Review on the Relationship between Nano Modifications of Geopolymer Concrete and Their Structural Characteristics

. 2022 Mar 30 ; 14 (7) : . [epub] 20220330

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35406294

Grantová podpora
R.G.P 2/107/41 King Khalid University

The main objective of this review is to study some important nanomaterials and their impact on the performance of geopolymer concrete. This paper is an investigation into trends and technology in the development of different nanomaterials to develop higher structural performance geopolymer concrete. The effect of the alkaline to binder and sodium silicate to sodium hydroxide ratio on the performances of geopolymer performances is studied. The relationship between setting time and slump is evaluated through the ternary plot, the variation in compressive strength values is evaluated using the kernel density plot, and the relationship between split tensile and flexural strength is investigated using the scattering interval plot. Regression analysis is carried out among water absorption and bulk-density result values obtained from previous literature. As the molarity and alkaline to binder (A/B) ratios increase, the strength development of geopolymer concrete increases up to a specific limit. The addition of a small quantity of nanomaterials, namely, nano silica, nano alumina, carbon nano tubes, and nano clay, led to the maximum strength development of geopolymer concrete. Incorporating these nanomaterials into the geopolymer significantly refines the structural stability, improving its durability. The various products in GP composites emerging from the incorporation of highly reactive SEM, XRD, and FTIR analysis of nanomaterials reveal that the presence of nanomaterials, which enhances the rate of polymerization, leads to better performance of the geopolymer.

Zobrazit více v PubMed

Ng C., Alengaram U.J., Wong L.S., Mo K.H., Jumaat M.Z., Ramesh S. A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete. Constr. Build. Mater. 2018;186:550–576. doi: 10.1016/j.conbuildmat.2018.07.075. DOI

Cheng T.-W., Lo K.-W., Lin K.-L., Lan J.-Y. Study on the effects Nano-SiO2 and spent catalyst ratios on characteristics of metakaolin-based geopolymers. Environ. Prog. Sustain. Energy. 2019;38:220–227. doi: 10.1002/ep.12921. DOI

Kumar R., Das P., Beulah M., Arjun H.R., Ignatius G. Utilization of Iron Ore Tailings for the Production of Fly Ash—GGBS-Based Geopolymer Bricks. J. Adv. Manuf. Syst. 2017;16:275–290. doi: 10.1142/S0219686717500172. DOI

Davidovits J. Proceedings of the 41st International Conference on Advanced Ceramics and Composites. John and Wiley and Sons; Hoboken, NJ, USA: 2018. Geopolymers Based on Natural and Synthetic Metakaolin a Critical Review; pp. 201–214. DOI

Polymers/Free Full-Text/Evaluation of the Effect of Granite Waste Powder by Varying the Molarity of Activator on the Mechanical Properties of Ground Granulated Blast-Furnace Slag-Based Geopolymer Concrete. [(accessed on 16 March 2022)]. Available online: https://www.mdpi.com/2073-4360/14/2/306. PubMed PMC

Ravitheja A., Kumar N.L.N.K. A study on the effect of nano clay and GGBS on the strength properties of fly ash based geopolymers. Mater. Today Proc. 2019;19:273–276. doi: 10.1016/j.matpr.2019.06.761. DOI

Abdullah M.M.A.B., Kamarudin H., Abdulkareem O.A.K.A., Ghazali C.M.R., Rafiza A.R., Norazian M.N. Optimization of Alkaline Activator/Fly ASH Ratio on the Compressive Strength of Manufacturing Fly ASH-BASED Geopolymer. Appl. Mech. Mater. 2012;110:734–739. doi: 10.4028/www.scientific.net/AMM.110-116.734. DOI

Alouani M.E.L., Alehyen S., Achouri M.E.L., Hajjaji A., Ennawaoui C., Taibi M. Influence of the Nature and Rate of Alkaline Activator on the Physicochemical Properties of Fly Ash-Based Geopolymers. Adv. Civ. Eng. 2020;2020:e8880906. doi: 10.1155/2020/8880906. DOI

Xu S., Xie N., Cheng X., Huang S., Feng L., Hou P., Zhu Y. Environmental resistance of cement concrete modified with low dosage nano particles. Constr. Build. Mater. 2018;164:535–553. doi: 10.1016/j.conbuildmat.2017.12.188. DOI

Huseien G.F., Hamzah H.K., Sam A.R.M., Khalid N.H.A., Shah K.W., Deogrescu D.P., Mirza J. Alkali-activated mortars blended with glass bottle waste nano powder: Environmental benefit and sustainability. J. Clean. Prod. 2020;243:118636. doi: 10.1016/j.jclepro.2019.118636. DOI

Faheem M.T.M., Abdullah M.M.a., Hussin K., Binhussain M., Ghazali C.M.R., Izzat A.M. Application of Clay-Based Geopolymer in Brick Production: A Review. Adv. Mater. Res. 2013;626:878–882. doi: 10.4028/www.scientific.net/AMR.626.878. DOI

Rao A.K., Kumar D.R. Comparative study on the behaviour of GPC using silica fume and fly ash with GGBS exposed to elevated temperature and ambient curing conditions. Mater. Today Proc. 2020;27:1833–1837. doi: 10.1016/j.matpr.2020.03.789. DOI

Luo Z., Li W., Wang K., Castel A., Shah S.P. Comparison on the properties of ITZs in fly ash-based geopolymer and Portland cement concretes with equivalent flowability. Cem. Concr. Res. 2021;143:106392. doi: 10.1016/j.cemconres.2021.106392. DOI

Jayarajan G., Arivalagan S. An experimental studies of geopolymer concrete incorporated with fly-ash & GGBS. Mater. Today Proc. 2021;45:6915–6920. doi: 10.1016/j.matpr.2021.01.285. DOI

Verma M., Dev N. Sodium hydroxide effect on the mechanical properties of flyash-slag based geopolymer concrete. Struct. Concr. 2021;22:E368–E379. doi: 10.1002/suco.202000068. DOI

Saini G., Vattipalli U. Assessing properties of alkali activated GGBS based self-compacting geopolymer concrete using nano-silica. Case Stud. Constr. Mater. 2020;12:e00352. doi: 10.1016/j.cscm.2020.e00352. DOI

Huseien G.F., Ismail M., Khalid N.H.A., Hussin M.W., Mirza J. Compressive strength and microstructure of assorted wastes incorporated geopolymer mortars: Effect of solution molarity. Alex. Eng. J. 2018;57:3375–3386. doi: 10.1016/j.aej.2018.07.011. DOI

Samadi M., Huseien G.F., Lim N.H.A.S., Mohammadhosseini H., Alyousef R., Mirza J., Rahman A.B.A. Enhanced performance of nano-palm oil ash-based green mortar against sulphate environment. J. Build. Eng. 2020;32:101640. doi: 10.1016/j.jobe.2020.101640. DOI

Assaedi H., Alomayri T., Kaze C.R., Jindal B.B., Subaer S., Shaikh F., Alraddadi S. Characterization and properties of geopolymer nanocomposites with different contents of nano-CaCO3. Constr. Build. Mater. 2020;252:119137. doi: 10.1016/j.conbuildmat.2020.119137. DOI

Durak U., Karahan O., Uzal B., İlkentapar S., Atiş C.D. Influence of nano SiO2 and nano CaCO3 particles on strength, workability, and microstructural properties of fly ash-based geopolymer. Struct. Concr. 2021;22:E352–E367. doi: 10.1002/suco.201900479. DOI

Khater H.M., el Gawaad H.A.A. Characterization of alkali activated geopolymer mortar doped with MWCNT. Constr. Build. Mater. 2016;102:329–337. doi: 10.1016/j.conbuildmat.2015.10.121. DOI

Deb P.S., Sarker P.K., Barbhuiya S. Sorptivity and acid resistance of ambient-cured geopolymer mortars containing nano-silica. Cem. Concr. Compos. 2016;72:235–245. doi: 10.1016/j.cemconcomp.2016.06.017. DOI

AlKhatib A., Maslehuddin M., Al-Dulaijan S.U. Development of high performance concrete using industrial waste materials and nano-silica. J. Mater. Res. Technol. 2020;9:6696–6711. doi: 10.1016/j.jmrt.2020.04.067. DOI

Zidi Z., Ltifi M., Zafar I. Synthesis and attributes of nano-SiO2 local metakaolin based-geopolymer. J. Build. Eng. 2021;33:101586. doi: 10.1016/j.jobe.2020.101586. DOI

Al-Majidi M.H., Lampropoulos A., Cundy A., Meikle S. Development of geopolymer mortar under ambient temperature for in situ applications. Constr. Build. Mater. 2016;120:198–211. doi: 10.1016/j.conbuildmat.2016.05.085. DOI

Adeyanju E., Okeke C.A., Akinwumi I., Busari A. Subgrade Stabilization using Rice Husk Ash-based Geopolymer (GRHA) and Cement Kiln Dust (CKD) Case Stud. Constr. Mater. 2020;13:e00388. doi: 10.1016/j.cscm.2020.e00388. DOI

Karthik A., Sudalaimani K., Vijayakumar C.T. Durability study on coal fly ash-blast furnace slag geopolymer concretes with bio-additives. Ceram. Int. 2017;43:11935–11943. doi: 10.1016/j.ceramint.2017.06.042. DOI

Azad N.M., Samarakoon S.M. Utilization of Industrial By-Products/Waste to Manufacture Geopolymer Cement/Concrete. Sustainability. 2021;13:873. doi: 10.3390/su13020873. DOI

Si A., Pal K., Kralj S., El-Sayyad G.S., de Souza F.G., Narayanan T. Sustainable preparation of gold nanoparticles via green chemistry approach for biogenic applications. Mater. Today Chem. 2020;17:100327. doi: 10.1016/j.mtchem.2020.100327. DOI

Moghaddam S.C., Madandoust R., Jamshidi M., Nikbin I.M. Mechanical properties of fly ash-based geopolymer concrete with crumb rubber and steel fiber under ambient and sulfuric acid conditions. Constr. Build. Mater. 2021;281:122571. doi: 10.1016/j.conbuildmat.2021.122571. DOI

Huynh T.-P., Hwang C.-L., Lin K.-L., Ngo S.-H. Effect of residual rice husk ash on mechanical-microstructural properties and thermal conductivity of sodium-hydroxide-activated bricks. Environ. Prog. Sustain. Energy. 2018;37:1647–1656. doi: 10.1002/ep.12848. DOI

Lee B., Kim G., Kim R., Cho B., Lee S., Chon C.-M. Strength development properties of geopolymer paste and mortar with respect to amorphous Si/Al ratio of fly ash. Constr. Build. Mater. 2017;151:512–519. doi: 10.1016/j.conbuildmat.2017.06.078. DOI

Sun K., Peng X., Wang S., Zeng L., Ran P., Ji G. Effect of nano-SiO2 on the efflorescence of an alkali-activated metakaolin mortar. Constr. Build. Mater. 2020;253:118952. doi: 10.1016/j.conbuildmat.2020.118952. DOI

Amran Y.H.M., Alyousef R., Alabduljabbar H., El-Zeadani M. Clean production and properties of geopolymer concrete; A review. J. Clean. Prod. 2020;251:119679. doi: 10.1016/j.jclepro.2019.119679. DOI

Amran M., Debbarma S., Ozbakkaloglu T. Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Constr. Build. Mater. 2021;270:121857. doi: 10.1016/j.conbuildmat.2020.121857. DOI

Hassan A., Arif M., Shariq M. Use of geopolymer concrete for a cleaner and sustainable environment—A review of mechanical properties and microstructure. J. Clean. Prod. 2019;223:704–728. doi: 10.1016/j.jclepro.2019.03.051. DOI

Spitaleri L., Nicotra G., Zimbone M., Contino A., Maccarrone G., Alberti A., Gulino A. Fast and Efficient Sun Light Photocatalytic Activity of Au_ZnO Core–Shell Nanoparticles Prepared by a One-Pot Synthesis. ACS Omega. 2019;4:15061–15066. doi: 10.1021/acsomega.9b01850. PubMed DOI PMC

Luukkonen T., Abdollahnejad Z., Yliniemi J., Kinnunen P., Illikainen M. One-part alkali-activated materials: A review. Cem. Concr. Res. 2018;103:21–34. doi: 10.1016/j.cemconres.2017.10.001. DOI

Meesala C.R., Verma N.K., Kumar S. Critical review on fly-ash based geopolymer concrete. Struct. Concr. 2020;21:1013–1028. doi: 10.1002/suco.201900326. DOI

Muraleedharan M., Nadir Y. Factors affecting the mechanical properties and microstructure of geopolymers from red mud and granite waste powder: A review. Ceram. Int. 2021;47:13257–13279. doi: 10.1016/j.ceramint.2021.02.009. DOI

Zimbone M., Cacciato G., Spitaleri L., Egdell R.G., Grimaldi M.G., Gulino A. Sb-Doped Titanium Oxide: A Rationale for Its Photocatalytic Activity for Environmental Remediation. ACS Omega. 2018;3:11270–11277. doi: 10.1021/acsomega.8b01452. PubMed DOI PMC

Sustainable Preparation of Metal Nanoparticles: Methods and Applications RSC Books. Royal Society of Chemistry; London, UK: 2012. DOI

Shafeek A.M., Khedr M.H., El-Dek S.I., Shehata N. Influence of ZnO nanoparticle ratio and size on mechanical properties and whiteness of White Portland Cement. Appl. Nanosci. 2020;10:3603–3615. doi: 10.1007/s13204-020-01444-5. DOI

Contino A., Maccarrone G., Spitaleri L., Torrisi L., Nicotra G., Gulino A. One Pot Synthesis of Au_ZnO Core-Shell Nanoparticles Using a Zn Complex Acting as ZnO Precursor, Capping and Reducing Agent During the Formation of Au NPs. Eur. J. Inorg. Chem. 2018;2018:4678–4683. doi: 10.1002/ejic.201800863. DOI

Assaedi H., Shaikh F.U.A., Low I.M. Influence of mixing methods of nano silica on the microstructural and mechanical properties of flax fabric reinforced geopolymer composites. Constr. Build. Mater. 2016;123:541–552. doi: 10.1016/j.conbuildmat.2016.07.049. DOI

Abhishek H.S., Prashant S., Kamath M.V., Kumar M. Fresh mechanical and durability properties of alkali-activated fy ash-slag concrete: A review, Innovative Infrastructure Solutions. Innov. Infrastruct. Solut. 2022;7:1–14. doi: 10.1007/s41062-021-00711-w. DOI

Abdullah M.M.a., Tahir M.F.M., Hussin K., Binhussain M., Ekaputri J.J. Effect of Microwave Curing to the Compressive Strength of Fly Ash Based Geopolymer Mortar. Mater. Sci. Forum. 2016;841:193–199. doi: 10.4028/www.scientific.net/MSF.841.193. DOI

Sofi M., van Deventer J.S.J., Mendis P.A., Lukey G.C. Engineering properties of inorganic polymer concretes (IPCs) Cem. Concr. Res. 2007;37:251–257. doi: 10.1016/j.cemconres.2006.10.008. DOI

Adak D., Sarkar M., Mandal S. Effect of nano-silica on strength and durability of fly ash based geopolymer mortar. Constr. Build. Mater. 2014;70:453–459. doi: 10.1016/j.conbuildmat.2014.07.093. DOI

Norhasri M.S.M., Hamidah M.S., Fadzil A.M. Applications of using nano material in concrete: A review. Constr. Build. Mater. 2017;133:91–97. doi: 10.1016/j.conbuildmat.2016.12.005. DOI

Singh N.B., Saxena S.K., Kumar M. Effect of nanomaterials on the properties of geopolymer mortars and concrete. Mater. Today Proc. 2018;5:9035–9040. doi: 10.1016/j.matpr.2017.10.018. DOI

Ekmen Ş., Mermerdaş K., Algın Z. Effect of oxide composition and ingredient proportions on the rheological and mechanical properties of geopolymer mortar incorporating pumice aggregate. J. Build. Eng. 2021;34:101893. doi: 10.1016/j.jobe.2020.101893. DOI

Akono A.-T. Effect of nano-TiO2 on C-S-H phase distribution within Portland cement paste. J. Mater. Sci. 2020;55:11106–11119. doi: 10.1007/s10853-020-04847-5. DOI

Dehkordi B.A., Nilforoushan M.R., Talebian N., Tayebi M. A comparative study on the self-cleaning behavior and antibacterial activity of Portland cement by addition of TiO2 and ZnO nanoparticles. Mater. Res. Express. 2021;8:035403. doi: 10.1088/2053-1591/abef41. DOI

Moya J.S., Cabal B., Sanz J., Torrecillas R. Developments in Strategic Materials and Computational Design III. John and Wiley and Sons; Hoboken, NJ, USA: 2012. Metakaolin-Nanosilver as Biocide Agent in Geopolymer; pp. 1–11. DOI

Ding Y.-C., Cheng T.-W., Dai Y.-S. Application of geopolymer paste for concrete repair. Struct. Concr. 2017;18:561–570. doi: 10.1002/suco.201600161. DOI

Gao X., Yuan B., Yu Q.L., Brouwers H.J.H. Characterization and application of municipal solid waste incineration (MSWI) bottom ash and waste granite powder in alkali activated slag. J. Clean. Prod. 2017;164:410–419. doi: 10.1016/j.jclepro.2017.06.218. DOI

Liew Y.-M., Heah C.-Y., Mustafa A.B.M., Kamarudin H. Structure and properties of clay-based geopolymer cements: A review. Prog. Mater. Sci. 2016;83:595–629. doi: 10.1016/j.pmatsci.2016.08.002. DOI

M Ziada, Y Tammam, S¸ Erdem and R A González Lezcano, Investigation of the Mechanical, Microstructure and 3D Fractal Analysis of Nanocalcite-Modified Environmentally Friendly and Sustainable Cementitious Composites. Buildings. 2022;12:36. doi: 10.3390/buildings12010036. DOI

Singh S., Aswath M.U., Ranganath R.V. Effect of mechanical activation of red mud on the strength of geopolymer binder. Constr. Build. Mater. 2018;177:91–101. doi: 10.1016/j.conbuildmat.2018.05.096. DOI

Shilar A.F., Ganachari S.V., Patil V.B. Investigation of the effect of granite waste powder as a binder for different molarity of geopolymer concrete on fresh and mechanical properties. Mater. Lett. 2022;309:131302. doi: 10.1016/j.matlet.2021.131302. DOI

Pavithra P., Reddy M.S., Dinakar P., Rao B.H., Satpathy B.K., Mohanty A.N. Effect of the Na2SiO3/NaOH Ratio and NaOH Molarity on the Synthesis of Fly Ash-Based Geopolymer Mortar. Geo-Chicago. 2016;2016:336–344. doi: 10.1061/9780784480151.034. DOI

Kotop M.A., El-Feky M.S., Alharbi Y.R., Abadel A.A., Binyahya A.S. Engineering properties of geopolymer concrete incorporating hybrid nano-materials. Ain Shams Eng. J. 2021;12:3641–3647. doi: 10.1016/j.asej.2021.04.022. DOI

Cao Y.-F., Tao Z., Pan Z., Wuhrer R. Effect of calcium aluminate cement on geopolymer concrete cured at ambient temperature. Constr. Build. Mater. 2018;191:242–252. doi: 10.1016/j.conbuildmat.2018.09.204. DOI

Nuaklong P., Wongsa A., Boonserm K., Ngohpok C., Jongvivatsakul P., Sata V., Sukontasukkul P., Chindaprasirt P. Enhancement of mechanical properties of fly ash geopolymer containing fine recycled concrete aggregate with micro carbon fiber. J. Build. Eng. 2021;41:102403. doi: 10.1016/j.jobe.2021.102403. DOI

Bernal S.A., de Gutiérrez R.M., Pedraza A.L., Provis J.L., Rodriguez E.D., Delvasto S. Effect of binder content on the performance of alkali-activated slag concretes. Cem. Concr. Res. 2011;41:1–8. doi: 10.1016/j.cemconres.2010.08.017. DOI

Chen K., Wu D., Chen H., Zhang G., Yao R., Pan C., Zhang Z. Development of low-calcium fly ash-based geopolymer mortar using nanosilica and hybrid fibers. Ceram. Int. 2021;47:21791–21806. doi: 10.1016/j.ceramint.2021.04.196. DOI

Anshul A., Moinuddin A.A., Azad A.M., Khera P., Dehariya K., Bherwani H., Gupta A., Kumar S. Morphologically designed micro porous zeolite-geopolymers as cool coating materials. J. Hazard. Mater. 2020;398:123022. doi: 10.1016/j.jhazmat.2020.123022. PubMed DOI

Nath P., Sarker P.K., Rangan V.B. Early Age Properties of Low-calcium Fly Ash Geopolymer Concrete Suitable for Ambient Curing. Procedia Eng. 2015;125:601–607. doi: 10.1016/j.proeng.2015.11.077. DOI

Hamzah H.K., Joudah Z.H., Georgescu D.P., Khalid N.H.A., Huseien G.F. Laboratory evaluation of alkali-activated mortars modified with nanosilica from glass bottle wastes. Mater. Today Proc. 2021;46:2098–2104. doi: 10.1016/j.matpr.2021.04.471. DOI

Zhang P., Wang K., Wang J., Guo J., Ling Y. Macroscopic and microscopic analyses on mechanical performance of metakaolin/fly ash based geopolymer mortar. J. Clean. Prod. 2021;294:126193. doi: 10.1016/j.jclepro.2021.126193. DOI

Cai J., Pan J., Han J., Lin Y., Sheng Z. Impact behaviours of engineered geopolymer composite exposed to elevated temperatures. Constr. Build. Mater. 2021;312:125421. doi: 10.1016/j.conbuildmat.2021.125421. DOI

Seifan M., Mendoza S., Berenjian A. Mechanical properties and durability performance of fly ash based mortar containing nano-and micro-silica additives. Constr. Build. Mater. 2020;252:119121. doi: 10.1016/j.conbuildmat.2020.119121. DOI

Prakasam G., Murthy A.R., Reheman M.S. Mechanical, durability and fracture properties of nano-modified FA/GGBS geopolymer mortar. Mag. Concr. Res. 2020;72:207–216. doi: 10.1680/jmacr.18.00059. DOI

Elyamany H.E., Elmoaty A.E.M.A., Elshaboury A.M. Setting time and 7-day strength of geopolymer mortar with various binders. Constr. Build. Mater. 2018;187:974–983. doi: 10.1016/j.conbuildmat.2018.08.025. DOI

Investigation of Microstructure and Thermomechanical Properties of Nano-TiO2 Admixed Geopolymer for Thermal Resistance Applications, Springerprofessional.De. [(accessed on 22 October 2021)]. Available online: https://www.springerprofessional.de/en/investigation-of-microstructure-and-thermomechanical-properties-/19108492.

Lloyd R.R., Provis J.L., van Deventer J.S.J. Pore solution composition and alkali diffusion in inorganic polymer cement. Cem. Concr. Res. 2010;40:1386–1392. doi: 10.1016/j.cemconres.2010.04.008. DOI

Al-Hedad A.S.A., Farhan N.A., Zhang M., Sheikh M.N., Hadi M.N.S. Effect of geogrid reinforcement on the drying shrinkage and thermal expansion of geopolymer concrete. Struct. Concr. 2020;21:1029–1039. doi: 10.1002/suco.201900299. DOI

Kaur M., Singh J., Kaur M. Microstructure and strength development of fly ash-based geopolymer mortar: Role of nano-metakaolin. Constr. Build. Mater. 2018;190:672–679. doi: 10.1016/j.conbuildmat.2018.09.157. DOI

Lu and Zhong J Infrastruct Preserv Resil Carbon-based nanomaterials engineered cement composites: A review. J. Infrastruct. Preserv. Resil. 2022;3:22. doi: 10.1186/s43065-021-00045-y. DOI

Li Z., Fei M.-E., Huyan C., Shi X. Nano-engineered, Fly Ash-Based Geopolymer Composites: An Overview. Resour. Conserv. Recycl. 2021;168:105334. doi: 10.1016/j.resconrec.2020.105334. DOI

Luo Z., Li W., Gan Y., He X., Castel A., Sheng D. Nanoindentation on micromechanical properties and microstructure of geopolymer with nano-SiO2 and nano-TiO2. Cem. Concr. Compos. 2021;117:103883. doi: 10.1016/j.cemconcomp.2020.103883. DOI

Revathi T., Jeyalakshmi R., Rajamane N.P. Study on the role of n-SiO2 incorporation in thermo-mechanical and microstructural properties of ambient cured FA-GGBS geopolymer matrix. Appl. Surf. Sci. 2018;449:322–331. doi: 10.1016/j.apsusc.2018.01.281. DOI

Luan C., Shi X., Zhang K., Utashev N., Yang F., Dai J., Wang Q. A mix design method of fly ash geopolymer concrete based on factors analysis. Constr. Build. Mater. 2021;272:121612. doi: 10.1016/j.conbuildmat.2020.121612. DOI

Hassan A., Arif M., Shariq M. Age-dependent compressive strength and elastic modulus of fly ash-based geopolymer concrete. Struct. Concr. 2022;23:473–487. doi: 10.1002/suco.202000372. DOI

Nagaraj V.K., Babu D.L.V. Assessing the performance of molarity and alkaline activator ratio on engineering properties of self-compacting alkaline activated concrete at ambient temperature. J. Build. Eng. 2018;20:137–155. doi: 10.1016/j.jobe.2018.07.005. DOI

Haruna S., Mohammed B.S., Wahab M.M.A., Kankia M.U., Amran M., Gora A.M. Long-Term Strength Development of Fly Ash-Based One-Part Alkali-Activated Binders. Materials. 2021;14:4160. doi: 10.3390/ma14154160. PubMed DOI PMC

Rao A.K., Kumar D.R. Effect of various alkaline binder ratio on geopolymer concrete under ambient curing condition. Mater. Today Proc. 2020;27:1768–1773. doi: 10.1016/j.matpr.2020.03.682. DOI

Mehta A., Siddique R. Sulfuric acid resistance of fly ash based geopolymer concrete. Constr. Build. Mater. 2017;146:136–143. doi: 10.1016/j.conbuildmat.2017.04.077. DOI

Use of Heat-Treated Water Treatment Residuals in Fly Ash-Based Geopolymers-Guo-2010-Journal of the American Ceramic Society—Wiley Online Library. [(accessed on 25 May 2021)]. Available online: https://ceramics.onlinelibrary.wiley.com/doi/10.1111/j.1551-2916.2009.03331.x. DOI

Mendes B., Andrade I.K., de Carvalho J.M., Pedroti L., Júnior A.d. Assessment of mechanical and microstructural properties of geopolymers produced from metakaolin, silica fume, and red mud. Int. J. Appl. Ceram. Technol. 2021;18:262–274. doi: 10.1111/ijac.13635. DOI

Albidah A., Alqarni A.S., Abbas H., Almusallam T., Al-Salloum Y. Behavior of Metakaolin-Based geopolymer concrete at ambient and elevated temperatures. Constr. Build. Mater. 2022;317:125910. doi: 10.1016/j.conbuildmat.2021.125910. DOI

Matalkah F., Ababneh A., Aqel R. Efflorescence Control in Calcined Kaolin-Based Geopolymer Using Silica Fume and OPC. J. Mater. Civ. Eng. 2021;33:04021119. doi: 10.1061/(ASCE)MT.1943-5533.0003764. DOI

Padmakar M., Barhmaiah B., Priyanka M.L. Characteristic compressive strength of a geo polymer concrete. Mater. Today Proc. 2021;37:2219–2222. doi: 10.1016/j.matpr.2020.07.656. DOI

Das S.K., Mishra J., Singh S.K., Mustakim S.M., Patel A., Das S.K., Behera U. Characterization and utilization of rice husk ash (RHA) in fly ash—Blast furnace slag based geopolymer concrete for sustainable future. Mater. Today Proc. 2020;33:5162–5167. doi: 10.1016/j.matpr.2020.02.870. DOI

Zidi Z., Ltifi M., Ayadi Z.B., Mir L.E., Nóvoa X.R. Effect of nano-ZnO on mechanical and thermal properties of geopolymer. J. Asian Ceram. Soc. 2020;8:1–9. doi: 10.1080/21870764.2019.1693682. DOI

De Azevedo A.R.G., Marvila M.T., de Oliveira L.B., Ferreira W.M., Colorado H., Teixeira S.R., Vieira C.M.F. Circular economy and durability in geopolymers ceramics pieces obtained from glass polishing waste. Int. J. Appl. Ceram. Technol. 2021;18:1891–1900. doi: 10.1111/ijac.13780. DOI

Ahmari S., Zhang L. Utilization of cement kiln dust (CKD) to enhance mine tailings-based geopolymer bricks. Constr. Build. Mater. 2013;40:1002–1011. doi: 10.1016/j.conbuildmat.2012.11.069. DOI

Aliabdo A.A., Elmoaty A.E.M.A., Salem H.A. Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. Constr. Build. Mater. 2016;121:694–703. doi: 10.1016/j.conbuildmat.2016.06.062. DOI

Assi L.N., Deaver E.E., Ziehl P. Effect of source and particle size distribution on the mechanical and microstructural properties of fly Ash-Based geopolymer concrete. Constr. Build. Mater. 2018;167:372–380. doi: 10.1016/j.conbuildmat.2018.01.193. DOI

Thormark C. A low energy building in a life cycle—its embodied energy, energy need for operation and recycling potential. Build. Environ. 2002;37:429–435. doi: 10.1016/S0360-1323(01)00033-6. DOI

Azari R., Abbasabadi N. Embodied energy of buildings: A review of data, methods, challenges, and research trends. Energy Build. 2018;168:225–235. doi: 10.1016/j.enbuild.2018.03.003. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Exploring the Potential of Promising Sensor Technologies for Concrete Structural Health Monitoring

. 2024 May 17 ; 17 (10) : . [epub] 20240517

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...