Evaluation of the Effect of Granite Waste Powder by Varying the Molarity of Activator on the Mechanical Properties of Ground Granulated Blast-Furnace Slag-Based Geopolymer Concrete
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RCAMS/KKU/019-20
King Khalid University, Saudi Arabia
PubMed
35054712
PubMed Central
PMC8779299
DOI
10.3390/polym14020306
PII: polym14020306
Knihovny.cz E-zdroje
- Klíčová slova
- GGBS, alkaline to binder ratio, geopolymer concrete, granite waste powder, molarity,
- Publikační typ
- časopisecké články MeSH
Industrial waste such as Ground Granulated Blast-Furnace Slag (GGBS) and Granite Waste Powder (GWP) is available in huge quantities in several states of India. These ingredients have no recognized application and are usually shed in landfills. This process and these materials are sources of severe environmental pollution. This industrial waste has been utilized as a binder for geopolymers, which is our primary focus. This paper presents the investigation of the optimum percentage of granite waste powder as a binder, specifically, the effect of molar and alkaline to binder (A/B) ratio on the mechanical properties of geopolymer concrete (GPC). Additionally, this study involves the use of admixture SP-340 for better performance of workability. Current work focuses on investigating the effect of a change in molarity that results in strength development in geopolymer concrete. The limits for the present work were: GGBS partially replaced by GWP up to 30%; molar ranging from 12 to 18 with the interval of 2 M; and A/B ratio of 0.30. For 16 M of GPC, a maximum slump was observed for GWP with 60 mm compared to other molar concentration. For 16 M of GPC, a maximum compressive strength (CS) was observed for GWP with 20%, of 33.95 MPa. For 16 M of GPC, a maximum STS was observed for GWP, with 20%, of 3.15 MPa. For 16 M of GPC, a maximum FS was observed for GWP, with 20%, of 4.79 MPa. Geopolymer concrete has better strength properties than conventional concrete. GPC is $13.70 costlier than conventional concrete per cubic meter.
Department of Civil Engineering Jain College of Engineering Belagavi 590014 India
Department of Physics College of Sciences University of Bisha P O Box 344 Bisha 61922 Saudi Arabia
Physics Department Faculty of Science Al Azhar University Assiut 71524 Egypt
Zobrazit více v PubMed
Pacheco-Torgal F., Chindaprasirt P., Ozbakkaloglu T., editors. Handbook of Advances in Alkali-Activated Concrete. 1st ed. Elsevier; Amsterdam, The Netherlands: [(accessed on 26 December 2021)]. Available online: https://www.elsevier.com/books/handbook-of-advances-in-alkali-activated-concrete/pacheco-torgal/978-0-323-85469-6.
Palomo A., Maltseva O., Garcia-Lodeiro I., Fernández-Jiménez A. Portland Versus Alkaline Cement: Continuity or Clean Break: “A Key Decision for Global Sustainability”. Front. Chem. 2021;9:653. doi: 10.3389/fchem.2021.705475. PubMed DOI PMC
Hassan A., Arif M., Shariq M. Age-dependent compressive strength and elastic modulus of fly ash-based geopolymer concrete. Struct. Concr. 2020 doi: 10.1002/suco.202000372. DOI
Nagaraj V.K., Venkatesh Babu D.L. Assessing the performance of molarity and alkaline activator ratio on engineering properties of self-compacting alkaline activated concrete at ambient temperature. J. Build. Eng. 2018;20:137–155. doi: 10.1016/j.jobe.2018.07.005. DOI
Topçu İ.B., Toprak M.U., Uygunoğlu T. Durability and microstructure characteristics of alkali activated coal bottom ash geopolymer cement. J. Clean. Prod. 2014;81:211–217. doi: 10.1016/j.jclepro.2014.06.037. DOI
Verma M., Dev N. Effect of ground granulated blast furnace slag and fly ash ratio and the curing conditions on the mechanical properties of geopolymer concrete. Struct. Concr. 2021 doi: 10.1002/suco.202000068. DOI
Haruna S., Mohammed B.S., Wahab M.M.A., Liew M.S. Effect of paste aggregate ratio and curing methods on the performance of one-part alkali-activated concrete. Constr. Build. Mater. 2020;261:120024. doi: 10.1016/j.conbuildmat.2020.120024. DOI
Krishna Rao A., Kumar D.R. Effect of various alkaline binder ratio on geopolymer concrete under ambient curing condition. Mater. Today Proc. 2020;27:1768–1773. doi: 10.1016/j.matpr.2020.03.682. DOI
Aliabdo A.A., Abd Elmoaty A.E.M., Salem H.A. Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. Constr. Build. Mater. 2016;121:694–703. doi: 10.1016/j.conbuildmat.2016.06.062. DOI
Singhi B., Laskar A.I., Ahmed M.A. Investigation on soil–geopolymer with slag, fly ash and their blending. Arab. J. Sci. Eng. 2016;41:393–400. doi: 10.1007/s13369-015-1677-y. DOI
Ghafoor M.T., Khan Q.S., Qazi A.U., Sheikh M.N., Hadi M.N.S. Influence of alkaline activators on the mechanical properties of fly ash based geopolymer concrete cured at ambient temperature. Constr. Build. Mater. 2021;273:121752. doi: 10.1016/j.conbuildmat.2020.121752. DOI
Koushkbaghi M., Alipour P., Tahmouresi B., Mohseni E., Saradar A., Sarker P.K. Influence of different monomer ratios and recycled concrete aggregate on mechanical properties and durability of geopolymer concretes. Constr. Build. Mater. 2019;205:519–528. doi: 10.1016/j.conbuildmat.2019.01.174. DOI
Poloju K.K., Sinivasu K. Influence of GGBS and Alkaline Ratio on Compression Strength of Geopolymer Concrete: Influence of GGBS and Alkaline Ratio on Compression Strength of Geopolymer Concrete. [(accessed on 5 November 2021)];SPAST Abstr. 2021 1 Available online: https://spast.org/techrep/article/view/2900.
Kumar V.V.P., Prasad N., Dey S. Influence of metakaolin on strength and durability characteristics of ground granulated blast furnace slag based geopolymer concrete. Struct. Concr. 2020;21:1040–1050. doi: 10.1002/suco.201900415. DOI
Cao Y.-F., Tao Z., Pan Z., Wuhrer R. Effect of calcium aluminate cement on geopolymer concrete cured at ambient temperature. Constr. Build. Mater. 2018;191:242–252. doi: 10.1016/j.conbuildmat.2018.09.204. DOI
EL Alouani S.M., Alehyen M., EL Achouri A., Hajjaji C., Taibi M. Influence of the Nature and Rate of Alkaline Activator on the Physicochemical Properties of Fly Ash-Based Geopolymers. Adv. Civ. Eng. 2020;2020:e8880906. doi: 10.1155/2020/8880906. DOI
Kantarci F., Türkmen İ., Ekinci E. Influence of various factors on properties of geopolymer paste: A comparative study. Struct. Concr. 2021;22:E315–E331. doi: 10.1002/suco.201900400. DOI
Ghannam S., Najm H., Vasconez R. Experimental study of concrete made with granite and iron powders as partial replacement of sand. Sustain. Mater. Technol. 2016;9:1–9. doi: 10.1016/j.susmat.2016.06.001. DOI
Ganesan N., Abraham R., Deepa Raj S. Durability characteristics of steel fibre reinforced geopolymer concrete. Constr. Build. Mater. 2015;93:471–476. doi: 10.1016/j.conbuildmat.2015.06.014. DOI
Muraleedharan M., Nadir Y. Factors affecting the mechanical properties and microstructure of geopolymers from red mud and granite waste powder: A review. Ceram. Int. 2021;47:13257–13279. doi: 10.1016/j.ceramint.2021.02.009. DOI
Menezes R.R., Ferreira H.S., Neves G.D.A., Ferreira H.C. The use of granite wastes as ceramic raw materials. Cerâmica. 2002;48:92–101. doi: 10.1590/S0366-69132002000200008. DOI
Gao X., Yuan B., Yu Q.L., Brouwers H.J.H. Characterization and application of municipal solid waste incineration (MSWI) bottom ash and waste granite powder in alkali activated slag. J. Clean. Prod. 2017;164:410–419. doi: 10.1016/j.jclepro.2017.06.218. DOI
Al Bakri Abdullah M.M., Kamarudin H., Abdulkareem O.A.K.A., Ghazali C.M.R., Rafiza A.R., Norazian M.N. Optimization of Alkaline Activator/Fly ASH Ratio on the Compressive Strength of Manufacturing Fly ASH-BASED Geopolymer. Appl. Mech. Mater. 2012;110–116:734–739. doi: 10.4028/www.scientific.net/AMM.110-116.734. DOI
Xie T., Visintin P., Zhao X., Gravina R. Mix Design and Mechanical Properties of Geopolymer and Alkali Activated Concrete: Review of the state-of-the-art and the Development of a New Unified Approach. Constr. Build. Mater. 2020;256 doi: 10.1016/j.conbuildmat.2020.119380. DOI
Thormark C. A low energy building in a life cycle—Its embodied energy, energy need for operation and recycling potential. Build. Environ. 2002;37:429–435. doi: 10.1016/S0360-1323(01)00033-6. DOI
Verma M., Dev N. Sodium hydroxide effect on the mechanical properties of flyash-slag based geopolymer concrete. Struct. Concr. 2021;22:E368–E379. doi: 10.1002/suco.202000068. DOI
Ikeda K. Recent Development of Geopolymer Technique in Relevance to Carbon Dioxide and Waste Management Issues. Dev. Porous Biol. Geopolym. Ceram. Eng. Sci. Proc. 2007;28:293–308.
Durak U., Karahan O., Uzal B., İlkentapar S., Atiş C.D. Influence of nano SiO2 and nano CaCO3 particles on strength, workability, and microstructural properties of fly ash-based geopolymer. Struct. Concr. 2021;22:E352–E367. doi: 10.1002/suco.201900479. DOI
Mehta A., Siddique R. Sulfuric acid resistance of fly ash based geopolymer concrete. Constr. Build. Mater. 2017;146:136–143. doi: 10.1016/j.conbuildmat.2017.04.077. DOI
Deb P.S., Sarker P.K., Barbhuiya S. Sorptivity and acid resistance of ambient-cured geopolymer mortars containing nano-silica. Cem. Concr. Compos. 2016;72:235–245. doi: 10.1016/j.cemconcomp.2016.06.017. DOI
Nuaklong P., Sata V., Chindaprasirt P. Influence of recycled aggregate on fly ash geopolymer concrete properties. J. Clean. Prod. 2016;112:2300–2307. doi: 10.1016/j.jclepro.2015.10.109. DOI
Jayarajan G., Arivalagan S. An experimental studies of geopolymer concrete incorporated with fly-ash & GGBS. Mater. Today Proc. 2021;45:6915–6920. doi: 10.1016/j.matpr.2021.01.285. DOI
Mallikarjuna Rao G., Gunneswara Rao T.D. Final Setting Time and Compressive Strength of Fly Ash and GGBS-Based Geopolymer Paste and Mortar. Arab. J. Sci. Eng. 2015;40:3067–3074. doi: 10.1007/s13369-015-1757-z. DOI
IS 1199. Bureau of Indian Standards; New Delhi, India: 1959. 49p Methods of Sampling and Analysis of Concrete.
IS 516. Bureau of Indian Standards; New Delhi, India: 1959. 30p Method of Tests for Strength of Concrete.
IS 5816. Bureau of Indian Standards; New Delhi, India: 1999. 14p Method of Test Splitting Tensile Strength of Concrete.
ASTM C1585-20 Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. [(accessed on 26 December 2021)]. Available online: https://www.techstreet.com/standards/astm-c1585-20?product_id=2189851.
Provis J.L., Palomo A., Shi C. Advances in understanding alkali-activated materials. Cem. Concr. Res. 2015;78:110–125. doi: 10.1016/j.cemconres.2015.04.013. DOI
Bakthavatchalam K., Rajendran M. An experimental investigation on potassium activator based geopolymer concrete incorporated with hybrid fibers. Mater. Today Proc. 2021;46 doi: 10.1016/j.matpr.2021.03.506. DOI
Liew Y.-M., Heah C.-Y., Li L., Jaya N.A., Abdullah M.M.A.B., Tan S.J., Hussin K. Formation of one-part-mixing geopolymers and geopolymer ceramics from geopolymer powder. Constr. Build. Mater. 2017;156:9–18. doi: 10.1016/j.conbuildmat.2017.08.110. DOI
Padmakar M., Barhmaiah B., Leela Priyanka M. Characteristic compressive strength of a geo polymer concrete. Mater. Today Proc. 2021;37:2219–2222. doi: 10.1016/j.matpr.2020.07.656. DOI
Kumar R., Das P., Beulah M., Arjun H.R., Ignatius G. Utilization of Iron Ore Tailings for the Production of Fly Ash—GGBS-Based Geopolymer Bricks. J. Adv. Manuf. Syst. 2017;16:275–290. doi: 10.1142/S0219686717500172. DOI
Lee W.K.W., van Deventer J.S.J. Chemical interactions between siliceous aggregates and low-Ca alkali-activated cements. Cem. Concr. Res. 2007;37:844–855. doi: 10.1016/j.cemconres.2007.03.012. DOI
Amran Y.H.M., Alyousef R., Alabduljabbar H., El-Zeadani M. Clean production and properties of geopolymer concrete—A review. J. Clean. Prod. 2020;251:119679. doi: 10.1016/j.jclepro.2019.119679. DOI
Chindaprasirt P., Jaturapitakkul C., Chalee W., Rattanasak U. Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manag. 2009;29:539–543. doi: 10.1016/j.wasman.2008.06.023. PubMed DOI
Garcia-Lodeiro I., Palomo A., Fernández-Jiménez A. 2—An overview of the chemistry of alkali-activated cement-based binders. In: Pacheco-Torgal F., Labrincha J.A., Leonelli C., Palomo A., Chindaprasirt P., editors. Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing; Oxford, UK: 2015. pp. 19–47.
Huseien G.F., Ismail M., Khalid N.H.A., Hussin M.W., Mirza J. Compressive strength and microstructure of assorted wastes incorporated geopolymer mortars: Effect of solution molarity. Alex. Eng. J. 2018;57:3375–3386. doi: 10.1016/j.aej.2018.07.011. DOI
Samadi M., Huseien G.F., Lim N.H.A.S., Mohammadhosseini H., Alyousef R., Mirza J., Rahman A.B.A. Enhanced performance of nano-palm oil ash-based green mortar against sulphate environment. J. Build. Eng. 2020;32:101640. doi: 10.1016/j.jobe.2020.101640. DOI
Heah C.Y., Kamarudin H., Mohd Mustafa Al-Bakri A., Mohamed B., Luqman M., Khairul Nizar I., Liew Y.M. Effect of alkali concentration on mechanical properties of kaolin geopolymers. Rom. J. Mater. 2012;42:179–186.
AlKhatib A., Maslehuddin M., Al-Dulaijan S.U. Development of high performance concrete using industrial waste materials and nano-silica. J. Mater. Res. Technol. 2020;9:6696–6711. doi: 10.1016/j.jmrt.2020.04.067. DOI
Xie J., Chen W., Wang J., Fang C., Zhang B., Liu F. Coupling effects of recycled aggregate and GGBS/metakaolin on physicochemical properties of geopolymer concrete. Constr. Build. Mater. 2019;226:345–359. doi: 10.1016/j.conbuildmat.2019.07.311. DOI
Yu L., Li Y., Liu T., Qin Z., Tan H., Zhang H., Chen Z., Ni H. Mechanical and microstructural characterization of geopolymers synthesized from FCC waste catalyst and silica fume. Ceram. Int. 2021;47:15186–15194. doi: 10.1016/j.ceramint.2021.02.080. DOI
Their J.M., Özakça M. Developing geopolymer concrete by using cold-bonded fly ash aggregate, nano-silica, and steel fiber. Constr. Build. Mater. 2018;180:12–22. doi: 10.1016/j.conbuildmat.2018.05.274. DOI
Ganesh A.C., Muthukannan M. Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength. J. Clean. Prod. 2021;282:124543. doi: 10.1016/j.jclepro.2020.124543. DOI
Luhar S., Chaudhary S., Luhar I. Development of rubberized geopolymer concrete: Strength and durability studies. Constr. Build. Mater. 2019;204:740–753. doi: 10.1016/j.conbuildmat.2019.01.185. DOI
Okoye F.N., Prakash S., Singh N.B. Durability of fly ash based geopolymer concrete in the presence of silica fume. J. Clean. Prod. 2017;149:1062–1067. doi: 10.1016/j.jclepro.2017.02.176. DOI
Pasupathy K., Berndt M., Sanjayan J., Rajeev P., Cheema D.S. Durability of low-calcium fly ash based geopolymer concrete culvert in a saline environment. Cem. Concr. Res. 2017;100:297–310. doi: 10.1016/j.cemconres.2017.07.010. DOI
Sethi H., Bansal P.P., Sharma R. Effect of Addition of GGBS and Glass Powder on the Properties of Geopolymer Concrete. Iran. J. Sci. Technol. Trans. Civ. Eng. 2019;43:607–617. doi: 10.1007/s40996-018-0202-4. DOI
Bernal S.A., Mejía de Gutiérrez R., Pedraza A.L., Provis J.L., Rodriguez E.D., Delvasto S. Effect of binder content on the performance of alkali-activated slag concretes. Cem. Concr. Res. 2011;41:1–8. doi: 10.1016/j.cemconres.2010.08.017. DOI
Yip C.K., Lukey G.C., Provis J.L., van Deventer J.S.J. Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res. 2008;38:554–564. doi: 10.1016/j.cemconres.2007.11.001. DOI
Chithambaram S.J., Kumar S., Prasad M.M., Adak D. Effect of parameters on the compressive strength of fly ash based geopolymer concrete. Struct. Concr. 2018;19:1202–1209. doi: 10.1002/suco.201700235. DOI
Singh B., Ishwarya G., Gupta M., Bhattacharyya S.K. Geopolymer concrete: A review of some recent developments. Constr. Build. Mater. 2015;85:78–90. doi: 10.1016/j.conbuildmat.2015.03.036. DOI
Chindaprasirt P., Chalee W. Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site. Constr. Build. Mater. 2014;63:303–310. doi: 10.1016/j.conbuildmat.2014.04.010. DOI
Hanjitsuwan S., Hunpratub S., Thongbai P., Maensiri S., Sata V., Chindaprasirt P. Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste. Cem. Concr. Compos. 2014;45:9–14. doi: 10.1016/j.cemconcomp.2013.09.012. DOI
Malkawi A.B., Nuruddin M.F., Fauzi A., Almattarneh H., Mohammed B.S. Effects of Alkaline Solution on Properties of the HCFA Geopolymer Mortars. Procedia Eng. 2016;148:710–717. doi: 10.1016/j.proeng.2016.06.581. DOI
Mousavinejad S.H.G., Gashti M.F. Effects of alkaline solution/binder and Na2SiO3/NaOH ratios on fracture properties and ductility of ambient-cured GGBFS based heavyweight geopolymer concrete. Structures. 2021;32:2118–2129. doi: 10.1016/j.istruc.2021.04.008. DOI
Nuaklong P., Jongvivatsakul P., Pothisiri T., Sata V., Chindaprasirt P. Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete. J. Clean. Prod. 2020;252:119797. doi: 10.1016/j.jclepro.2019.119797. DOI
Nuaklong P., Wongsa A., Boonserm K., Ngohpok C., Jongvivatsakul P., Sata V., Sukontasukkul P., Chindaprasirt P. Enhancement of mechanical properties of fly ash geopolymer containing fine recycled concrete aggregate with micro carbon fiber. J. Build. Eng. 2021;41:102403. doi: 10.1016/j.jobe.2021.102403. DOI
Duxson P., Provis J.L., Lukey G.C., van Deventer J.S.J. The role of inorganic polymer technology in the development of ‘green concrete’. Cem. Concr. Res. 2007;37:1590–1597. doi: 10.1016/j.cemconres.2007.08.018. DOI
Görhan G., Kürklü G. The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Compos. Part B Eng. 2014;58:371–377. doi: 10.1016/j.compositesb.2013.10.082. DOI
Prinsse S., Hordijk D.A., Ye G., Lagendijk P., Luković M. Time-dependent material properties and reinforced beams behavior of two alkali-activated types of concrete. Struct. Concr. 2020;21:642–658. doi: 10.1002/suco.201900235. DOI
Bouaissi A., Li L., Al Bakri Abdullah M.M., Bui Q.-B. Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete. Constr. Build. Mater. 2019;210:198–209. doi: 10.1016/j.conbuildmat.2019.03.202. DOI