002;945:249–258. doi: 10.1016/s0006-8993(02)02811-1. PubMed DOI

Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 4th Edition. Academic Press; San Diego: 1998. p. 256.

Philipp M, Brede M, Hein L. Physiological significance of alpha(2)-adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol Regul Integr Comp Physiol. 2002;283:R287–R295. doi: 10.1152/ajpregu.00123.2002. PubMed DOI

Lin YH, Liu YP, Lin YC, Lee PL, Tung CS. Cooling-evoked hemodynamic perturbations facilitate sympathetic activity with subsequent myogenic vascular oscillations via alpha2-adrenergic receptors. Physiol Res. 2017;66:449–457. doi: 10.33549/physiolres.933385. PubMed DOI

Hubbard JW, Pfister SL, Biediger AM, Herzig TC, Keeton TK. The pharmacokinetic properties of yohimbine in the conscious rat. Naunyn Schmiedebergs Arch Pharmacol. 1988;337:583–587. doi: 10.1007/BF00182736. PubMed DOI

Unnerstall JR, Kopajtic TA, Kuhar MJ. Distribution of alpha 2 agonist binding sites in the rat and human central nervous system: analysis of some functional, anatomic correlates of the pharmacologic effects of clonidine and related adrenergic agents. Brain Res. 1984;319:69–101. doi: 10.1016/0165-0173(84)90030-4. PubMed DOI

Burgraff NJ, Neumueller SE, Buchholz KJ, LeClaire J, Hodges MR, Pan L, Forster HV. Brainstem serotonergic, catecholaminergic, and inflammatory adaptations during chronic hypercapnia in goats. FASEB J. 2019;33:14491–14505. doi: 10.1096/fj.201901288RR. PubMed DOI PMC

Garcia de Yebenes Prous J, Carlsson A, Mena Gomez MA. The effect of CO2 on monoamine metabolism in rat brain. Naunyn Schmiedebergs Arch Pharmacol. 1977;301:11–15. doi: 10.1007/BF00501258. PubMed DOI

Stone EA. Rapid adaptation of the stimulatory effect of CO2 on brain norepinephrine metabolism. Naunyn Schmiedebergs Arch Pharmacol. 1983;324:313–315. doi: 10.1007/BF00502629. PubMed DOI

Horiuchi J, McAllen RM, Allen AM, Killinger S, Fontes MA, Dampney RA. Descending vasomotor pathways from the dorsomedial hypothalamic nucleus: role of medullary raphe and RVLM. Am J Physiol Regul Integr Comp Physiol. 2004;287:R824–R832. doi: 10.1152/ajpregu.00221.2004. PubMed DOI

Lovick TA. The medullary raphe nuclei: a system for integration and gain control in autonomic and somatomotor responsiveness? Exp Physiol. 1997;82:31–41. doi: 10.1113/expphysiol.1997.sp004013. PubMed DOI

Nattie E, Li A. Central chemoreceptors: Locations and functions. Compr Physiol. 2012;2:221–254. doi: 10.1002/cphy.c100083. PubMed DOI PMC

Leirao IP, Colombari DSA, da Silva GSF, Zoccal DB. Lesion of serotonergic afferents to the retrotrapezoid nucleus impairs the tachypneic response to hypercapnia in unanesthetized animals. Neuroscience. 2021;452:63–77. doi: 10.1016/j.neuroscience.2020.11.005. PubMed DOI

Bach KB, Mitchell GS. Hypercapnia-induced long-term depression of respiratory activity requires alpha2-adrenergic receptors. J Appl Physiol (1985) 1998;84:2099–2105. doi: 10.1152/jappl.1998.84.6.2099. PubMed DOI

Dobbins EG, Feldman JL. Brainstem network controlling descending drive to phrenic motoneurons in rat. J Comp Neurol. 1994;347:64–86. doi: 10.1002/cne.903470106. PubMed DOI

Haddjeri N, Blier P, de Montigny C. Effect of the alpha-2 adrenoceptor antagonist mirtazapine on the 5-hydroxytryptamine system in the rat brain. J Pharmacol Exp Ther. 1996;277:861–871. PubMed

Morrison SF. RVLM and raphe differentially regulate sympathetic outflows to splanchnic and brown adipose tissue. Am J Physiol. 1999;276:R962–R973. doi: 10.1152/ajpregu.1999.276.4.R962. PubMed DOI

Maggi CA, Meli A. Suitability of urethane anesthesia for physiopharmacological investigations in various systems. Part 1: General considerations. Experientia. 1986;42:109–114. doi: 10.1007/bf01952426. PubMed DOI

Goldberg MR, Robertson D. Yohimbine: a pharmacological probe for study of the alpha 2-adrenoreceptor. Pharmacol Rev. 1983;35:143–180. PubMed

Winter JC, Rabin RA. Yohimbine as a serotonergic agent: evidence from receptor binding and drug discrimination. J Pharmacol Exp Ther. 1992;263:682–689. PubMed

Zaretsky DV, Zaretskaia MV, DiMicco JA, Rusyniak DE. Yohimbine is a 5-HT1A agonist in rats in doses exceeding 1 mg/kg. Neurosci Lett. 2015;606:215–219. doi: 10.1016/j.neulet.2015.09.008. PubMed DOI PMC

Wang W, Bradley SR, Richerson GB. Quantification of the response of rat medullary raphe neurones to independent changes in pH(o) and P(CO2) J Physiol. 2002;540:951–970. doi: 10.1113/jphysiol.2001.013443. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...