Exploring the Potential of Promising Sensor Technologies for Concrete Structural Health Monitoring
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
R.G.P. 2/196/44
King Khalid University
PubMed
38793477
PubMed Central
PMC11122972
DOI
10.3390/ma17102410
PII: ma17102410
Knihovny.cz E-zdroje
- Klíčová slova
- concrete sensors, crack, durability, steel fiber, structural health monitoring,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Structural health monitoring (SHM) is crucial for maintaining concrete infrastructure. The data collected by these sensors are processed and analyzed using various analysis tools under different loadings and exposure to external conditions. Sensor-based investigation on concrete has been carried out for technologies used for designing structural health monitoring sensors. A Sensor-Infused Structural Analysis such as interfacial bond-slip model, corroded steel bar, fiber-optic sensors, carbon black and polypropylene fiber, concrete cracks, concrete carbonation, strain transfer model, and vibrational-based monitor. The compressive strength (CS) and split tensile strength (STS) values of the analyzed material fall within a range from 26 to 36 MPa and from 2 to 3 MPa, respectively. The material being studied has a range of flexural strength (FS) and density values that fall between 4.5 and 7 MPa and between 2250 and 2550 kg/m3. The average squared difference between the predicted and actual compressive strength values was found to be 4.405. With cement ratios of 0.3, 0.4, and 0.5, the shear strength value ranged from 4.4 to 5.6 MPa. The maximum shear strength was observed for a water-cement ratio of 0.4, with 5.5 MPa, followed by a water-cement ratio of 0.3, with 5 MPa. Optimizing the water-cement ratio achieves robust concrete (at 0.50), while a lower ratio may hinder strength (at 0.30). PZT sensors and stress-wave measurements aid in the precise structural monitoring, enhanced by steel fibers and carbon black, for improved sensitivity and mechanical properties. These findings incorporate a wide range of applications, including crack detection; strain and deformation analysis; and monitoring of temperature, moisture, and corrosion. This review pioneers sensor technology for concrete monitoring (Goal 9), urban safety (Goal 11), climate resilience (Goal 13), coastal preservation (Goal 14), and habitat protection (Goal 15) of the United Nations' Sustainable Development Goals.
Zobrazit více v PubMed
Cao Y., Li J., Sha A., Liu Z., Zhang F., Li X. A power-intensive piezoelectric energy harvester with efficient load utilization for road energy collection: Design, testing, and application. J. Clean. Prod. 2022;369:133287. doi: 10.1016/j.jclepro.2022.133287. DOI
Hassan A., Arif M., Shariq M. A review of properties and behaviour of reinforced geopolymer concrete structural elements—A clean technology option for sustainable development. J. Clean. Prod. 2020;245:118762. doi: 10.1016/j.jclepro.2019.118762. DOI
Chiriatti L., Mercado-Mendoza H., Apedo K.L., Fond C., Feugeas F. A study of bond between steel rebar and concrete under a friction-based approach. Cem. Concr. Res. 2019;120:132–141. doi: 10.1016/j.cemconres.2019.03.019. DOI
Meng Q., Wu C., Su Y., Li J., Liu J., Pang J. A study of steel wire mesh reinforced high performance geopolymer concrete slabs under blast loading. J. Clean. Prod. 2019;210:1150–1163. doi: 10.1016/j.jclepro.2018.11.083. DOI
Yue L., Yang Y., Zhou Q., Lei Y., Deng G., Yang T. Broadband electromagnetic wave absorbing performance by designing the foam structure and double-layer for cement-based composites containing MWCNTs. Cem. Concr. Compos. 2022;131:104595. doi: 10.1016/j.cemconcomp.2022.104595. DOI
Materazzi A.L., Ubertini F., D’Alessandro A. Carbon nanotube cement-based transducers for dynamic sensing of strain. Cem. Concr. Compos. 2013;37:2–11. doi: 10.1016/j.cemconcomp.2012.12.013. DOI
Khan M.I., Fares G., Abbas Y.M. Cost-performance balance and new image analysis technique for ultra-high performance hybrid nano-based fiber-reinforced concrete. Constr. Build. Mater. 2022;315:125753. doi: 10.1016/j.conbuildmat.2021.125753. DOI
Park Z.-T., Choi Y.-S., Kim J.-G., Chung L. Development of a galvanic sensor system for detecting the corrosion damage of the steel embedded in concrete structure: Part 2. Laboratory electrochemical testing of sensors in concrete. Cem. Concr. Res. 2005;35:1814–1819. doi: 10.1016/j.cemconres.2003.11.027. DOI
Gülşan M.E., Alzeebaree R., Rasheed A.A., Niş A., Kurtoğlu A.E. Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber. Constr. Build. Mater. 2019;211:271–283. doi: 10.1016/j.conbuildmat.2019.03.228. DOI
Mandal R., Chakraborty S., Chakraborty P., Chakraborty S. Development of the electrolyzed water based set accelerated greener cement paste. Mater. Lett. 2019;243:46–49. doi: 10.1016/j.matlet.2019.02.017. DOI
Afzal J., Yihong Z., Afzal U., Aslam M. A complex wireless sensors model (CWSM) for real time monitoring of dam temperature. Heliyon. 2023;9:e13371. doi: 10.1016/j.heliyon.2023.e13371. PubMed DOI PMC
Choi W.-C., Yun H.-D., Cho C.-G., Feo L. Attempts to apply high performance fiber-reinforced cement composite (HPFRCC) to infrastructures in South Korea. Compos. Struct. 2014;109:211–223. doi: 10.1016/j.compstruct.2013.10.027. DOI
Shi L., Lin S.T.K., Lu Y., Ye L., Zhang Y.X. Artificial neural network based mechanical and electrical property prediction of engineered cementitious composites. Constr. Build. Mater. 2018;174:667–674. doi: 10.1016/j.conbuildmat.2018.04.127. DOI
Arezoumandi M., Volz J.S. Effect of fly ash replacement level on the shear strength of high-volume fly ash concrete beams. J. Clean. Prod. 2013;59:120–130. doi: 10.1016/j.jclepro.2013.06.043. DOI
Wu J., Jing H., Gao Y., Meng Q., Yin Q., Du Y. Effects of carbon nanotube dosage and aggregate size distribution on mechanical property and microstructure of cemented rockfill. Cem. Concr. Compos. 2022;127:104408. doi: 10.1016/j.cemconcomp.2022.104408. DOI
Han X., Li G., Wang P., Chen Z., Cui D., Zhang H., Tian L., Zhou X., Jin Z., Zhao T. A new method and device for detecting rebars in concrete based on capacitance. Measurement. 2022;202:111721. doi: 10.1016/j.measurement.2022.111721. DOI
Tarbozagh A.S., Rezaifar O., Gholhaki M., Abavisani I. Magnetic enhancement of carbon nanotube concrete compressive behavior. Constr. Build. Mater. 2020;262:120772. doi: 10.1016/j.conbuildmat.2020.120772. DOI
Jongvivatsakul P., Thongchom C., Mathuros A., Prasertsri T., Adamu M., Orasutthikul S., Lenwari A., Charainpanitkul T. Enhancing bonding behavior between carbon fiber-reinforced polymer plates and concrete using carbon nanotube reinforced epoxy composites. Case Stud. Constr. Mater. 2022;17:e01407. doi: 10.1016/j.cscm.2022.e01407. DOI
Javahershenas F., Gilani M.S., Hajforoush M. Effect of magnetic field exposure time on mechanical and microstructure properties of steel fiber-reinforced concrete (SFRC) J. Build. Eng. 2021;35:101975. doi: 10.1016/j.jobe.2020.101975. DOI
Naji H.F., Khalid N.N., Alsaraj W.K., Habouh M.I., Marchetty S. Experimental investigation of flexural enhancement of RC beams with multi-walled carbon nanotubes. Case Stud. Constr. Mater. 2021;14:e00480. doi: 10.1016/j.cscm.2020.e00480. DOI
Li X., Qin Z., Zheng D., Zhang X., Li H. Reversed bond-slip model of deformed bar embedded in concrete based on ensemble learning algorithm. J. Build. Eng. 2023;68:106081. doi: 10.1016/j.jobe.2023.106081. DOI
Pang Y., Li Z., Wang Q., Qi B. Effects of the liquid rubber modified adhesive on the bond-slip response of the CFRP-steel interface. J. Build. Eng. 2023;66:105857. doi: 10.1016/j.jobe.2023.105857. DOI
Liu J., Xie X., Li L. Experimental study on mechanical properties and durability of grafted nano-SiO2 modified rice straw fiber reinforced concrete. Constr. Build. Mater. 2022;347:128575. doi: 10.1016/j.conbuildmat.2022.128575. DOI
Liu Z., Lu Y., Li S., Zong S., Yi S. Flexural behavior of steel fiber reinforced self-stressing recycled aggregate concrete-filled steel tube. J. Clean. Prod. 2020;274:122724. doi: 10.1016/j.jclepro.2020.122724. DOI
Metaxa Z.S., Seo J.-W.T., Konsta-Gdoutos M.S., Hersam M.C., Shah S.P. Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials. Cem. Concr. Compos. 2012;34:612–617. doi: 10.1016/j.cemconcomp.2012.01.006. DOI
Xu T., Bian X., Liu Z., Yang J., Zhang Z. Local bond stress–slip relationship of ribbed reinforcing bars embedded in UHPC: Experiment, modeling, and verification. J. Build. Eng. 2023;68:106122. doi: 10.1016/j.jobe.2023.106122. DOI
Hou H., Wang W., Chen Y. Cyclic behavior and mechanical model of a novel endplate connection to double-skin composite wall with slip-critical blind bolts. J. Build. Eng. 2023;63:105453. doi: 10.1016/j.jobe.2022.105453. DOI
de Alencar Monteiro V.M., Cardoso D.C.T., de Andrade Silva F. Mechanisms of fiber-matrix interface degradation under fatigue loading in steel FRC. J. Build. Eng. 2023;68:106168. doi: 10.1016/j.jobe.2023.106168. DOI
D’Alessandro A., Tiecco M., Meoni A., Ubertini F. Improved strain sensing properties of cement-based sensors through enhanced carbon nanotube dispersion. Cem. Concr. Compos. 2021;115:103842. doi: 10.1016/j.cemconcomp.2020.103842. DOI
Gupta S., Lin Y.-A., Lee H.-J., Buscheck J., Wu R., Lynch J.P., Garg N., Loh K.J. In situ crack mapping of large-scale self-sensing concrete pavements using electrical resistance tomography. Cem. Concr. Compos. 2021;122:104154. doi: 10.1016/j.cemconcomp.2021.104154. DOI
Lu D., Shi X., Zhong J. Interfacial bonding between graphene oxide coated carbon nanotube fiber and cement paste matrix. Cem. Concr. Compos. 2022;134:104802. doi: 10.1016/j.cemconcomp.2022.104802. DOI
Wang L., Song Y., Han Q., Wang Z. Experimental investigation on the dynamic behavior of grouted splice sleeve connector under fast tensile loading. J. Build. Eng. 2023;66:105927. doi: 10.1016/j.jobe.2023.105927. DOI
Dong W., Li W., Wang K., Han B., Sheng D., Shah S.P. Investigation on physicochemical and piezoresistive properties of smart MWCNT/cementitious composite exposed to elevated temperatures. Cem. Concr. Compos. 2020;112:103675. doi: 10.1016/j.cemconcomp.2020.103675. DOI
Pourzahedi L., Zhai P., Isaacs J.A., Eckelman M.J. Life cycle energy benefits of carbon nanotubes for electromagnetic interference (EMI) shielding applications. J. Clean. Prod. 2017;142:1971–1978. doi: 10.1016/j.jclepro.2016.11.087. DOI
Karayannis C.G., Chalioris C.E., Angeli G.M., Papadopoulos N.A., Favvata M.J., Providakis C.P. Experimental damage evaluation of reinforced concrete steel bars using piezoelectric sensors. Constr. Build. Mater. 2016;105:227–244. doi: 10.1016/j.conbuildmat.2015.12.019. DOI
Wang X., Hu S., Li W., Qi H., Xue X. Use of numerical methods for identifying the number of wire breaks in prestressed concrete cylinder pipe by piezoelectric sensing technology. Constr. Build. Mater. 2021;268:121207. doi: 10.1016/j.conbuildmat.2020.121207. DOI
Frankowski P.K., Chady T., Zieliński A. Magnetic force induced vibration evaluation (M5) method for frequency analysis of rebar-debonding in reinforced concrete. Measurement. 2021;182:109655. doi: 10.1016/j.measurement.2021.109655. DOI
Feng Q., Liang Y. Development of piezoelectric-based technology for application in civil structural health monitoring. Earthq. Res. Adv. 2022;3:100154. doi: 10.1016/j.eqrea.2022.100154. DOI
Xu D., Banerjee S., Wang Y., Huang S., Cheng X. Temperature and loading effects of embedded smart piezoelectric sensor for health monitoring of concrete structures. Constr. Build. Mater. 2015;76:187–193. doi: 10.1016/j.conbuildmat.2014.11.067. DOI
Ai D., Du L., Li H., Zhu H. Corrosion damage identification for reinforced concrete beam using embedded piezoelectric transducer: Numerical simulation. Measurement. 2022;192:110925. doi: 10.1016/j.measurement.2022.110925. DOI
Zhang H., Li J., Kang F., Zhang J. Monitoring and evaluation of the repair quality of concrete cracks using piezoelectric smart aggregates. Constr. Build. Mater. 2022;317:125775. doi: 10.1016/j.conbuildmat.2021.125775. DOI
Li K., Li Y., Dong P., Wang Z., Dou T., Ning J., Dong X., Si Z. Pressure test of a prestressed concrete cylinder pipe using distributed fiber optic sensors: Instrumentation and results. Eng. Struct. 2022;270:114835. doi: 10.1016/j.engstruct.2022.114835. DOI
Bai H., Guo D., Wang W., Tan X., Yan M., Chen G., Bao Y. Experimental investigation on flexural behavior of steel-concrete composite floor slabs with distributed fiber optic sensors. J. Build. Eng. 2022;54:104668. doi: 10.1016/j.jobe.2022.104668. DOI
Li K., Li Y., Dong P., Wang Z., Dou T., Ning J., Dong X., Si Z., Wang J. Mechanical properties of prestressed concrete cylinder pipe with broken wires using distributed fiber optic sensors. Eng. Fail. Anal. 2022;141:106635. doi: 10.1016/j.engfailanal.2022.106635. DOI
Fan L., Bao Y. Review of fiber optic sensors for corrosion monitoring in reinforced concrete. Cem. Concr. Compos. 2021;120:104029. doi: 10.1016/j.cemconcomp.2021.104029. DOI
Dong W., Li W., Guo Y., Qu F., Wang K., Sheng D. Piezoresistive performance of hydrophobic cement-based sensors under moisture and chloride-rich environments. Cem. Concr. Compos. 2022;126:104379. doi: 10.1016/j.cemconcomp.2021.104379. DOI
Dong X., Dou T., Dong P., Wang Z., Li Y., Ning J., Wei J., Li K., Cheng B. Failure experiment and calculation model for prestressed concrete cylinder pipe under three-edge bearing test using distributed fiber optic sensors. Tunn. Undergr. Space Technol. 2022;129:104682. doi: 10.1016/j.tust.2022.104682. DOI
Tan X., Abu-Obeidah A., Bao Y., Nassif H., Nasreddine W. Measurement and visualization of strains and cracks in CFRP post-tensioned fiber reinforced concrete beams using distributed fiber optic sensors. Autom. Constr. 2021;124:103604. doi: 10.1016/j.autcon.2021.103604. DOI
Kim D., Kim R., Min J., Choi H. Initial freeze–thaw damage detection in concrete using two-dimensional non-contact ultrasonic sensors. Constr. Build. Mater. 2023;364:129854. doi: 10.1016/j.conbuildmat.2022.129854. DOI
Wolf J., Pirskawetz S., Zang A. Detection of crack propagation in concrete with embedded ultrasonic sensors. Eng. Fract. Mech. 2015;146:161–171. doi: 10.1016/j.engfracmech.2015.07.058. DOI
Yuan L., Zhou L., Jin W. Long-gauge length embedded fiber optic ultrasonic sensor for large-scale concrete structures. Opt. Laser Technol. 2004;36:11–17. doi: 10.1016/S0030-3992(03)00123-3. DOI
Song H., Feldman S.B., Popovics J.S. In situ detection and characterization of alkali-silica reaction damage in concrete using contactless ultrasonic wavefield imaging. Cem. Concr. Compos. 2022;133:104661. doi: 10.1016/j.cemconcomp.2022.104661. DOI
Lefever G., Charkieh A.S., Abbass M., Van Hemelrijck D., Snoeck D., Aggelis D.G. Ultrasonic evaluation of self-healing cementitious materials with superabsorbent polymers: Mortar vs. concrete. Dev. Built Environ. 2023;13:100112. doi: 10.1016/j.dibe.2022.100112. DOI
Cheng W., Fan Z., Tan K.H. Characterisation of corrosion-induced crack in concrete using ultrasonic diffuse coda wave. Ultrasonics. 2023;128:106883. doi: 10.1016/j.ultras.2022.106883. PubMed DOI
Ge L., Li Q., Wang Z., Li Q., Lu C., Dong D., Wang H. High-resolution ultrasonic imaging technology for the damage of concrete structures based on total focusing method. Comput. Electr. Eng. 2023;105:108526. doi: 10.1016/j.compeleceng.2022.108526. DOI
Lee S.-J., Ahn D., You I., Yoo D.-Y., Kang Y.-S. Wireless cement-based sensor for self-monitoring of railway concrete infrastructures. Autom. Constr. 2020;119:103323. doi: 10.1016/j.autcon.2020.103323. DOI
Abner M., Wong P.K.-Y., Cheng J.C.P. Battery lifespan enhancement strategies for edge computing-enabled wireless Bluetooth mesh sensor network for structural health monitoring. Autom. Constr. 2022;140:104355. doi: 10.1016/j.autcon.2022.104355. DOI
Li J., Sun G., Wang A., Lei M., Liang S., Kang H., Liu Y. A many-objective optimization charging scheme for wireless rechargeable sensor networks via mobile charging vehicles. Comput. Netw. 2022;215:109196. doi: 10.1016/j.comnet.2022.109196. DOI
Siringoringo D.M., Fujino Y., Suzuki M. Long-term continuous seismic monitoring of multi-span highway bridge and evaluation of bearing condition by wireless sensor network. Eng. Struct. 2023;276:115372. doi: 10.1016/j.engstruct.2022.115372. DOI
Janků M., Cikrle P., Grošek J., Anton O., Stryk J. Comparison of infrared thermography, ground-penetrating radar and ultrasonic pulse echo for detecting delaminations in concrete bridges. Constr. Build. Mater. 2019;225:1098–1111. doi: 10.1016/j.conbuildmat.2019.07.320. DOI
Zhao H., Li J., Wang R., Lam D., Zhang Y. Study on interfacial bond behavior of recycled aggregate concrete filled stainless steel tubes (RAC-FSST) Constr. Build. Mater. 2021;313:125532. doi: 10.1016/j.conbuildmat.2021.125532. DOI
Song J., Wang W., Su S., Wang B., Li Y., Lu Z. Experimental investigation of the bond-slip behaviour between corrugated steel plates and concrete in CSRC structures. Constr. Build. Mater. 2021;299:124315. doi: 10.1016/j.conbuildmat.2021.124315. DOI
Ahmed K.S., Shahjalal M., Siddique T.A., Keng A.K. Bond strength of post-installed high strength deformed rebar in concrete. Case Stud. Constr. Mater. 2021;15:e00581. doi: 10.1016/j.cscm.2021.e00581. DOI
Jiang S.-F., Wang J., Tong S.-Y., Ma S.-L., Tuo M.-B., Li W.-J. Damage monitoring of concrete laminated interface using piezoelectric-based smart aggregate. Eng. Struct. 2021;228:111489. doi: 10.1016/j.engstruct.2020.111489. DOI
Bansal T., Talakokula V., Sathujoda P. Durability aspects of blended concrete systems subjected to combined mechanical and environmental loading using piezo sensor. Constr. Build. Mater. 2022;348:128613. doi: 10.1016/j.conbuildmat.2022.128613. DOI
Ramani V., Kuang K.S.C. Monitoring of rebar corrosion in concrete structures using a lens-based plastic optical fiber (LPOF) sensor. Constr. Build. Mater. 2021;276:122129. doi: 10.1016/j.conbuildmat.2020.122129. DOI
Ramani V., Zhang L., Kuang K.S.C. Probabilistic assessment of time to cracking of concrete cover due to corrosion using semantic segmentation of imaging probe sensor data. Autom. Constr. 2021;132:103963. doi: 10.1016/j.autcon.2021.103963. DOI
Bansal T., Talakokula V., Saravanan T.J. Monitoring of prestressed concrete beam under corrosion using embedded piezo sensor based on electro-mechanical impedance technique. Sci. Talks. 2022;4:100095. doi: 10.1016/j.sctalk.2022.100095. DOI
Ahmadi J., Feirahi M.H., Farahmand-Tabar S., Fard A.H.K. A novel approach for non-destructive EMI-based corrosion monitoring of concrete-embedded reinforcements using multi-orientation piezoelectric sensors. Constr. Build. Mater. 2021;273:121689. doi: 10.1016/j.conbuildmat.2020.121689. DOI
Fu C., Huang J., Dong Z., Yan W., Gu X.-L. Experimental and numerical study of an electromagnetic sensor for non-destructive evaluation of steel corrosion in concrete. Sens. Actuators A Phys. 2020;315:112371. doi: 10.1016/j.sna.2020.112371. DOI
Li Z., Jin Z., Gao Y., Zhao T., Wang P., Li Z. Coupled application of innovative electromagnetic sensors and digital image correlation technique to monitor corrosion process of reinforced bars in concrete. Cem. Concr. Compos. 2020;113:103730. doi: 10.1016/j.cemconcomp.2020.103730. DOI
Chang C.-Y., Hung S.-S. Implementing RFIC and sensor technology to measure temperature and humidity inside concrete structures. Constr. Build. Mater. 2012;26:628–637. doi: 10.1016/j.conbuildmat.2011.06.066. DOI
Mahapatra C.K., Barai S.V. Temperature impact on residual properties of self-compacting based hybrid fiber reinforced concrete with fly ash and colloidal nano silica. Constr. Build. Mater. 2019;198:120–132. doi: 10.1016/j.conbuildmat.2018.11.155. DOI
Huang B., Wang J., Piukovics G., Zabihi N., Ye J., Saafi M., Ye J. Hybrid cement composite-based sensor for in-situ chloride monitoring in concrete structures. Sens. Actuators B Chem. 2023;385:133638. doi: 10.1016/j.snb.2023.133638. DOI
Du Z., Wang P., Chen Z., Cui D., Jin Z., Zhang H. All-solid-state; long term stable, and embedded pH sensor for corrosion monitoring of concrete. J. Build. Eng. 2022;57:104978. doi: 10.1016/j.jobe.2022.104978. DOI
Li Z., Jin Z., Xu X., Zhao T., Wang P., Li Z. Combined application of novel electromagnetic sensors and acoustic emission apparatus to monitor corrosion process of reinforced bars in concrete. Constr. Build. Mater. 2020;245:118472. doi: 10.1016/j.conbuildmat.2020.118472. DOI
Kim J., Luis R., Smith M.S., Figueroa J.A., Malocha D.C., Nam B.H. Concrete temperature monitoring using passive wireless surface acoustic wave sensor system. Sens. Actuators A Phys. 2015;224:131–139. doi: 10.1016/j.sna.2015.01.028. DOI
Zou X., Chao A., Tian Y., Wu N., Zhang H., Yu T.-Y., Wang X. An experimental study on the concrete hydration process using Fabry–Perot fiber optic temperature sensors. Measurement. 2012;45:1077–1082. doi: 10.1016/j.measurement.2012.01.034. DOI
Górriz B.T., Payá-Zaforteza I., García P.A.C., Maicas S.S. New fiber optic sensor for monitoring temperatures in concrete structures during fires. Sens. Actuators A Phys. 2017;254:116–125. doi: 10.1016/j.sna.2016.12.013. DOI
Wong A.C.L., Childs P.A., Berndt R., Macken T., Peng G.-D., Gowripalan N. Simultaneous measurement of shrinkage and temperature of reactive powder concrete at early-age using fibre Bragg grating sensors. Cem. Concr. Compos. 2007;29:490–497. doi: 10.1016/j.cemconcomp.2007.02.003. DOI
Dong W., Li W., Tao Z., Wang K. Piezoresistive properties of cement-based sensors: Review and perspective. Constr. Build. Mater. 2019;203:146–163. doi: 10.1016/j.conbuildmat.2019.01.081. DOI
Norris A., Saafi M., Romine P. Temperature and moisture monitoring in concrete structures using embedded nanotechnology/microelectromechanical systems (MEMS) sensors. Constr. Build. Mater. 2008;22:111–120. doi: 10.1016/j.conbuildmat.2006.05.047. DOI
Gaibor N., Mateus R., Leitão D., Cristelo N., Miranda T., Pereira E.N.B., Cunha V.M.C.F. Sustainability assessment of half-sandwich panels based on alkali-activated ceramic/slag wastes cement versus conventional building solutions. J. Clean. Prod. 2023;389:136108. doi: 10.1016/j.jclepro.2023.136108. DOI
Yuan L., Jin W., Zhou L., Lau K. The temperature characteristic of fiber-optic pre-embedded concrete bar sensor. Sens. Actuators A Phys. 2001;93:206–213. doi: 10.1016/S0924-4247(01)00657-4. DOI
Jeong H., Jung B.J., Kim J.H., Seo S.-Y., Yun H., Kim K.S. Development and assessment of Nile blue-immobilized pH sensor to monitor the early stage of concrete carbonation. J. Build. Eng. 2022;62:105319. doi: 10.1016/j.jobe.2022.105319. DOI
Qasim M., Lee C.K., Zhang Y.X. An experimental study on interfacial bond strength between hybrid engineered cementitious composite and concrete. Constr. Build. Mater. 2022;356:129299. doi: 10.1016/j.conbuildmat.2022.129299. DOI
Fernandez I., Berrocal C.G., Rempling R. Two-dimensional strain field analysis of reinforced concrete D-regions based on distributed optical fibre sensors. Eng. Struct. 2023;278:115562. doi: 10.1016/j.engstruct.2022.115562. DOI
Yang Z., Chen Q., Li X., Chen H., Wang Z., Huang R., Kong Q. Crack identification in concrete structures using implantable sensors. Measurement. 2022;202:111780. doi: 10.1016/j.measurement.2022.111780. DOI
Singh I., Dev N., Pal S. Impedance based damage assessment of concrete under the combined effect of impact and temperature using different piezo configurations. Sens. Actuators A Phys. 2022;345:113763. doi: 10.1016/j.sna.2022.113763. DOI
Ai D., Yang Z., Li H., Zhu H. Heating-time effect on electromechanical admittance of surface-bonded PZT sensor for concrete structural monitoring. Measurement. 2021;184:109992. doi: 10.1016/j.measurement.2021.109992. DOI
Li Z., Hou G., Hu T., Zhou T., Xiao H. Study on establishing and testing for strain transfer model of distributed optical fiber sensor in concrete structures. Opt. Fiber Technol. 2021;61:102430. doi: 10.1016/j.yofte.2020.102430. DOI
Zheng Z., Ji H., Zhang Y., Cai J., Mo C. High-entropy (Ca0.5Ce0.5)(Nb0.25Ta0.25Mo0.25W0.25)O4 scheelite ceramics with high-temperature negative temperature coefficient (NTC) property for thermistor materials. Solid State Ion. 2022;377:115872. doi: 10.1016/j.ssi.2022.115872. DOI
Fulham-Lebrasseur R., Sorelli L., Conciatori D. Prefabricated electrically conductive concrete (ECC) slabs with optimized electrode configuration and integrated sensor system. Cold Reg. Sci. Technol. 2022;193:103417. doi: 10.1016/j.coldregions.2021.103417. DOI
Compaoré A., Sawadogo M., Sawadogo Y., Ouedraogo M., Sorgho B., Seynou M., Blanchart P., Zerbo L. Preparation and characterization of foamed concrete using a foaming agent and local mineral resources from Burkina Faso. Results Mater. 2023;17:100365. doi: 10.1016/j.rinma.2023.100365. DOI
Zuo Z., Huang Y., Pan X., Zhan Y., Zhang L., Li X., Zhu M., Zhang L., De Corte W. Experimental research on remote real-time monitoring of concrete strength for highrise building machine during construction. Measurement. 2021;178:109430. doi: 10.1016/j.measurement.2021.109430. DOI
Keo S.A., Brachelet F., Breaban F., Defer D. Steel detection in reinforced concrete wall by microwave infrared thermography. NDT E Int. 2014;62:172–177. doi: 10.1016/j.ndteint.2013.12.002. DOI
Khan F., Bolhassani M., Kontsos A., Hamid A., Bartoli I. Modeling and experimental implementation of infrared thermography on concrete masonry structures. Infrared Phys. Technol. 2015;69:228–237. doi: 10.1016/j.infrared.2015.02.001. DOI
Lian S., Zheng k., Zhao Y., Bi J., Wang C., Huang Y.S. Investigation the effect of freeze–thaw cycle on fracture mode classification in concrete based on acoustic emission parameter analysis. Constr. Build. Mater. 2023;362:129789. doi: 10.1016/j.conbuildmat.2022.129789. DOI
Hiasa S., Birgul R., Matsumoto M., Catbas F.N. Experimental and numerical studies for suitable infrared thermography implementation on concrete bridge decks. Measurement. 2018;121:144–159. doi: 10.1016/j.measurement.2018.02.019. DOI
Pedram M., Taylor S., Hamill G., Robinson D., OBrien E.J., Uddin N. Experimental evaluation of heat transition mechanism in concrete with subsurface defects using infrared thermography. Constr. Build. Mater. 2022;360:129531. doi: 10.1016/j.conbuildmat.2022.129531. DOI
Gu J., Unjoh S. Image processing methodology for detecting delaminations using infrared thermography in CFRP-jacketed concrete members by infrared thermography. Compos. Struct. 2021;270:114040. doi: 10.1016/j.compstruct.2021.114040. DOI
Liu F., Liu J., Wang L. Asphalt pavement fatigue crack severity classification by infrared thermography and deep learning. Autom. Constr. 2022;143:104575. doi: 10.1016/j.autcon.2022.104575. DOI
Cotič P., Kolarič D., Bosiljkov V.B., Bosiljkov V., Jagličić Z. Determination of the applicability and limits of void and delamination detection in concrete structures using infrared thermography. NDT E Int. 2015;74:87–93. doi: 10.1016/j.ndteint.2015.05.003. DOI
Barreira E., Almeida R.M.S.F., Ferreira J.P.B. Assessing the humidification process of lightweight concrete specimens through infrared thermography. Energy Procedia. 2017;132:213–218. doi: 10.1016/j.egypro.2017.09.757. DOI
Gu J.-C., Unjoh S., Naito H. Detectability of delamination regions using infrared thermography in concrete members strengthened by CFRP jacketing. Compos. Struct. 2020;245:112328. doi: 10.1016/j.compstruct.2020.112328. DOI
Ichi E., Dorafshan S. Effectiveness of infrared thermography for delamination detection in reinforced concrete bridge decks. Autom. Constr. 2022;142:104523. doi: 10.1016/j.autcon.2022.104523. DOI
Woldeamanuel M.M., Kim T., Cho S., Kim H.-K. Estimation of concrete strength using thermography integrated with deep-learning-based image segmentation: Case studies and economic analysis. Expert Syst. Appl. 2023;213:119249. doi: 10.1016/j.eswa.2022.119249. DOI
Yumnam M., Gupta H., Ghosh D., Jaganathan J. Inspection of concrete structures externally reinforced with FRP composites using active infrared thermography: A review. Constr. Build. Mater. 2021;310:125265. doi: 10.1016/j.conbuildmat.2021.125265. DOI
Kulkarni N.N., Dabetwar S., Benoit J., Yu T., Sabato A. Comparative analysis of infrared thermography processing techniques for roadways’ sub-pavement voids detection. NDT E Int. 2022;129:102652. doi: 10.1016/j.ndteint.2022.102652. DOI
Mahmoodzadeh M., Gretka V., Mukhopadhyaya P. Challenges and opportunities in quantitative aerial thermography of building envelopes. J. Build. Eng. 2023;69:106214. doi: 10.1016/j.jobe.2023.106214. DOI
Xie L., Zhu X., Liu Z., Liu X., Wang T., Xing J. A rebar corrosion sensor embedded in concrete based on surface acoustic wave. Measurement. 2020;165:108118. doi: 10.1016/j.measurement.2020.108118. DOI
Pour-Ghaz M., Kim J., Nadukuru S.S., O’Connor S.M., Michalowski R.L., Bradshaw A.S., Green R.A., Lynch J.P., Poursaee A., Weiss W.J. Using electrical, magnetic and acoustic sensors to detect damage in segmental concrete pipes subjected to permanent ground displacement. Cem. Concr. Compos. 2011;33:749–762. doi: 10.1016/j.cemconcomp.2011.04.004. DOI
Guo R., Liu F., Zhang X., Zhao Y., Huang S., Lin X., Yang C. Feasibility evaluation of the development of type 1-3 acoustic emission sensors for health monitoring of large bridge structures. Ceram. Int. 2023;49:14645–14654. doi: 10.1016/j.ceramint.2023.01.055. DOI
Liu X., Feng X. A near-wall acoustic wave-based localization method for broken wires in a large diameter PCCP using an FBG sensor array. Measurement. 2022;205:112154. doi: 10.1016/j.measurement.2022.112154. DOI
Hamdi S.E., Sbartaï Z.-M., Boniface A., Saliba J., Henault J.-M. Pressure-induced damage monitoring in prestressed concrete of nuclear containment wall segments using acoustic emission technique—Application to VeRCoRs containment building. Eng. Fract. Mech. 2023;281:109089. doi: 10.1016/j.engfracmech.2023.109089. DOI
Liu F., Guo R., Lin X., Zhang X., Huang S., Yang F., Cheng X. Monitoring the damage evolution of reinforced concrete during tunnel boring machine hoisting by acoustic emission. Constr. Build. Mater. 2022;327:127000. doi: 10.1016/j.conbuildmat.2022.127000. DOI
Yue J.G., Beskos D.E., Feng C., Wu K. Hardened fracture characteristics of printed concrete using acoustic emission monitoring technique. Constr. Build. Mater. 2022;361:129684. doi: 10.1016/j.conbuildmat.2022.129684. DOI
Deng H.-S., Fu H.-L., Zhao Y.-B., Shi Y., Huang X. Using acoustic emission parameters to study damage and fracture characteristics of concrete with different pour intervals cold joints. Theor. Appl. Fract. Mech. 2022;122:103601. doi: 10.1016/j.tafmec.2022.103601. DOI
Hou Y., Sun M., Chen J. Electrical resistance and capacitance responses of smart ultra-high performance concrete with compressive strain by DC and AC measurements. Constr. Build. Mater. 2022;327:127007. doi: 10.1016/j.conbuildmat.2022.127007. DOI
Alrousan R.Z., Alnemrawi B.R. Punching shear behavior of FRP reinforced concrete slabs under different opening configurations and loading conditions. Case Stud. Constr. Mater. 2022;17:e01508. doi: 10.1016/j.cscm.2022.e01508. DOI
Fan L., Bao Y., Meng W., Chen G. In-situ monitoring of corrosion-induced expansion and mass loss of steel bar in steel fiber reinforced concrete using a distributed fiber optic sensor. Compos. Part B Eng. 2019;165:679–689. doi: 10.1016/j.compositesb.2019.02.051. DOI
Kesavan K., Ravisankar K., Parivallal S., Sreeshylam P., Sridhar S. Experimental studies on fiber optic sensors embedded in concrete. Measurement. 2010;43:157–163. doi: 10.1016/j.measurement.2009.08.010. DOI
Hong W., Jiang Y., Li B., Qin Z., Hu X. Nonlinear parameter identification of timber-concrete composite beams using long-gauge fiber optic sensors. Constr. Build. Mater. 2018;164:217–227. doi: 10.1016/j.conbuildmat.2017.12.211. DOI
Nguyen T.H., Venugopala T., Chen S., Sun T., Grattan K.T.V., Taylor S.E., Basheer P.A.M., Long A.E. Fluorescence based fibre optic pH sensor for the pH 10–13 range suitable for corrosion monitoring in concrete structures. Sens. Actuators B Chem. 2014;191:498–507. doi: 10.1016/j.snb.2013.09.072. DOI
Uva G., Porco F., Fiore A., Porco G. Structural monitoring using fiber optic sensors of a pre-stressed concrete viaduct during construction phases. Case Stud. Nondestruct. Test. Eval. 2014;2:27–37. doi: 10.1016/j.csndt.2014.06.002. DOI
Liu Y., Bao Y. Automatic interpretation of strain distributions measured from distributed fiber optic sensors for crack monitoring. Measurement. 2023;211:112629. doi: 10.1016/j.measurement.2023.112629. DOI
Aulakh D.S., Bhalla S. 3D torsional experimental strain modal analysis for structural health monitoring using piezoelectric sensors. Measurement. 2021;180:109476. doi: 10.1016/j.measurement.2021.109476. DOI
Wang J., Cao Y., Xiang H., Zhang Z., Liang J., Li X., Ding D., Li T., Tang L. A piezoelectric smart backing ring for high-performance power generation subject to train induced steel-spring fulcrum forces. Energy Convers. Manag. 2022;257:115442. doi: 10.1016/j.enconman.2022.115442. DOI
Liu X., Yu Y., Li J., Zhu J., Wang Y., Qing X. Leaky Lamb wave–based resin impregnation monitoring with noninvasive and integrated piezoelectric sensor network. Measurement. 2022;189:110480. doi: 10.1016/j.measurement.2021.110480. DOI
Miao S., Gao L., Tong F., Zhong Y. Research on high precision optical fiber acoustic emission system for weak damage location on concrete. Constr. Build. Mater. 2022;347:128331. doi: 10.1016/j.conbuildmat.2022.128331. DOI
Demircilioğlu E., Teomete E., Schlangen E., Baeza F.J. Temperature and moisture effects on electrical resistance and strain sensitivity of smart concrete. Constr. Build. Mater. 2019;224:420–427. doi: 10.1016/j.conbuildmat.2019.07.091. DOI
Bouzaffour K., Lescop B., Talbot P., Nguyen-Vien G., Gallée F., Rioual S. Decoupling free chloride and water ingress in concrete by a dielectric resonant sensor. Constr. Build. Mater. 2023;372:130806. doi: 10.1016/j.conbuildmat.2023.130806. DOI
He S., He J., Guo X., Ueda T., Wang Y. Detection of CFRP-concrete interfacial defects by using electrical measurement. Compos. Struct. 2022;295:115843. doi: 10.1016/j.compstruct.2022.115843. DOI
Priou J., Lecieux Y., Chevreuil M., Gaillard V., Lupi C., Leduc D., Rozière E., Guyard R., Schoefs F. In situ DC electrical resistivity mapping performed in a reinforced concrete wharf using embedded sensors. Constr. Build. Mater. 2019;211:244–260. doi: 10.1016/j.conbuildmat.2019.03.152. DOI
Jiang B., Wu S. Resistance measurement for monitoring bending cracks in steel fiber concrete beams test. Alex. Eng. J. 2023;66:691–699. doi: 10.1016/j.aej.2022.10.074. DOI
Tafesse M., Alemu A.S., Lee H.K., Cho C.-G., Kim H.-K. Effect of chloride penetration on electrical resistivity of CNT–CF/cement composites and its application as chloride sensor for reinforced mortar. Cem. Concr. Compos. 2022;133:104662. doi: 10.1016/j.cemconcomp.2022.104662. DOI
Jiao W., Sha A., Liu Z., Jiang W., Hu L., Qin W. Analytic investigations of snow melting efficiency and temperature field of thermal conductive asphalt concrete combined with electrical-thermal system. J. Clean. Prod. 2023;399:136622. doi: 10.1016/j.jclepro.2023.136622. DOI
Zhang J., Heath A., Abdalgadir H.M.T., Ball R.J., Paine K. Electrical impedance behaviour of carbon fibre reinforced cement-based sensors at different moisture contents. Constr. Build. Mater. 2022;353:129049. doi: 10.1016/j.conbuildmat.2022.129049. DOI
Pei H., Li Z., Zhang B., Ma H. Multipoint measurement of early age shrinkage in low w/c ratio mortars by using fiber Bragg gratings. Mater. Lett. 2014;131:370–372. doi: 10.1016/j.matlet.2014.05.202. DOI
Zhang J., Liu C., Sun M., Li Z. An innovative corrosion evaluation technique for reinforced concrete structures using magnetic sensors. Constr. Build. Mater. 2017;135:68–75. doi: 10.1016/j.conbuildmat.2016.12.157. DOI
Davis A.M., Mirsayar M.M., Hartl D.J. A novel structural health monitoring approach in concrete structures using embedded magnetic shape memory alloy components. Constr. Build. Mater. 2021;311:125212. doi: 10.1016/j.conbuildmat.2021.125212. DOI
Tran D.A., Shen X., Sorelli L., Ftima M.B., Brühwiler E. Predicting the effect of non-uniform fiber distribution on the tensile response of ultra-high-performance fiber reinforced concrete by magnetic inductance-based finite element analysis. Cem. Concr. Compos. 2023;135:104810. doi: 10.1016/j.cemconcomp.2022.104810. DOI
Alabi D.J., Voss M., Ferraro C.C., Riding K., Harley J.B. Electromagnetic method field test for characterizing steel fibers in ultra-high performance concrete (UHPC) Constr. Build. Mater. 2023;374:130873. doi: 10.1016/j.conbuildmat.2023.130873. DOI
Li Z., Jin Z., Zhao T., Wang P., Li Z., Xiong C., Zhang K. Use of a novel electro-magnetic apparatus to monitor corrosion of reinforced bar in concrete. Sens. Actuators A Phys. 2019;286:14–27. doi: 10.1016/j.sna.2018.12.024. DOI
Xie Z., Zhang D., Ueda T., Jin W. Fatigue damage analysis of prefabricated concrete composite beams based on metal magnetic memory technique. J. Magn. Magn. Mater. 2022;544:168722. doi: 10.1016/j.jmmm.2021.168722. DOI
Yang Z., Li Y., Sang X., Ding Y., Ma B., Chen Q., Kong Q. Concrete implantable bar enabled smart sensing technology for structural health monitoring. Cem. Concr. Compos. 2023;139:105035. doi: 10.1016/j.cemconcomp.2023.105035. DOI
Loubet G., Sidibe A., Takacs A., Dragomirescu D. Autonomous Wireless Sensors Network for the Implementation of a Cyber-Physical System Monitoring Reinforced Concrete Civil Engineering Structures. IFAC-PapersOnLine. 2022;55:19–24. doi: 10.1016/j.ifacol.2022.08.004. PubMed DOI
Chen J., Li P., Song G., Ren Z. Piezo-based wireless sensor network for early-age concrete strength monitoring. Optik. 2016;127:2983–2987. doi: 10.1016/j.ijleo.2015.11.170. DOI
Barroca N., Borges L.M., Velez F.J., Monteiro F., Górski M., Castro-Gomes J. Wireless sensor networks for temperature and humidity monitoring within concrete structures. Constr. Build. Mater. 2013;40:1156–1166. doi: 10.1016/j.conbuildmat.2012.11.087. DOI
Liu G. A Q-Learning-based distributed routing protocol for frequency-switchable magnetic induction-based wireless underground sensor networks. Future Gener. Comput. Syst. 2023;139:253–266. doi: 10.1016/j.future.2022.10.004. DOI
Siha A., Zhou C. Experimental study and numerical analysis of composite strengthened timber columns under lateral cyclic loading. J. Build. Eng. 2023;67:106077. doi: 10.1016/j.jobe.2023.106077. DOI
Soltanzadeh F., Edalat-Behbahani A., Pereira E.N.B. Bond behavior of recycled tyre steel fiber reinforced concrete and basalt fiber-reinforced polymer bars under static and fatigue loading conditions. J. Build. Eng. 2023;70:106291. doi: 10.1016/j.jobe.2023.106291. DOI
Liu C., Wei Y. Experimental study on interface performance between implantable cement-based sensor and matrix concrete. Constr. Build. Mater. 2022;345:128316. doi: 10.1016/j.conbuildmat.2022.128316. DOI
Gao D., Chen X., Chen G., Zhang L., Zhan Z. Shear-bond behaviour between concrete and hybrid fibre-reinforced cementitious composites for repairing: Experimental and modelling. J. Build. Eng. 2023;64:105636. doi: 10.1016/j.jobe.2022.105636. DOI
Cheng S., He H., Chen Y., Lan B. Capacity prediction and crack width calculation of RC beam strengthened with textile and modified concrete. J. Build. Eng. 2023;69:106261. doi: 10.1016/j.jobe.2023.106261. DOI
Ma J., Bai G., Ma H., Bai X., Ni T. Beam-type experimental study on interfacial bond-slip behavior of steel reinforcement recycled concrete. Constr. Build. Mater. 2022;351:128888. doi: 10.1016/j.conbuildmat.2022.128888. DOI
Li P., Zeng J., Li W., Zhao Y. Effect of concrete heterogeneity on interfacial bond behavior of externally bonded FRP-to-concrete joints. Constr. Build. Mater. 2022;359:129483. doi: 10.1016/j.conbuildmat.2022.129483. DOI
Pang Y., Wu G., Wang H., Liu Y. Interfacial bond-slip degradation relationship between CFRP plate and steel plate under freeze-thaw cycles. Constr. Build. Mater. 2019;214:242–253. doi: 10.1016/j.conbuildmat.2019.04.114. DOI
Bai G., Ma J., Liu B., Chen X. Study on the interfacial bond slip constitutive relation of I-section steel and fully recycled aggregate concrete. Constr. Build. Mater. 2020;238:117688. doi: 10.1016/j.conbuildmat.2019.117688. DOI
Liu W., Liu C., Liu M., Xu F., Li Z. Investigation on interfacial properties and calculation models of bamboo scrimber-to-concrete bonding joint. Constr. Build. Mater. 2021;313:125530. doi: 10.1016/j.conbuildmat.2021.125530. DOI
Ding Y., Liu J.-P., Yao G., Wei W., Mao W.-H. Cyclic bond behavior and bond stress-slip constitutive model of rebar embedded in hybrid fiber reinforced strain-hardening cementitious composites. Constr. Build. Mater. 2023;369:130582. doi: 10.1016/j.conbuildmat.2023.130582. DOI
Ramanathan S., Benzecry V., Suraneni P., Nanni A. Condition assessment of concrete and glass fiber reinforced polymer (GFRP) rebar after 18 years of service life. Case Stud. Constr. Mater. 2021;14:e00494. doi: 10.1016/j.cscm.2021.e00494. DOI
Liu M., Cheng X., Li X., Hu J., Pan Y., Jin Z. Indoor accelerated corrosion test and marine field test of corrosion-resistant low-alloy steel rebars. Case Stud. Constr. Mater. 2016;5:87–99. doi: 10.1016/j.cscm.2016.09.005. DOI
Soltani A., Nasserasadi K., Ahmadi J., Tafakori E. Empirical assessment and refinement of corrosion distribution models in the perimeter of corroded steel rebar subjected to chloride ions attack. Case Stud. Constr. Mater. 2022;17:e01398. doi: 10.1016/j.cscm.2022.e01398. DOI
Li J., Yang E.-H. Macroscopic and microstructural properties of engineered cementitious composites incorporating recycled concrete fines. Cem. Concr. Compos. 2017;78:33–42. doi: 10.1016/j.cemconcomp.2016.12.013. DOI
Han X., Wang P., Cui D., Tawfik T.A., Chen Z., Tian L., Gao Y. Rebar corrosion detection in concrete based on capacitance principle. Measurement. 2023;209:112526. doi: 10.1016/j.measurement.2023.112526. DOI
Fan L., Tan X., Zhang Q., Meng W., Chen G., Bao Y. Monitoring corrosion of steel bars in reinforced concrete based on helix strains measured from a distributed fiber optic sensor. Eng. Struct. 2020;204:110039. doi: 10.1016/j.engstruct.2019.110039. DOI
Ye C., Butler L.J., Elshafie M.Z.E.B., Middleton C.R. Evaluating prestress losses in a prestressed concrete girder railway bridge using distributed and discrete fibre optic sensors. Constr. Build. Mater. 2020;247:118518. doi: 10.1016/j.conbuildmat.2020.118518. DOI
Liao W., Zhuang Y., Zeng C., Deng W., Huang J., Ma H. Fiber optic sensors enabled monitoring of thermal curling of concrete pavement slab: Temperature, strain and inclination. Measurement. 2020;165:108203. doi: 10.1016/j.measurement.2020.108203. DOI
Li Q., Yuan L., Ansari F. Model for measurement of thermal expansion coefficient of concrete by fiber optic sensor. Int. J. Solids Struct. 2002;39:2927–2937. doi: 10.1016/S0020-7683(02)00248-2. DOI
Pan H.H., Huang M.-W. Piezoelectric cement sensor-based electromechanical impedance technique for the strength monitoring of cement mortar. Constr. Build. Mater. 2020;254:119307. doi: 10.1016/j.conbuildmat.2020.119307. DOI
Guo Y., Li W., Dong W., Luo Z., Qu F., Yang F., Wang K. Self-sensing performance of cement-based sensor with carbon black and polypropylene fibre subjected to different loading conditions. J. Build. Eng. 2022;59:105003. doi: 10.1016/j.jobe.2022.105003. DOI
Luo B., Dong J. Optimizing piezoresistivity of alkali-activated mortar using carboxylated multi-walled carbon nanotubes/basalt fibers. Mater. Lett. 2022;329:133151. doi: 10.1016/j.matlet.2022.133151. DOI
Pan H.H., Guan J.-C. Stress and strain behavior monitoring of concrete through electromechanical impedance using piezoelectric cement sensor and PZT sensor. Constr. Build. Mater. 2022;324:126685. doi: 10.1016/j.conbuildmat.2022.126685. DOI
Lee M., Mata-Falcón J., Kaufmann W. Influence of short glass fibres and spatial features on the mechanical behaviour of weft-knitted textile reinforced concrete elements in bending. Constr. Build. Mater. 2022;344:128167. doi: 10.1016/j.conbuildmat.2022.128167. DOI
Chung W.J., Khattak S.H., Cecinati F., Jeong S.-G., Kershaw T., Allen S., Park C.-S., Coley D., Natarajan S. Resistive and capacitive technology recipes for peak cooling load reductions in the global south. J. Build. Eng. 2023;67:105900. doi: 10.1016/j.jobe.2023.105900. DOI
Ding Y., Liu G., Hussain A., Pacheco-Torgal F., Zhang Y. Effect of steel fiber and carbon black on the self-sensing ability of concrete cracks under bending. Constr. Build. Mater. 2019;207:630–639. doi: 10.1016/j.conbuildmat.2019.02.160. DOI
Ling D.C.H., Razak R.A., Yahya Z., Abdullah M.M.A.B., Chaiprapa J., Phan V.T.-A., Mohamed R., Aziz I.H. Investigation of influence factors and surface treatment on palm oil boiler ash (POBA) based geopolymer artificial aggregate: Impregnation vs. coating method. J. Build. Eng. 2023;66:105936. doi: 10.1016/j.jobe.2023.105936. DOI
Aziz I.H.A., Abdullah M.M.A.B., Razak R.A., Yahya Z., Salleh M.A.A.M., Chaiprapa J., Rojviriya C., Vizureanu P., Sandu A.V., Tahir M.F., et al. Microstructure, and Porosity Evolution of Fly Ash Geopolymer after Ten Years of Curing Age. Materials. 2023;16:1096. doi: 10.3390/ma16031096. PubMed DOI PMC
Ibrahim W.M.A.W., Abdullah M.M.A.B., Jamil N.H., Mohamad H., Salleh M.A.A.M., Sandu A.V., Vizureanu P., Baltatu M.S., Sukmak P. Alkaline-Activation Technique to Produce Low-Temperature Sintering Activated-HAp Ceramic. Appl. Sci. 2023;13:2643. doi: 10.3390/app13042643. DOI
Wang L., Aslani F. Structural performance of reinforced concrete beams with 3D printed cement-based sensor embedded and self-sensing cementitious composites. Eng. Struct. 2023;275:115266. doi: 10.1016/j.engstruct.2022.115266. DOI
Lemaire E., Thuau D., Souêtre M., Zgainski L., Royet A., Atli A. Revisiting two piezoelectric salts within an eco-design paradigm for sensors and actuators applications. Sens. Actuators A Phys. 2021;318:112483. doi: 10.1016/j.sna.2020.112483. DOI
Zhang H., Wang L., Li J., Kang F. Embedded PZT aggregates for monitoring crack growth and predicting surface crack in reinforced concrete beam. Constr. Build. Mater. 2023;364:129979. doi: 10.1016/j.conbuildmat.2022.129979. DOI
Xu B., Chen H., Mo Y.-L., Chen X. Multi-physical field guided wave simulation for circular concrete-filled steel tubes coupled with piezoelectric patches considering debonding defects. Int. J. Solids Struct. 2017;122–123:25–32. doi: 10.1016/j.ijsolstr.2017.05.040. DOI
Xu D., Huang S., Cheng X. Electromechanical impedance spectra investigation of impedance-based PZT and cement/polymer based piezoelectric composite sensors. Constr. Build. Mater. 2014;65:543–550. doi: 10.1016/j.conbuildmat.2014.05.035. DOI
Du P., Xu D., Huang S., Cheng X. Assessment of corrosion of reinforcing steel bars in concrete using embedded piezoelectric transducers based on ultrasonic wave. Constr. Build. Mater. 2017;151:925–930. doi: 10.1016/j.conbuildmat.2017.06.153. DOI
Yan J., Zhou W., Zhang X., Lin Y. Interface monitoring of steel-concrete-steel sandwich structures using piezoelectric transducers. Nucl. Eng. Technol. 2019;51:1132–1141. doi: 10.1016/j.net.2019.01.013. DOI
Monazami M., Sharma A., Gupta R. Evaluating performance of carbon fiber-reinforced pavement with embedded sensors using destructive and non-destructive testing. Case Stud. Constr. Mater. 2022;17:e01460. doi: 10.1016/j.cscm.2022.e01460. DOI
Zhai Q., Zhang J., Xiao J., Du G., Huang Y. Feasibility of piezoceramic transducer-enabled active sensing for the monitoring cross-shaped concrete filled steel tubular (CCFST) columns under cyclic loading. Measurement. 2021;182:109646. doi: 10.1016/j.measurement.2021.109646. DOI
Cao P., Zhang S., Wang Z., Zhou K. Damage identification using piezoelectric electromechanical Impedance: A brief review from a numerical framework perspective. Structures. 2023;50:1906–1921. doi: 10.1016/j.istruc.2023.03.017. DOI
Xie J., Yang H., Jing Z., Zhang Y., Hong W., Hu X. Condition assessment of concrete piers subjected to impact load using fiber optic sensing. Case Stud. Constr. Mater. 2022;17:e01597. doi: 10.1016/j.cscm.2022.e01597. DOI
Mahjoubi S., Tan X., Bao Y. Inverse analysis of strain distributions sensed by distributed fiber optic sensors subject to strain transfer. Mech. Syst. Signal Process. 2022;166:108474. doi: 10.1016/j.ymssp.2021.108474. DOI
Yan M., Tan X., Mahjoubi S., Bao Y. Strain transfer effect on measurements with distributed fiber optic sensors. Autom. Constr. 2022;139:104262. doi: 10.1016/j.autcon.2022.104262. DOI
Jayawickrema U.M.N., Herath H.M.C.M., Hettiarachchi N.K., Sooriyaarachchi H.P., Epaarachchi J.A. Fibre-optic sensor and deep learning-based structural health monitoring systems for civil structures: A review. Measurement. 2022;199:111543. doi: 10.1016/j.measurement.2022.111543. DOI
Li M., Feng X., Han Y. Brillouin fiber optic sensors and mobile augmented reality-based digital twins for quantitative safety assessment of underground pipelines. Autom. Constr. 2022;144:104617. doi: 10.1016/j.autcon.2022.104617. DOI
Zhang X., Broere W. Sensing fiber selection for point displacement measuring with distributed optic fiber sensor. Measurement. 2022;197:111275. doi: 10.1016/j.measurement.2022.111275. DOI
Shaikh A., Butler L.J. Self-sensing fabric reinforced cementitious matrix systems for combined strengthening and monitoring of concrete structures. Constr. Build. Mater. 2022;331:127243. doi: 10.1016/j.conbuildmat.2022.127243. DOI
Zeng M., Chen H., Ling J., Zhao H., Wu D. Monitoring of prestressing forces in cross-tensioned concrete pavements during construction and maintenance based on distributed optical fiber sensing. Autom. Constr. 2022;142:104526. doi: 10.1016/j.autcon.2022.104526. DOI
Zdanowicz K., Marx S. Flexural behaviour of thin textile reinforced concrete slabs enhanced by chemical prestressing. Eng. Struct. 2022;256:113946. doi: 10.1016/j.engstruct.2022.113946. DOI
Raju B., Kumar R., Senthilkumar M., Sulaiman R., Kama N., Dhanalakshmi S. Humidity sensor based on fibre bragg grating for predicting microbial induced corrosion. Sustain. Energy Technol. Assess. 2022;52:102306. doi: 10.1016/j.seta.2022.102306. DOI
Sakaki T., Lüthi B.F., Vogt T. Investigation of the emplacement dry density of granulated bentonite mixtures using dielectric, mass-balance and actively heated fiber-optic distributed temperature sensing methods. Geomech. Energy Environ. 2022;32:100329. doi: 10.1016/j.gete.2022.100329. DOI
Zhu J., Wang C., Yang Y., Wang Y. Hygro-thermal–mechanical coupling analysis for early shrinkage of cast in situ concrete slabs of composite beams: Theory and experiment. Constr. Build. Mater. 2023;372:130774. doi: 10.1016/j.conbuildmat.2023.130774. DOI
Li D., Nie J.-H., Wang H., Yan J.-B., Hu C.-X., Shen P. Damage location, quantification and characterization of steel-concrete composite beams using acoustic emission. Eng. Struct. 2023;283:115866. doi: 10.1016/j.engstruct.2023.115866. DOI
Wang Y., Li P., Liu H., Wang W., Liu Y., Wang L. Multiple laboratory characterization methods to identify the D-Load of reinforced concrete pipes based on three edge bearing tests. Constr. Build. Mater. 2023;366:130156. doi: 10.1016/j.conbuildmat.2022.130156. DOI
Tailhan J.-L., Rastiello G., Renaud J.-C., Boulay C. An experimental test for gas pressure measurement within a realistic crack in concrete. Nucl. Eng. Des. 2023;403:112138. doi: 10.1016/j.nucengdes.2022.112138. DOI
Martinelli F.R.B., Ribeiro F.R.C., Marvila M.T., Monteiro S.N., da Costa Garcia Filho F., de Azevedo A.R.G. A Review of the Use of Coconut Fiber in Cement Composites. Polymers. 2023;15:1309. doi: 10.3390/polym15051309. PubMed DOI PMC
Boumaaza M., Belaadi A., Bourchak M., Juhany K.A., Jawaid M., Marvila M.T., de Azevedo A.R.G. Optimization of flexural properties and thermal conductivity of Washingtonia plant biomass waste biochar reinforced bio-mortar. J. Mater. Res. Technol. 2023;23:3515–3536. doi: 10.1016/j.jmrt.2023.02.009. DOI
Du W., Qian C., Xie Y. Demonstration application of microbial self-healing concrete in sidewall of underground engineering: A case study. J. Build. Eng. 2023;63:105512. doi: 10.1016/j.jobe.2022.105512. DOI
Ji Y., Chen A., Chen Y., Han X., Li B., Gao Y., Liu C., Xie J. A state-of-the-art review of concrete strength detection/monitoring methods: With special emphasis on PZT transducers. Constr. Build. Mater. 2023;362:129742. doi: 10.1016/j.conbuildmat.2022.129742. DOI
Jayakumari B.Y., Swaminathan E.N., Partheeban P. A review on characteristics studies on carbon nanotubes-based cement concrete. Constr. Build. Mater. 2023;367:130344. doi: 10.1016/j.conbuildmat.2023.130344. DOI
Geballa-Koukoula A., Ross G.M.S., Bosman A.J., Zhao Y., Zhou H., Nielen M.W.F., Rafferty K., Elliott C.T., Salentijn G.I.J. Best practices and current implementation of emerging smartphone-based (bio)sensors—Part 2: Development, validation, and social impact. TrAC Trends Anal. Chem. 2023;161:116986. doi: 10.1016/j.trac.2023.116986. DOI
Tayeh B.A., Ahmed S.M., Hafez R.D.A. Sugarcane pulp sand and paper grain sand as partial fine aggregate replacement in environment-friendly concrete bricks. Case Stud. Constr. Mater. 2023;18:e01612. doi: 10.1016/j.cscm.2022.e01612. DOI
Bayrak B., Mostafa S.A., Öz A., Tayeh B.A., Kaplan G., Aydın A.C. The effect of clinker aggregate on acid resistance in prepacked geopolymers containing metakaolin and quartz powder in the presence of ground blast furnace slag. J. Build. Eng. 2023;69:106290. doi: 10.1016/j.jobe.2023.106290. DOI
Lin G.L., Lin A.X., Liu M.Y., Ye X.Q., Lu D.W. Barium titanate–bismuth ferrite/polyvinylidene fluoride nanocomposites as flexible piezoelectric sensors with excellent thermal stability. Sens. Actuators A Phys. 2022;346:113885. doi: 10.1016/j.sna.2022.113885. DOI
Shilar F.A., Ganachari S.V., Patil V.B. Advancement of nano-based construction materials-A review. Constr. Build. Mater. 2022;359:129535. doi: 10.1016/j.conbuildmat.2022.129535. DOI
Shilar F.A., Ganachari S.V., Patil V.B., Javed S., Khan T.M.Y., Baig R.U. Assessment of Destructive and Nondestructive Analysis for GGBS Based Geopolymer Concrete and Its Statistical Analysis. Polymers. 2022;14:3132. doi: 10.3390/polym14153132. PubMed DOI PMC
Shilar F.A., Ganachari S.V., Patil V.B. Investigation of the effect of granite waste powder as a binder for different molarity of geopolymer concrete on fresh and mechanical properties. Mater. Lett. 2022;309:131302. doi: 10.1016/j.matlet.2021.131302. DOI
Zheng Y., Zhang Y., Zhuo J., Zhang P., Hu S. Mesoscale synergistic effect mechanism of aggregate grading and specimen size on compressive strength of concrete with large aggregate size. Constr. Build. Mater. 2023;367:130346. doi: 10.1016/j.conbuildmat.2023.130346. DOI
Zhang P., Sun X., Wang F., Wang J. Mechanical Properties and Durability of Geopolymer Recycled Aggregate Concrete: A Review. Polymers. 2023;15:615. doi: 10.3390/polym15030615. PubMed DOI PMC
Shilar F.A., Ganachari S.V., Patil V.B., Khan T.M.Y., Khadar S.D.A. Molarity activity effect on mechanical and microstructure properties of geopolymer concrete: A review. Case Stud. Constr. Mater. 2022;16:e01014. doi: 10.1016/j.cscm.2022.e01014. DOI
Shilar F.A., Ganachari S.V., Patil V.B., Khan T.M.Y., Javed S., Baig R.U. Optimization of Alkaline Activator on the Strength Properties of Geopolymer Concrete. Polymers. 2022;14:2434. doi: 10.3390/polym14122434. PubMed DOI PMC
Shilar F.A., Ganachari S.V., Patil V.B., Reddy I.N., Shim J. Preparation and validation of sustainable metakaolin based geopolymer concrete for structural application. Constr. Build. Mater. 2023;371:130688. doi: 10.1016/j.conbuildmat.2023.130688. DOI
Shilar F.A., Ganachari S.V., Patil V.B., Khan T.M.Y., Almakayeel N.M., Alghamdi S. Review on the Relationship between Nano Modifications of Geopolymer Concrete and Their Structural Characteristics. Polymers. 2022;14:1421. doi: 10.3390/polym14071421. PubMed DOI PMC
Bong S.H., Nematollahi B., Xia M., Ghaffar S.H., Pan J., Dai J.-G. Properties of additively manufactured geopolymer incorporating mineral wollastonite microfibers. Constr. Build. Mater. 2022;331:127282. doi: 10.1016/j.conbuildmat.2022.127282. DOI