• This record comes from PubMed

Endogenously-Produced Hyaluronan and Its Potential to Regulate the Development of Peritoneal Adhesions

. 2021 Dec 29 ; 12 (1) : . [epub] 20211229

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

Formation of peritoneal adhesions (PA) is one of the major complications following intra-abdominal surgery. It is primarily caused by activation of the mesothelial layer and underlying tissues in the peritoneal membrane resulting in the transition of mesothelial cells (MCs) and fibroblasts to a pro-fibrotic phenotype. Pro-fibrotic transition of MCs-mesothelial-to-mesenchymal transition (MMT), and fibroblasts activation to myofibroblasts are interconnected to changes in cellular metabolism and culminate in the deposition of extracellular matrix (ECM) in the form of fibrotic tissue between injured sides in the abdominal cavity. However, ECM is not only a mechanical scaffold of the newly synthetized tissue but reciprocally affects fibrosis development. Hyaluronan (HA), an important component of ECM, is a non-sulfated glycosaminoglycan consisting of N-acetyl-D-glucosamine (GlcNAc) and D-glucuronic acid (GlcUA) that can affect the majority of processes involved in PA formation. This review considers the role of endogenously produced HA in the context of different fibrosis-related pathologies and its overlap in the development of PA.

See more in PubMed

Brochhausen C., Schmitt V.H., Planck C.N., Rajab T.K., Hollemann D., Tapprich C., Kramer B., Wallwiener C., Hierlemann H., Zehbe R., et al. Current strategies and future perspectives for intraperitoneal adhesion prevention. J. Gastrointest Surg. 2012;16:1256–1274. doi: 10.1007/s11605-011-1819-9. PubMed DOI

Canis M., Botchorishvili R., Bourdel N., Gremeau A.S., Curinier S., Rabischong B. Pelvic adhesions and fertility: Where are we in 2018? J. Visc. Surg. 2018;155((Suppl. 1)):S11–S15. doi: 10.1016/j.jviscsurg.2018.02.004. PubMed DOI

Koninckx P.R., Gomel V., Ussia A., Adamyan L. Role of the peritoneal cavity in the prevention of postoperative adhesions, pain, and fatigue. Fertil. Steril. 2016;106:998–1010. doi: 10.1016/j.fertnstert.2016.08.012. PubMed DOI

Herrick S.E., Wilm B. Post-Surgical Peritoneal Scarring and Key Molecular Mechanisms. Biomolecules. 2021;11:692. doi: 10.3390/biom11050692. PubMed DOI PMC

Zwicky S.N., Stroka D., Zindel J. Sterile Injury Repair and Adhesion Formation at Serosal Surfaces. Front. Immunol. 2021;12:684967. doi: 10.3389/fimmu.2021.684967. PubMed DOI PMC

Capella-Monsonis H., Kearns S., Kelly J., Zeugolis D.I. Battling adhesions: From understanding to prevention. BMC Biomed. Eng. 2019;1:5. doi: 10.1186/s42490-019-0005-0. PubMed DOI PMC

Manou D., Caon I., Bouris P., Triantaphyllidou I.E., Giaroni C., Passi A., Karamanos N.K., Vigetti D., Theocharis A.D. The Complex Interplay Between Extracellular Matrix and Cells in Tissues. Methods Mol. Biol. 2019;1952:1–20. doi: 10.1007/978-1-4939-9133-4_1. PubMed DOI

Frantz C., Stewart K.M., Weaver V.M. The extracellular matrix at a glance. J. Cell Sci. 2010;123:4195–4200. doi: 10.1242/jcs.023820. PubMed DOI PMC

Bonnans C., Chou J., Werb Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014;15:786–801. doi: 10.1038/nrm3904. PubMed DOI PMC

Bulow R.D., Boor P. Extracellular Matrix in Kidney Fibrosis: More Than Just a Scaffold. J. Histochem. Cytochem. 2019;67:643–661. doi: 10.1369/0022155419849388. PubMed DOI PMC

Parker M.W., Rossi D., Peterson M., Smith K., Sikstrom K., White E.S., Connett J.E., Henke C.A., Larsson O., Bitterman P.B. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J. Clin. Investig. 2014;124:1622–1635. doi: 10.1172/JCI71386. PubMed DOI PMC

Ricard-Blum S. The collagen family. Cold Spring Harb. Perspect. Biol. 2011;3:a004978. doi: 10.1101/cshperspect.a004978. PubMed DOI PMC

Villesen I.F., Daniels S.J., Leeming D.J., Karsdal M.A., Nielsen M.J. Review article: The signalling and functional role of the extracellular matrix in the development of liver fibrosis. Aliment Pharm. 2020;52:85–97. doi: 10.1111/apt.15773. PubMed DOI

Chen K.B., Chen J., Jin X.L., Huang Y., Su Q.M., Chen L. Exosome-mediated peritoneal dissemination in gastric cancer and its clinical applications. Biomed. Rep. 2018;8:503–509. doi: 10.3892/br.2018.1088. PubMed DOI PMC

Herrera J., Henke C.A., Bitterman P.B. Extracellular matrix as a driver of progressive fibrosis. J. Clin. Investig. 2018;128:45–53. doi: 10.1172/JCI93557. PubMed DOI PMC

Theocharis A.D., Skandalis S.S., Gialeli C., Karamanos N.K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016;97:4–27. doi: 10.1016/j.addr.2015.11.001. PubMed DOI

Vigetti D., Karousou E., Viola M., Deleonibus S., De Luca G., Passi A. Hyaluronan: Biosynthesis and signaling. Biochim. Biophys. Acta. 2014;1840:2452–2459. doi: 10.1016/j.bbagen.2014.02.001. PubMed DOI

Litwiniuk M., Krejner A., Speyrer M.S., Gauto A.R., Grzela T. Hyaluronic Acid in Inflammation and Tissue Regeneration. Wounds A Compend. Clin. Res. Pract. 2016;28:78–88. PubMed

Itano N., Sawai T., Yoshida M., Lenas P., Yamada Y., Imagawa M., Shinomura T., Hamaguchi M., Yoshida Y., Ohnuki Y., et al. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J. Biol. Chem. 1999;274:25085–25092. doi: 10.1074/jbc.274.35.25085. PubMed DOI

Vigetti D., Viola M., Karousou E., De Luca G., Passi A. Metabolic control of hyaluronan synthases. Matrix Biol. J. Int. Soc. Matrix Biol. 2014;35:8–13. doi: 10.1016/j.matbio.2013.10.002. PubMed DOI

Heldin P., Lin C.Y., Kolliopoulos C., Chen Y.H., Skandalis S.S. Regulation of hyaluronan biosynthesis and clinical impact of excessive hyaluronan production. Matrix Biol. J. Int. Soc. Matrix Biol. 2019;78-79:100–117. doi: 10.1016/j.matbio.2018.01.017. PubMed DOI

Garantziotis S., Savani R.C. Hyaluronan biology: A complex balancing act of structure, function, location and context. Matrix Biol. J. Int. Soc. Matrix. Biol. 2019;78-79:1–10. doi: 10.1016/j.matbio.2019.02.002. PubMed DOI PMC

Kaul A., Singampalli K.L., Parikh U.M., Yu L., Keswani S.G., Wang X. Hyaluronan, a double-edged sword in kidney diseases. Pediatric Nephrol. 2021 doi: 10.1007/s00467-021-05113-9. PubMed DOI PMC

Erickson M., Stern R. Chain gangs: New aspects of hyaluronan metabolism. Biochem. Res. Int. 2012;2012:893947. doi: 10.1155/2012/893947. PubMed DOI PMC

Stern R. Hyaluronan catabolism: A new metabolic pathway. Eur. J. Cell Biol. 2004;83:317–325. doi: 10.1078/0171-9335-00392. PubMed DOI

Yamaguchi Y., Yamamoto H., Tobisawa Y., Irie F. TMEM2: A missing link in hyaluronan catabolism identified? Matrix Biol. J. Int. Soc. Matrix Biol. 2019;78–79:139–146. doi: 10.1016/j.matbio.2018.03.020. PubMed DOI PMC

Tobisawa Y., Fujita N., Yamamoto H., Ohyama C., Irie F., Yamaguchi Y. The cell surface hyaluronidase TMEM2 is essential for systemic hyaluronan catabolism and turnover. J. Biol. Chem. 2021;297:101281. doi: 10.1016/j.jbc.2021.101281. PubMed DOI PMC

Yamazaki K., Fukuda K., Matsukawa M., Hara F., Yoshida K., Akagi M., Munakata H., Hamanishi C. Reactive oxygen species depolymerize hyaluronan: Involvement of the hydroxyl radical. Pathophysiology. 2003;9:215–220. doi: 10.1016/S0928-4680(03)00024-5. PubMed DOI

Avenoso A., Bruschetta G., D’Ascola A., Scuruchi M., Mandraffino G., Gullace R., Saitta A., Campo S., Campo G.M. Hyaluronan fragments produced during tissue injury: A signal amplifying the inflammatory response. Arch. Biochem. Biophys. 2019;663:228–238. doi: 10.1016/j.abb.2019.01.015. PubMed DOI

Albano G.D., Bonanno A., Cavalieri L., Ingrassia E., Di Sano C., Siena L., Riccobono L., Gagliardo R., Profita M. Effect of High, Medium, and Low Molecular Weight Hyaluronan on Inflammation and Oxidative Stress in an In Vitro Model of Human Nasal Epithelial Cells. Mediat. Inflamm. 2016;2016:8727289. doi: 10.1155/2016/8727289. PubMed DOI PMC

Yung S., Chan T.M. Hyaluronan--regulator and initiator of peritoneal inflammation and remodeling. Int. J. Artif. Organs. 2007;30:477–483. doi: 10.1177/039139880703000605. PubMed DOI

Dong Y., Arif A., Olsson M., Cali V., Hardman B., Dosanjh M., Lauer M., Midura R.J., Hascall V.C., Brown K.L., et al. Endotoxin free hyaluronan and hyaluronan fragments do not stimulate TNF-alpha, interleukin-12 or upregulate co-stimulatory molecules in dendritic cells or macrophages. Sci. Rep. 2016;6:36928. doi: 10.1038/srep36928. PubMed DOI PMC

Safrankova B., Hermannova M., Nesporova K., Velebny V., Kubala L. Absence of differences among low, middle, and high molecular weight hyaluronan in activating murine immune cells in vitro. Int. J. Biol. Macromol. 2018;107:1–8. doi: 10.1016/j.ijbiomac.2017.08.131. PubMed DOI

Scott J.E., Cummings C., Brass A., Chen Y. Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation. Hyaluronan is a very efficient network-forming polymer. Biochem. J. 1991;274 Pt 3:699–705. doi: 10.1042/bj2740699. PubMed DOI PMC

Harris E.N., Baker E. Role of the Hyaluronan Receptor, Stabilin-2/HARE, in Health and Disease. Int. J. Mol. Sci. 2020;21:3504. doi: 10.3390/ijms21103504. PubMed DOI PMC

de la Motte C.A. Hyaluronan in intestinal homeostasis and inflammation: Implications for fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 2011;301:G945–G949. doi: 10.1152/ajpgi.00063.2011. PubMed DOI PMC

Wilson R.B. Hypoxia, cytokines and stromal recruitment: Parallels between pathophysiology of encapsulating peritoneal sclerosis, endometriosis and peritoneal metastasis. Pleura Peritoneum. 2018;3:20180103. doi: 10.1515/pp-2018-0103. PubMed DOI PMC

Banerji S., Wright A.J., Noble M., Mahoney D.J., Campbell I.D., Day A.J., Jackson D.G. Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction. Nat. Struct. Mol. Biol. 2007;14:234–239. doi: 10.1038/nsmb1201. PubMed DOI

Wolny P.M., Banerji S., Gounou C., Brisson A.R., Day A.J., Jackson D.G., Richter R.P. Analysis of CD44-hyaluronan interactions in an artificial membrane system: Insights into the distinct binding properties of high and low molecular weight hyaluronan. J. Biol. Chem. 2010;285:30170–30180. doi: 10.1074/jbc.M110.137562. PubMed DOI PMC

Yang C., Cao M., Liu H., He Y., Xu J., Du Y., Liu Y., Wang W., Cui L., Hu J., et al. The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering. J. Biol. Chem. 2012;287:43094–43107. doi: 10.1074/jbc.M112.349209. PubMed DOI PMC

Kim S.J., Owen S.C. Hyaluronic acid binding to CD44S is indiscriminate of molecular weight. Biochim. Biophys. Acta-Biomembr. 2020;1862:183348. doi: 10.1016/j.bbamem.2020.183348. PubMed DOI

Sunabori T., Koike M., Asari A., Oonuki Y., Uchiyama Y. Suppression of Ischemia-Induced Hippocampal Pyramidal Neuron Death by Hyaluronan Tetrasaccharide through Inhibition of Toll-Like Receptor 2 Signaling Pathway. Am. J. Pathol. 2016;186:2143–2151. doi: 10.1016/j.ajpath.2016.03.016. PubMed DOI

Rugg M.S., Willis A.C., Mukhopadhyay D., Hascall V.C., Fries E., Fulop C., Milner C.M., Day A.J. Characterization of complexes formed between TSG-6 and inter-alpha-inhibitor that act as intermediates in the covalent transfer of heavy chains onto hyaluronan. J. Biol. Chem. 2005;280:25674–25686. doi: 10.1074/jbc.M501332200. PubMed DOI

Lesley J., Gal I., Mahoney D.J., Cordell M.R., Rugg M.S., Hyman R., Day A.J., Mikecz K. TSG-6 modulates the interaction between hyaluronan and cell surface CD44. J. Biol. Chem. 2004;279:25745–25754. doi: 10.1074/jbc.M313319200. PubMed DOI

Fulop C., Szanto S., Mukhopadhyay D., Bardos T., Kamath R.V., Rugg M.S., Day A.J., Salustri A., Hascall V.C., Glant T.T., et al. Impaired cumulus mucification and female sterility in tumor necrosis factor-induced protein-6 deficient mice. Development. 2003;130:2253–2261. doi: 10.1242/dev.00422. PubMed DOI

Fasanello D.C., Su J., Deng S., Yin R., Colville M.J., Berenson J.M., Kelly C.M., Freer H., Rollins A., Wagner B., et al. Hyaluronic acid synthesis, degradation, and crosslinking in equine osteoarthritis: TNF-alpha-TSG-6-mediated HC-HA formation. Arthritis Res. 2021;23:218. doi: 10.1186/s13075-021-02588-7. PubMed DOI PMC

Ni K., Gill A., Tseng V., Mikosz A.M., Koike K., Beatman E.L., Xu C.Y., Cao D., Gally F., Mould K.J., et al. Rapid clearance of heavy chain-modified hyaluronan during resolving acute lung injury. Respir. Res. 2018;19:107. doi: 10.1186/s12931-018-0812-1. PubMed DOI PMC

Bogdani M., Johnson P.Y., Potter-Perigo S., Nagy N., Day A.J., Bollyky P.L., Wight T.N. Hyaluronan and hyaluronan-binding proteins accumulate in both human type 1 diabetic islets and lymphoid tissues and associate with inflammatory cells in insulitis. Diabetes. 2014;63:2727–2743. doi: 10.2337/db13-1658. PubMed DOI PMC

Mutoji K.N., Sun M., Nash A., Puri S., Hascall V., Coulson-Thomas V.J. Anti-inflammatory protein TNFalpha-stimulated gene-6 (TSG-6) reduces inflammatory response after brain injury in mice. BMC Immunol. 2021;22:52. doi: 10.1186/s12865-021-00443-7. PubMed DOI PMC

Kang I., Chang M.Y., Wight T.N., Frevert C.W. Proteoglycans as Immunomodulators of the Innate Immune Response to Lung Infection. J. Histochem. Cytochem. Off. J. Histochem. Soc. 2018;66:241–259. doi: 10.1369/0022155417751880. PubMed DOI PMC

Gill S., Wight T.N., Frevert C.W. Proteoglycans: Key regulators of pulmonary inflammation and the innate immune response to lung infection. Anat. Rec. 2010;293:968–981. doi: 10.1002/ar.21094. PubMed DOI PMC

Tang M., Diao J., Gu H., Khatri I., Zhao J., Cattral M.S. Toll-like Receptor 2 Activation Promotes Tumor Dendritic Cell Dysfunction by Regulating IL-6 and IL-10 Receptor Signaling. Cell Rep. 2015;13:2851–2864. doi: 10.1016/j.celrep.2015.11.053. PubMed DOI

Albeiroti S., Soroosh A., de la Motte C.A. Hyaluronan’s Role in Fibrosis: A Pathogenic Factor or a Passive Player? Biomed. Res. Int. 2015;2015:790203. doi: 10.1155/2015/790203. PubMed DOI PMC

Sullivan W.J., Mullen P.J., Schmid E.W., Flores A., Momcilovic M., Sharpley M.S., Jelinek D., Whiteley A.E., Maxwell M.B., Wilde B.R., et al. Extracellular Matrix Remodeling Regulates Glucose Metabolism through TXNIP Destabilization. Cell. 2018;175:117–132.e121. doi: 10.1016/j.cell.2018.08.017. PubMed DOI PMC

Si M., Wang Q., Li Y., Lin H., Luo D., Zhao W., Dou X., Liu J., Zhang H., Huang Y., et al. Inhibition of hyperglycolysis in mesothelial cells prevents peritoneal fibrosis. Sci. Transl. Med. 2019;11 doi: 10.1126/scitranslmed.aav5341. PubMed DOI

Zhao X., Psarianos P., Ghoraie L.S., Yip K., Goldstein D., Gilbert R., Witterick I., Pang H., Hussain A., Lee J.H., et al. Metabolic regulation of dermal fibroblasts contributes to skin extracellular matrix homeostasis and fibrosis. Nat. Metab. 2019;1:147–157. doi: 10.1038/s42255-018-0008-5. PubMed DOI

Chanmee T., Ontong P., Izumikawa T., Higashide M., Mochizuki N., Chokchaitaweesuk C., Khansai M., Nakajima K., Kakizaki I., Kongtawelert P., et al. Hyaluronan Production Regulates Metabolic and Cancer Stem-like Properties of Breast Cancer Cells via Hexosamine Biosynthetic Pathway-coupled HIF-1 Signaling. J. Biol. Chem. 2016;291:24105–24120. doi: 10.1074/jbc.M116.751263. PubMed DOI PMC

Grandoch M., Flogel U., Virtue S., Maier J.K., Jelenik T., Kohlmorgen C., Feldmann K., Ostendorf Y., Castaneda T.R., Zhou Z., et al. 4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue. Nat. Metab. 2019;1:546–559. doi: 10.1038/s42255-019-0055-6. PubMed DOI PMC

Tammi M.I., Oikari S., Pasonen-Seppanen S., Rilla K., Auvinen P., Tammi R.H. Activated hyaluronan metabolism in the tumor matrix—Causes and consequences. Matrix Biol. J. Int. Soc. Matrix Biol. 2019;78-79:147–164. doi: 10.1016/j.matbio.2018.04.012. PubMed DOI

Tsitrina A.A., Krasylov I.V., Maltsev D.I., Andreichenko I.N., Moskvina V.S., Ivankov D.N., Bulgakova E.V., Nesterchuk M., Shashkovskaya V., Dashenkova N.O., et al. Inhibition of hyaluronan secretion by novel coumarin compounds and chitin synthesis inhibitors. Glycobiology. 2021;31:959–974. doi: 10.1093/glycob/cwab038. PubMed DOI PMC

Tsuchiya S., Ohashi Y., Ishizuka S., Ishiguro N., O’Rourke D.P., Knudson C.B., Knudson W. Suppression of murine osteoarthritis by 4-methylumbelliferone. J. Orthop. Res. 2020;38:1122–1131. doi: 10.1002/jor.24541. PubMed DOI PMC

Terabe K., Ohashi Y., Tsuchiya S., Ishizuka S., Knudson C.B., Knudson W. Chondroprotective effects of 4-methylumbelliferone and hyaluronan synthase-2 overexpression involve changes in chondrocyte energy metabolism. J. Biol. Chem. 2019;294:17799–17817. doi: 10.1074/jbc.RA119.009556. PubMed DOI PMC

Andreichenko I.N., Tsitrina A.A., Fokin A.V., Gabdulkhakova A.I., Maltsev D.I., Perelman G.S., Bulgakova E.V., Kulikov A.M., Mikaelyan A.S., Kotelevtsev Y.V. 4-methylumbelliferone Prevents Liver Fibrosis by Affecting Hyaluronan Deposition, FSTL1 Expression and Cell Localization. Int. J. Mol. Sci. 2019;20:6301. doi: 10.3390/ijms20246301. PubMed DOI PMC

Tsai J.M., Sinha R., Seita J., Fernhoff N., Christ S., Koopmans T., Krampitz G.W., McKenna K.M., Xing L., Sandholzer M., et al. Surgical adhesions in mice are derived from mesothelial cells and can be targeted by antibodies against mesothelial markers. Sci. Transl. Med. 2018;10 doi: 10.1126/scitranslmed.aan6735. PubMed DOI

Koopmans T., Rinkevich Y. Mesothelial to mesenchyme transition as a major developmental and pathological player in trunk organs and their cavities. Commun. Biol. 2018;1:170. doi: 10.1038/s42003-018-0180-x. PubMed DOI PMC

Mutsaers S.E., Prele C.M., Pengelly S., Herrick S.E. Mesothelial cells and peritoneal homeostasis. Fertil. Steril. 2016;106:1018–1024. doi: 10.1016/j.fertnstert.2016.09.005. PubMed DOI

Witowski J., Jorres A. Peritoneal cell culture: Fibroblasts. Perit. Dial. Int. 2006;26:292–299. doi: 10.1177/089686080602600302. PubMed DOI

Kawanishi K. Diverse properties of the mesothelial cells in health and disease. Pleura Peritoneum. 2016;1:79–89. doi: 10.1515/pp-2016-0009. PubMed DOI PMC

Fortin C.N., Saed G.M., Diamond M.P. Predisposing factors to post-operative adhesion development. Hum. Reprod. Update. 2015;21:536–551. doi: 10.1093/humupd/dmv021. PubMed DOI

Yung S., Coles G.A., Williams J.D., Davies M. The source and possible significance of hyaluronan in the peritoneal cavity. Kidney Int. 1994;46:527–533. doi: 10.1038/ki.1994.304. PubMed DOI

Yung S., Thomas G.J., Davies M. Induction of hyaluronan metabolism after mechanical injury of human peritoneal mesothelial cells in vitro. Kidney Int. 2000;58:1953–1962. doi: 10.1111/j.1523-1755.2000.00367.x. PubMed DOI

Tzuman Y.C., Sapoznik S., Granot D., Nevo N., Neeman M. Peritoneal adhesion and angiogenesis in ovarian carcinoma are inversely regulated by hyaluronan: The role of gonadotropins. Neoplasia. 2010;12:51–60. doi: 10.1593/neo.91272. PubMed DOI PMC

Koistinen V., Jokela T., Oikari S., Karna R., Tammi M., Rilla K. Hyaluronan-positive plasma membrane protrusions exist on mesothelial cells in vivo. Histochem. Cell Biol. 2016;145:531–544. doi: 10.1007/s00418-016-1405-z. PubMed DOI

Haslinger B., Mandl-Weber S., Sellmayer A., Sitter T. Hyaluronan fragments induce the synthesis of MCP-1 and IL-8 in cultured human peritoneal mesothelial cells. Cell Tissue Res. 2001;305:79–86. doi: 10.1007/s004410100409. PubMed DOI

Yung S., Coles G.A., Davies M. IL-1 beta, a major stimulator of hyaluronan synthesis in vitro of human peritoneal mesothelial cells: Relevance to peritonitis in CAPD. Kidney Int. 1996;50:1337–1343. doi: 10.1038/ki.1996.446. PubMed DOI

Raby A.C., Gonzalez-Mateo G.T., Williams A., Topley N., Fraser D., Lopez-Cabrera M., Labeta M.O. Targeting Toll-like receptors with soluble Toll-like receptor 2 prevents peritoneal dialysis solution-induced fibrosis. Kidney Int. 2018;94:346–362. doi: 10.1016/j.kint.2018.03.014. PubMed DOI

Shi J., Li Q., Sheng M., Zheng M., Yu M., Zhang L. The Role of TLR4 in M1 Macrophage-Induced Epithelial-Mesenchymal Transition of Peritoneal Mesothelial Cells. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2016;40:1538–1548. doi: 10.1159/000453204. PubMed DOI

Tsai J.M., Shoham M., Fernhoff N.B., George B.M., Marjon K.D., McCracken M.N., Kao K.S., Sinha R., Volkmer A.K., Miyanishi M., et al. Neutrophil and monocyte kinetics play critical roles in mouse peritoneal adhesion formation. Blood Adv. 2019;3:2713–2721. doi: 10.1182/bloodadvances.2018024026. PubMed DOI PMC

Dechaud H., Witz C.A., Montoya-Rodriguez I.A., Degraffenreid L.A., Schenken R.S. Mesothelial cell-associated hyaluronic acid promotes adhesion of endometrial cells to mesothelium. Fertil. Steril. 2001;76:1012–1018. doi: 10.1016/S0015-0282(01)02839-4. PubMed DOI

Rodgers A.K., Nair A., Binkley P.A., Tekmal R., Schenken R.S. Inhibition of CD44 N- and O-linked glycosylation decreases endometrial cell lines attachment to peritoneal mesothelial cells. Fertil. Steril. 2011;95:823–825. doi: 10.1016/j.fertnstert.2010.09.005. PubMed DOI PMC

Krediet R.T., Struijk D.G. Peritoneal changes in patients on long-term peritoneal dialysis. Nat. Rev. Nephrol. 2013;9:419–429. doi: 10.1038/nrneph.2013.99. PubMed DOI

Wang N., Li Q., Zhang L., Lin H., Hu J., Li D., Shi S., Cui S., Zhou J., Ji J., et al. Mesenchymal stem cells attenuate peritoneal injury through secretion of TSG-6. PLoS ONE. 2012;7:e43768. doi: 10.1371/journal.pone.0043768. PubMed DOI PMC

Kanda R., Hamada C., Kaneko K., Nakano T., Wakabayashi K., Io H., Horikoshi S., Tomino Y. Pentraxin 3 as a new biomarker of peritoneal injury in peritoneal dialysis patients. J. Artif. Organs. 2013;16:66–73. doi: 10.1007/s10047-012-0663-3. PubMed DOI

Tai Y.S., Jou I.M., Jung Y.C., Wu C.L., Shiau A.L., Chen C.Y. In vivo expression of thrombospondin-1 suppresses the formation of peritoneal adhesion in rats. World J. Gastrointest Surg. 2019;11:85–92. doi: 10.4240/wjgs.v11.i2.85. PubMed DOI PMC

Osada S., Hamada C., Shimaoka T., Kaneko K., Horikoshi S., Tomino Y. Alterations in proteoglycan components and histopathology of the peritoneum in uraemic and peritoneal dialysis (PD) patients. Nephrol. Dial. Transpl. 2009;24:3504–3512. doi: 10.1093/ndt/gfp268. PubMed DOI

Wang X., Balaji S., Steen E.H., Blum A.J., Li H., Chan C.K., Manson S.R., Lu T.C., Rae M.M., Austin P.F., et al. High-molecular weight hyaluronan attenuates tubulointerstitial scarring in kidney injury. JCI Insight. 2020;5:e136345. doi: 10.1172/jci.insight.136345. PubMed DOI PMC

Chang S.H., Yeh Y.H., Lee J.L., Hsu Y.J., Kuo C.T., Chen W.J. Transforming growth factor-beta-mediated CD44/STAT3 signaling contributes to the development of atrial fibrosis and fibrillation. Basic Res. Cardiol. 2017;112:58. doi: 10.1007/s00395-017-0647-9. PubMed DOI

Decleves A.E., Caron N., Voisin V., Legrand A., Bouby N., Kultti A., Tammi M.I., Flamion B. Synthesis and fragmentation of hyaluronan in renal ischaemia. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.-Eur. Ren. Assoc. 2012;27:3771–3781. doi: 10.1093/ndt/gfs098. PubMed DOI

Frangogiannis N.G. Cardiac fibrosis. Cardiovasc. Res. 2021;117:1450–1488. doi: 10.1093/cvr/cvaa324. PubMed DOI PMC

Muller J., Gorressen S., Grandoch M., Feldmann K., Kretschmer I., Lehr S., Ding Z., Schmitt J.P., Schrader J., Garbers C., et al. Interleukin-6-dependent phenotypic modulation of cardiac fibroblasts after acute myocardial infarction. Basic Res. Cardiol. 2014;109:440. doi: 10.1007/s00395-014-0440-y. PubMed DOI

Colombaro V., Decleves A.E., Jadot I., Voisin V., Giordano L., Habsch I., Nonclercq D., Flamion B., Caron N. Inhibition of hyaluronan is protective against renal ischaemia-reperfusion injury. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.-Eur. Ren. Assoc. 2013;28:2484–2493. doi: 10.1093/ndt/gft314. PubMed DOI

Meran S., Thomas D., Stephens P., Martin J., Bowen T., Phillips A., Steadman R. Involvement of hyaluronan in regulation of fibroblast phenotype. J. Biol. Chem. 2007;282:25687–25697. doi: 10.1074/jbc.M700773200. PubMed DOI

Meran S., Thomas D.W., Stephens P., Enoch S., Martin J., Steadman R., Phillips A.O. Hyaluronan facilitates transforming growth factor-beta1-mediated fibroblast proliferation. J. Biol. Chem. 2008;283:6530–6545. doi: 10.1074/jbc.M704819200. PubMed DOI

Jenkins R.H., Thomas G.J., Williams J.D., Steadman R. Myofibroblastic differentiation leads to hyaluronan accumulation through reduced hyaluronan turnover. J. Biol. Chem. 2004;279:41453–41460. doi: 10.1074/jbc.M401678200. PubMed DOI

Ontong P., Prachayasittikul V. Unraveled roles of hyaluronan in severe COVID-19. EXCLI J. 2021;20:117–125. doi: 10.17179/excli2020-3215. PubMed DOI PMC

Pandey A., Kulshrestha R., Bansal S.K. Dynamic role of LMW-hyaluronan fragments and Toll-like receptors 2,4 in progression of bleomycin induced lung parenchymal injury to fibrosis. Egypt. J. Bronchol. 2021;15:1–13. doi: 10.1186/s43168-021-00073-y. DOI

Li Y., Jiang D., Liang J., Meltzer E.B., Gray A., Miura R., Wogensen L., Yamaguchi Y., Noble P.W. Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. J. Exp. Med. 2011;208:1459–1471. doi: 10.1084/jem.20102510. PubMed DOI PMC

Huebener P., Abou-Khamis T., Zymek P., Bujak M., Ying X., Chatila K., Haudek S., Thakker G., Frangogiannis N.G. CD44 is critically involved in infarct healing by regulating the inflammatory and fibrotic response. J. Immunol. 2008;180:2625–2633. doi: 10.4049/jimmunol.180.4.2625. PubMed DOI

Midgley A.C., Oltean S., Hascall V., Woods E.L., Steadman R., Phillips A.O., Meran S. Nuclear hyaluronidase 2 drives alternative splicing of CD44 pre-mRNA to determine profibrotic or antifibrotic cell phenotype. Sci. Signal. 2017;10 doi: 10.1126/scisignal.aao1822. PubMed DOI

Patouraux S., Rousseau D., Bonnafous S., Lebeaupin C., Luci C., Canivet C.M., Schneck A.S., Bertola A., Saint-Paul M.C., Iannelli A., et al. CD44 is a key player in non-alcoholic steatohepatitis. J. Hepatol. 2017;67:328–338. doi: 10.1016/j.jhep.2017.03.003. PubMed DOI

Yang Y.M., Noureddin M., Liu C., Ohashi K., Kim S.Y., Ramnath D., Powell E.E., Sweet M.J., Roh Y.S., Hsin I.F., et al. Hyaluronan synthase 2-mediated hyaluronan production mediates Notch1 activation and liver fibrosis. Sci. Transl. Med. 2019;11 doi: 10.1126/scitranslmed.aat9284. PubMed DOI PMC

Zaman A., Cui Z., Foley J.P., Zhao H., Grimm P.C., Delisser H.M., Savani R.C. Expression and role of the hyaluronan receptor RHAMM in inflammation after bleomycin injury. Am. J. Respir. Cell Mol. Biol. 2005;33:447–454. doi: 10.1165/rcmb.2004-0333OC. PubMed DOI PMC

Cui Z., Liao J., Cheong N., Longoria C., Cao G., DeLisser H.M., Savani R.C. The Receptor for Hyaluronan-Mediated Motility (CD168) promotes inflammation and fibrosis after acute lung injury. Matrix Biol. J. Int. Soc. Matrix Biol. 2019;78-79:255–271. doi: 10.1016/j.matbio.2018.08.002. PubMed DOI PMC

Colombaro V., Jadot I., Decleves A.E., Voisin V., Giordano L., Habsch I., Malaisse J., Flamion B., Caron N. Lack of hyaluronidases exacerbates renal post-ischemic injury, inflammation, and fibrosis. Kidney Int. 2015;88:61–71. doi: 10.1038/ki.2015.53. PubMed DOI

Evanko S.P., Potter-Perigo S., Petty L.J., Workman G.A., Wight T.N. Hyaluronan Controls the Deposition of Fibronectin and Collagen and Modulates TGF-beta1 Induction of Lung Myofibroblasts. Matrix Biol. 2015;42:74–92. doi: 10.1016/j.matbio.2014.12.001. PubMed DOI PMC

Chen C.H., Sue Y.M., Cheng C.Y., Chen Y.C., Liu C.T., Hsu Y.H., Hwang P.A., Huang N.J., Chen T.H. Oligo-fucoidan prevents renal tubulointerstitial fibrosis by inhibiting the CD44 signal pathway. Sci. Rep. 2017;7:40183. doi: 10.1038/srep40183. PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

Editorial of Special Issue "Hyaluronic Acid in Human Medicine"

. 2022 Oct 17 ; 12 (10) : . [epub] 20221017

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...