Exploring the Potential of Promising Sensor Technologies for Concrete Structural Health Monitoring

. 2024 May 17 ; 17 (10) : . [epub] 20240517

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38793477

Grantová podpora
R.G.P. 2/196/44 King Khalid University

Structural health monitoring (SHM) is crucial for maintaining concrete infrastructure. The data collected by these sensors are processed and analyzed using various analysis tools under different loadings and exposure to external conditions. Sensor-based investigation on concrete has been carried out for technologies used for designing structural health monitoring sensors. A Sensor-Infused Structural Analysis such as interfacial bond-slip model, corroded steel bar, fiber-optic sensors, carbon black and polypropylene fiber, concrete cracks, concrete carbonation, strain transfer model, and vibrational-based monitor. The compressive strength (CS) and split tensile strength (STS) values of the analyzed material fall within a range from 26 to 36 MPa and from 2 to 3 MPa, respectively. The material being studied has a range of flexural strength (FS) and density values that fall between 4.5 and 7 MPa and between 2250 and 2550 kg/m3. The average squared difference between the predicted and actual compressive strength values was found to be 4.405. With cement ratios of 0.3, 0.4, and 0.5, the shear strength value ranged from 4.4 to 5.6 MPa. The maximum shear strength was observed for a water-cement ratio of 0.4, with 5.5 MPa, followed by a water-cement ratio of 0.3, with 5 MPa. Optimizing the water-cement ratio achieves robust concrete (at 0.50), while a lower ratio may hinder strength (at 0.30). PZT sensors and stress-wave measurements aid in the precise structural monitoring, enhanced by steel fibers and carbon black, for improved sensitivity and mechanical properties. These findings incorporate a wide range of applications, including crack detection; strain and deformation analysis; and monitoring of temperature, moisture, and corrosion. This review pioneers sensor technology for concrete monitoring (Goal 9), urban safety (Goal 11), climate resilience (Goal 13), coastal preservation (Goal 14), and habitat protection (Goal 15) of the United Nations' Sustainable Development Goals.

Zobrazit více v PubMed

Cao Y., Li J., Sha A., Liu Z., Zhang F., Li X. A power-intensive piezoelectric energy harvester with efficient load utilization for road energy collection: Design, testing, and application. J. Clean. Prod. 2022;369:133287. doi: 10.1016/j.jclepro.2022.133287. DOI

Hassan A., Arif M., Shariq M. A review of properties and behaviour of reinforced geopolymer concrete structural elements—A clean technology option for sustainable development. J. Clean. Prod. 2020;245:118762. doi: 10.1016/j.jclepro.2019.118762. DOI

Chiriatti L., Mercado-Mendoza H., Apedo K.L., Fond C., Feugeas F. A study of bond between steel rebar and concrete under a friction-based approach. Cem. Concr. Res. 2019;120:132–141. doi: 10.1016/j.cemconres.2019.03.019. DOI

Meng Q., Wu C., Su Y., Li J., Liu J., Pang J. A study of steel wire mesh reinforced high performance geopolymer concrete slabs under blast loading. J. Clean. Prod. 2019;210:1150–1163. doi: 10.1016/j.jclepro.2018.11.083. DOI

Yue L., Yang Y., Zhou Q., Lei Y., Deng G., Yang T. Broadband electromagnetic wave absorbing performance by designing the foam structure and double-layer for cement-based composites containing MWCNTs. Cem. Concr. Compos. 2022;131:104595. doi: 10.1016/j.cemconcomp.2022.104595. DOI

Materazzi A.L., Ubertini F., D’Alessandro A. Carbon nanotube cement-based transducers for dynamic sensing of strain. Cem. Concr. Compos. 2013;37:2–11. doi: 10.1016/j.cemconcomp.2012.12.013. DOI

Khan M.I., Fares G., Abbas Y.M. Cost-performance balance and new image analysis technique for ultra-high performance hybrid nano-based fiber-reinforced concrete. Constr. Build. Mater. 2022;315:125753. doi: 10.1016/j.conbuildmat.2021.125753. DOI

Park Z.-T., Choi Y.-S., Kim J.-G., Chung L. Development of a galvanic sensor system for detecting the corrosion damage of the steel embedded in concrete structure: Part 2. Laboratory electrochemical testing of sensors in concrete. Cem. Concr. Res. 2005;35:1814–1819. doi: 10.1016/j.cemconres.2003.11.027. DOI

Gülşan M.E., Alzeebaree R., Rasheed A.A., Niş A., Kurtoğlu A.E. Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber. Constr. Build. Mater. 2019;211:271–283. doi: 10.1016/j.conbuildmat.2019.03.228. DOI

Mandal R., Chakraborty S., Chakraborty P., Chakraborty S. Development of the electrolyzed water based set accelerated greener cement paste. Mater. Lett. 2019;243:46–49. doi: 10.1016/j.matlet.2019.02.017. DOI

Afzal J., Yihong Z., Afzal U., Aslam M. A complex wireless sensors model (CWSM) for real time monitoring of dam temperature. Heliyon. 2023;9:e13371. doi: 10.1016/j.heliyon.2023.e13371. PubMed DOI PMC

Choi W.-C., Yun H.-D., Cho C.-G., Feo L. Attempts to apply high performance fiber-reinforced cement composite (HPFRCC) to infrastructures in South Korea. Compos. Struct. 2014;109:211–223. doi: 10.1016/j.compstruct.2013.10.027. DOI

Shi L., Lin S.T.K., Lu Y., Ye L., Zhang Y.X. Artificial neural network based mechanical and electrical property prediction of engineered cementitious composites. Constr. Build. Mater. 2018;174:667–674. doi: 10.1016/j.conbuildmat.2018.04.127. DOI

Arezoumandi M., Volz J.S. Effect of fly ash replacement level on the shear strength of high-volume fly ash concrete beams. J. Clean. Prod. 2013;59:120–130. doi: 10.1016/j.jclepro.2013.06.043. DOI

Wu J., Jing H., Gao Y., Meng Q., Yin Q., Du Y. Effects of carbon nanotube dosage and aggregate size distribution on mechanical property and microstructure of cemented rockfill. Cem. Concr. Compos. 2022;127:104408. doi: 10.1016/j.cemconcomp.2022.104408. DOI

Han X., Li G., Wang P., Chen Z., Cui D., Zhang H., Tian L., Zhou X., Jin Z., Zhao T. A new method and device for detecting rebars in concrete based on capacitance. Measurement. 2022;202:111721. doi: 10.1016/j.measurement.2022.111721. DOI

Tarbozagh A.S., Rezaifar O., Gholhaki M., Abavisani I. Magnetic enhancement of carbon nanotube concrete compressive behavior. Constr. Build. Mater. 2020;262:120772. doi: 10.1016/j.conbuildmat.2020.120772. DOI

Jongvivatsakul P., Thongchom C., Mathuros A., Prasertsri T., Adamu M., Orasutthikul S., Lenwari A., Charainpanitkul T. Enhancing bonding behavior between carbon fiber-reinforced polymer plates and concrete using carbon nanotube reinforced epoxy composites. Case Stud. Constr. Mater. 2022;17:e01407. doi: 10.1016/j.cscm.2022.e01407. DOI

Javahershenas F., Gilani M.S., Hajforoush M. Effect of magnetic field exposure time on mechanical and microstructure properties of steel fiber-reinforced concrete (SFRC) J. Build. Eng. 2021;35:101975. doi: 10.1016/j.jobe.2020.101975. DOI

Naji H.F., Khalid N.N., Alsaraj W.K., Habouh M.I., Marchetty S. Experimental investigation of flexural enhancement of RC beams with multi-walled carbon nanotubes. Case Stud. Constr. Mater. 2021;14:e00480. doi: 10.1016/j.cscm.2020.e00480. DOI

Li X., Qin Z., Zheng D., Zhang X., Li H. Reversed bond-slip model of deformed bar embedded in concrete based on ensemble learning algorithm. J. Build. Eng. 2023;68:106081. doi: 10.1016/j.jobe.2023.106081. DOI

Pang Y., Li Z., Wang Q., Qi B. Effects of the liquid rubber modified adhesive on the bond-slip response of the CFRP-steel interface. J. Build. Eng. 2023;66:105857. doi: 10.1016/j.jobe.2023.105857. DOI

Liu J., Xie X., Li L. Experimental study on mechanical properties and durability of grafted nano-SiO2 modified rice straw fiber reinforced concrete. Constr. Build. Mater. 2022;347:128575. doi: 10.1016/j.conbuildmat.2022.128575. DOI

Liu Z., Lu Y., Li S., Zong S., Yi S. Flexural behavior of steel fiber reinforced self-stressing recycled aggregate concrete-filled steel tube. J. Clean. Prod. 2020;274:122724. doi: 10.1016/j.jclepro.2020.122724. DOI

Metaxa Z.S., Seo J.-W.T., Konsta-Gdoutos M.S., Hersam M.C., Shah S.P. Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials. Cem. Concr. Compos. 2012;34:612–617. doi: 10.1016/j.cemconcomp.2012.01.006. DOI

Xu T., Bian X., Liu Z., Yang J., Zhang Z. Local bond stress–slip relationship of ribbed reinforcing bars embedded in UHPC: Experiment, modeling, and verification. J. Build. Eng. 2023;68:106122. doi: 10.1016/j.jobe.2023.106122. DOI

Hou H., Wang W., Chen Y. Cyclic behavior and mechanical model of a novel endplate connection to double-skin composite wall with slip-critical blind bolts. J. Build. Eng. 2023;63:105453. doi: 10.1016/j.jobe.2022.105453. DOI

de Alencar Monteiro V.M., Cardoso D.C.T., de Andrade Silva F. Mechanisms of fiber-matrix interface degradation under fatigue loading in steel FRC. J. Build. Eng. 2023;68:106168. doi: 10.1016/j.jobe.2023.106168. DOI

D’Alessandro A., Tiecco M., Meoni A., Ubertini F. Improved strain sensing properties of cement-based sensors through enhanced carbon nanotube dispersion. Cem. Concr. Compos. 2021;115:103842. doi: 10.1016/j.cemconcomp.2020.103842. DOI

Gupta S., Lin Y.-A., Lee H.-J., Buscheck J., Wu R., Lynch J.P., Garg N., Loh K.J. In situ crack mapping of large-scale self-sensing concrete pavements using electrical resistance tomography. Cem. Concr. Compos. 2021;122:104154. doi: 10.1016/j.cemconcomp.2021.104154. DOI

Lu D., Shi X., Zhong J. Interfacial bonding between graphene oxide coated carbon nanotube fiber and cement paste matrix. Cem. Concr. Compos. 2022;134:104802. doi: 10.1016/j.cemconcomp.2022.104802. DOI

Wang L., Song Y., Han Q., Wang Z. Experimental investigation on the dynamic behavior of grouted splice sleeve connector under fast tensile loading. J. Build. Eng. 2023;66:105927. doi: 10.1016/j.jobe.2023.105927. DOI

Dong W., Li W., Wang K., Han B., Sheng D., Shah S.P. Investigation on physicochemical and piezoresistive properties of smart MWCNT/cementitious composite exposed to elevated temperatures. Cem. Concr. Compos. 2020;112:103675. doi: 10.1016/j.cemconcomp.2020.103675. DOI

Pourzahedi L., Zhai P., Isaacs J.A., Eckelman M.J. Life cycle energy benefits of carbon nanotubes for electromagnetic interference (EMI) shielding applications. J. Clean. Prod. 2017;142:1971–1978. doi: 10.1016/j.jclepro.2016.11.087. DOI

Karayannis C.G., Chalioris C.E., Angeli G.M., Papadopoulos N.A., Favvata M.J., Providakis C.P. Experimental damage evaluation of reinforced concrete steel bars using piezoelectric sensors. Constr. Build. Mater. 2016;105:227–244. doi: 10.1016/j.conbuildmat.2015.12.019. DOI

Wang X., Hu S., Li W., Qi H., Xue X. Use of numerical methods for identifying the number of wire breaks in prestressed concrete cylinder pipe by piezoelectric sensing technology. Constr. Build. Mater. 2021;268:121207. doi: 10.1016/j.conbuildmat.2020.121207. DOI

Frankowski P.K., Chady T., Zieliński A. Magnetic force induced vibration evaluation (M5) method for frequency analysis of rebar-debonding in reinforced concrete. Measurement. 2021;182:109655. doi: 10.1016/j.measurement.2021.109655. DOI

Feng Q., Liang Y. Development of piezoelectric-based technology for application in civil structural health monitoring. Earthq. Res. Adv. 2022;3:100154. doi: 10.1016/j.eqrea.2022.100154. DOI

Xu D., Banerjee S., Wang Y., Huang S., Cheng X. Temperature and loading effects of embedded smart piezoelectric sensor for health monitoring of concrete structures. Constr. Build. Mater. 2015;76:187–193. doi: 10.1016/j.conbuildmat.2014.11.067. DOI

Ai D., Du L., Li H., Zhu H. Corrosion damage identification for reinforced concrete beam using embedded piezoelectric transducer: Numerical simulation. Measurement. 2022;192:110925. doi: 10.1016/j.measurement.2022.110925. DOI

Zhang H., Li J., Kang F., Zhang J. Monitoring and evaluation of the repair quality of concrete cracks using piezoelectric smart aggregates. Constr. Build. Mater. 2022;317:125775. doi: 10.1016/j.conbuildmat.2021.125775. DOI

Li K., Li Y., Dong P., Wang Z., Dou T., Ning J., Dong X., Si Z. Pressure test of a prestressed concrete cylinder pipe using distributed fiber optic sensors: Instrumentation and results. Eng. Struct. 2022;270:114835. doi: 10.1016/j.engstruct.2022.114835. DOI

Bai H., Guo D., Wang W., Tan X., Yan M., Chen G., Bao Y. Experimental investigation on flexural behavior of steel-concrete composite floor slabs with distributed fiber optic sensors. J. Build. Eng. 2022;54:104668. doi: 10.1016/j.jobe.2022.104668. DOI

Li K., Li Y., Dong P., Wang Z., Dou T., Ning J., Dong X., Si Z., Wang J. Mechanical properties of prestressed concrete cylinder pipe with broken wires using distributed fiber optic sensors. Eng. Fail. Anal. 2022;141:106635. doi: 10.1016/j.engfailanal.2022.106635. DOI

Fan L., Bao Y. Review of fiber optic sensors for corrosion monitoring in reinforced concrete. Cem. Concr. Compos. 2021;120:104029. doi: 10.1016/j.cemconcomp.2021.104029. DOI

Dong W., Li W., Guo Y., Qu F., Wang K., Sheng D. Piezoresistive performance of hydrophobic cement-based sensors under moisture and chloride-rich environments. Cem. Concr. Compos. 2022;126:104379. doi: 10.1016/j.cemconcomp.2021.104379. DOI

Dong X., Dou T., Dong P., Wang Z., Li Y., Ning J., Wei J., Li K., Cheng B. Failure experiment and calculation model for prestressed concrete cylinder pipe under three-edge bearing test using distributed fiber optic sensors. Tunn. Undergr. Space Technol. 2022;129:104682. doi: 10.1016/j.tust.2022.104682. DOI

Tan X., Abu-Obeidah A., Bao Y., Nassif H., Nasreddine W. Measurement and visualization of strains and cracks in CFRP post-tensioned fiber reinforced concrete beams using distributed fiber optic sensors. Autom. Constr. 2021;124:103604. doi: 10.1016/j.autcon.2021.103604. DOI

Kim D., Kim R., Min J., Choi H. Initial freeze–thaw damage detection in concrete using two-dimensional non-contact ultrasonic sensors. Constr. Build. Mater. 2023;364:129854. doi: 10.1016/j.conbuildmat.2022.129854. DOI

Wolf J., Pirskawetz S., Zang A. Detection of crack propagation in concrete with embedded ultrasonic sensors. Eng. Fract. Mech. 2015;146:161–171. doi: 10.1016/j.engfracmech.2015.07.058. DOI

Yuan L., Zhou L., Jin W. Long-gauge length embedded fiber optic ultrasonic sensor for large-scale concrete structures. Opt. Laser Technol. 2004;36:11–17. doi: 10.1016/S0030-3992(03)00123-3. DOI

Song H., Feldman S.B., Popovics J.S. In situ detection and characterization of alkali-silica reaction damage in concrete using contactless ultrasonic wavefield imaging. Cem. Concr. Compos. 2022;133:104661. doi: 10.1016/j.cemconcomp.2022.104661. DOI

Lefever G., Charkieh A.S., Abbass M., Van Hemelrijck D., Snoeck D., Aggelis D.G. Ultrasonic evaluation of self-healing cementitious materials with superabsorbent polymers: Mortar vs. concrete. Dev. Built Environ. 2023;13:100112. doi: 10.1016/j.dibe.2022.100112. DOI

Cheng W., Fan Z., Tan K.H. Characterisation of corrosion-induced crack in concrete using ultrasonic diffuse coda wave. Ultrasonics. 2023;128:106883. doi: 10.1016/j.ultras.2022.106883. PubMed DOI

Ge L., Li Q., Wang Z., Li Q., Lu C., Dong D., Wang H. High-resolution ultrasonic imaging technology for the damage of concrete structures based on total focusing method. Comput. Electr. Eng. 2023;105:108526. doi: 10.1016/j.compeleceng.2022.108526. DOI

Lee S.-J., Ahn D., You I., Yoo D.-Y., Kang Y.-S. Wireless cement-based sensor for self-monitoring of railway concrete infrastructures. Autom. Constr. 2020;119:103323. doi: 10.1016/j.autcon.2020.103323. DOI

Abner M., Wong P.K.-Y., Cheng J.C.P. Battery lifespan enhancement strategies for edge computing-enabled wireless Bluetooth mesh sensor network for structural health monitoring. Autom. Constr. 2022;140:104355. doi: 10.1016/j.autcon.2022.104355. DOI

Li J., Sun G., Wang A., Lei M., Liang S., Kang H., Liu Y. A many-objective optimization charging scheme for wireless rechargeable sensor networks via mobile charging vehicles. Comput. Netw. 2022;215:109196. doi: 10.1016/j.comnet.2022.109196. DOI

Siringoringo D.M., Fujino Y., Suzuki M. Long-term continuous seismic monitoring of multi-span highway bridge and evaluation of bearing condition by wireless sensor network. Eng. Struct. 2023;276:115372. doi: 10.1016/j.engstruct.2022.115372. DOI

Janků M., Cikrle P., Grošek J., Anton O., Stryk J. Comparison of infrared thermography, ground-penetrating radar and ultrasonic pulse echo for detecting delaminations in concrete bridges. Constr. Build. Mater. 2019;225:1098–1111. doi: 10.1016/j.conbuildmat.2019.07.320. DOI

Zhao H., Li J., Wang R., Lam D., Zhang Y. Study on interfacial bond behavior of recycled aggregate concrete filled stainless steel tubes (RAC-FSST) Constr. Build. Mater. 2021;313:125532. doi: 10.1016/j.conbuildmat.2021.125532. DOI

Song J., Wang W., Su S., Wang B., Li Y., Lu Z. Experimental investigation of the bond-slip behaviour between corrugated steel plates and concrete in CSRC structures. Constr. Build. Mater. 2021;299:124315. doi: 10.1016/j.conbuildmat.2021.124315. DOI

Ahmed K.S., Shahjalal M., Siddique T.A., Keng A.K. Bond strength of post-installed high strength deformed rebar in concrete. Case Stud. Constr. Mater. 2021;15:e00581. doi: 10.1016/j.cscm.2021.e00581. DOI

Jiang S.-F., Wang J., Tong S.-Y., Ma S.-L., Tuo M.-B., Li W.-J. Damage monitoring of concrete laminated interface using piezoelectric-based smart aggregate. Eng. Struct. 2021;228:111489. doi: 10.1016/j.engstruct.2020.111489. DOI

Bansal T., Talakokula V., Sathujoda P. Durability aspects of blended concrete systems subjected to combined mechanical and environmental loading using piezo sensor. Constr. Build. Mater. 2022;348:128613. doi: 10.1016/j.conbuildmat.2022.128613. DOI

Ramani V., Kuang K.S.C. Monitoring of rebar corrosion in concrete structures using a lens-based plastic optical fiber (LPOF) sensor. Constr. Build. Mater. 2021;276:122129. doi: 10.1016/j.conbuildmat.2020.122129. DOI

Ramani V., Zhang L., Kuang K.S.C. Probabilistic assessment of time to cracking of concrete cover due to corrosion using semantic segmentation of imaging probe sensor data. Autom. Constr. 2021;132:103963. doi: 10.1016/j.autcon.2021.103963. DOI

Bansal T., Talakokula V., Saravanan T.J. Monitoring of prestressed concrete beam under corrosion using embedded piezo sensor based on electro-mechanical impedance technique. Sci. Talks. 2022;4:100095. doi: 10.1016/j.sctalk.2022.100095. DOI

Ahmadi J., Feirahi M.H., Farahmand-Tabar S., Fard A.H.K. A novel approach for non-destructive EMI-based corrosion monitoring of concrete-embedded reinforcements using multi-orientation piezoelectric sensors. Constr. Build. Mater. 2021;273:121689. doi: 10.1016/j.conbuildmat.2020.121689. DOI

Fu C., Huang J., Dong Z., Yan W., Gu X.-L. Experimental and numerical study of an electromagnetic sensor for non-destructive evaluation of steel corrosion in concrete. Sens. Actuators A Phys. 2020;315:112371. doi: 10.1016/j.sna.2020.112371. DOI

Li Z., Jin Z., Gao Y., Zhao T., Wang P., Li Z. Coupled application of innovative electromagnetic sensors and digital image correlation technique to monitor corrosion process of reinforced bars in concrete. Cem. Concr. Compos. 2020;113:103730. doi: 10.1016/j.cemconcomp.2020.103730. DOI

Chang C.-Y., Hung S.-S. Implementing RFIC and sensor technology to measure temperature and humidity inside concrete structures. Constr. Build. Mater. 2012;26:628–637. doi: 10.1016/j.conbuildmat.2011.06.066. DOI

Mahapatra C.K., Barai S.V. Temperature impact on residual properties of self-compacting based hybrid fiber reinforced concrete with fly ash and colloidal nano silica. Constr. Build. Mater. 2019;198:120–132. doi: 10.1016/j.conbuildmat.2018.11.155. DOI

Huang B., Wang J., Piukovics G., Zabihi N., Ye J., Saafi M., Ye J. Hybrid cement composite-based sensor for in-situ chloride monitoring in concrete structures. Sens. Actuators B Chem. 2023;385:133638. doi: 10.1016/j.snb.2023.133638. DOI

Du Z., Wang P., Chen Z., Cui D., Jin Z., Zhang H. All-solid-state; long term stable, and embedded pH sensor for corrosion monitoring of concrete. J. Build. Eng. 2022;57:104978. doi: 10.1016/j.jobe.2022.104978. DOI

Li Z., Jin Z., Xu X., Zhao T., Wang P., Li Z. Combined application of novel electromagnetic sensors and acoustic emission apparatus to monitor corrosion process of reinforced bars in concrete. Constr. Build. Mater. 2020;245:118472. doi: 10.1016/j.conbuildmat.2020.118472. DOI

Kim J., Luis R., Smith M.S., Figueroa J.A., Malocha D.C., Nam B.H. Concrete temperature monitoring using passive wireless surface acoustic wave sensor system. Sens. Actuators A Phys. 2015;224:131–139. doi: 10.1016/j.sna.2015.01.028. DOI

Zou X., Chao A., Tian Y., Wu N., Zhang H., Yu T.-Y., Wang X. An experimental study on the concrete hydration process using Fabry–Perot fiber optic temperature sensors. Measurement. 2012;45:1077–1082. doi: 10.1016/j.measurement.2012.01.034. DOI

Górriz B.T., Payá-Zaforteza I., García P.A.C., Maicas S.S. New fiber optic sensor for monitoring temperatures in concrete structures during fires. Sens. Actuators A Phys. 2017;254:116–125. doi: 10.1016/j.sna.2016.12.013. DOI

Wong A.C.L., Childs P.A., Berndt R., Macken T., Peng G.-D., Gowripalan N. Simultaneous measurement of shrinkage and temperature of reactive powder concrete at early-age using fibre Bragg grating sensors. Cem. Concr. Compos. 2007;29:490–497. doi: 10.1016/j.cemconcomp.2007.02.003. DOI

Dong W., Li W., Tao Z., Wang K. Piezoresistive properties of cement-based sensors: Review and perspective. Constr. Build. Mater. 2019;203:146–163. doi: 10.1016/j.conbuildmat.2019.01.081. DOI

Norris A., Saafi M., Romine P. Temperature and moisture monitoring in concrete structures using embedded nanotechnology/microelectromechanical systems (MEMS) sensors. Constr. Build. Mater. 2008;22:111–120. doi: 10.1016/j.conbuildmat.2006.05.047. DOI

Gaibor N., Mateus R., Leitão D., Cristelo N., Miranda T., Pereira E.N.B., Cunha V.M.C.F. Sustainability assessment of half-sandwich panels based on alkali-activated ceramic/slag wastes cement versus conventional building solutions. J. Clean. Prod. 2023;389:136108. doi: 10.1016/j.jclepro.2023.136108. DOI

Yuan L., Jin W., Zhou L., Lau K. The temperature characteristic of fiber-optic pre-embedded concrete bar sensor. Sens. Actuators A Phys. 2001;93:206–213. doi: 10.1016/S0924-4247(01)00657-4. DOI

Jeong H., Jung B.J., Kim J.H., Seo S.-Y., Yun H., Kim K.S. Development and assessment of Nile blue-immobilized pH sensor to monitor the early stage of concrete carbonation. J. Build. Eng. 2022;62:105319. doi: 10.1016/j.jobe.2022.105319. DOI

Qasim M., Lee C.K., Zhang Y.X. An experimental study on interfacial bond strength between hybrid engineered cementitious composite and concrete. Constr. Build. Mater. 2022;356:129299. doi: 10.1016/j.conbuildmat.2022.129299. DOI

Fernandez I., Berrocal C.G., Rempling R. Two-dimensional strain field analysis of reinforced concrete D-regions based on distributed optical fibre sensors. Eng. Struct. 2023;278:115562. doi: 10.1016/j.engstruct.2022.115562. DOI

Yang Z., Chen Q., Li X., Chen H., Wang Z., Huang R., Kong Q. Crack identification in concrete structures using implantable sensors. Measurement. 2022;202:111780. doi: 10.1016/j.measurement.2022.111780. DOI

Singh I., Dev N., Pal S. Impedance based damage assessment of concrete under the combined effect of impact and temperature using different piezo configurations. Sens. Actuators A Phys. 2022;345:113763. doi: 10.1016/j.sna.2022.113763. DOI

Ai D., Yang Z., Li H., Zhu H. Heating-time effect on electromechanical admittance of surface-bonded PZT sensor for concrete structural monitoring. Measurement. 2021;184:109992. doi: 10.1016/j.measurement.2021.109992. DOI

Li Z., Hou G., Hu T., Zhou T., Xiao H. Study on establishing and testing for strain transfer model of distributed optical fiber sensor in concrete structures. Opt. Fiber Technol. 2021;61:102430. doi: 10.1016/j.yofte.2020.102430. DOI

Zheng Z., Ji H., Zhang Y., Cai J., Mo C. High-entropy (Ca0.5Ce0.5)(Nb0.25Ta0.25Mo0.25W0.25)O4 scheelite ceramics with high-temperature negative temperature coefficient (NTC) property for thermistor materials. Solid State Ion. 2022;377:115872. doi: 10.1016/j.ssi.2022.115872. DOI

Fulham-Lebrasseur R., Sorelli L., Conciatori D. Prefabricated electrically conductive concrete (ECC) slabs with optimized electrode configuration and integrated sensor system. Cold Reg. Sci. Technol. 2022;193:103417. doi: 10.1016/j.coldregions.2021.103417. DOI

Compaoré A., Sawadogo M., Sawadogo Y., Ouedraogo M., Sorgho B., Seynou M., Blanchart P., Zerbo L. Preparation and characterization of foamed concrete using a foaming agent and local mineral resources from Burkina Faso. Results Mater. 2023;17:100365. doi: 10.1016/j.rinma.2023.100365. DOI

Zuo Z., Huang Y., Pan X., Zhan Y., Zhang L., Li X., Zhu M., Zhang L., De Corte W. Experimental research on remote real-time monitoring of concrete strength for highrise building machine during construction. Measurement. 2021;178:109430. doi: 10.1016/j.measurement.2021.109430. DOI

Keo S.A., Brachelet F., Breaban F., Defer D. Steel detection in reinforced concrete wall by microwave infrared thermography. NDT E Int. 2014;62:172–177. doi: 10.1016/j.ndteint.2013.12.002. DOI

Khan F., Bolhassani M., Kontsos A., Hamid A., Bartoli I. Modeling and experimental implementation of infrared thermography on concrete masonry structures. Infrared Phys. Technol. 2015;69:228–237. doi: 10.1016/j.infrared.2015.02.001. DOI

Lian S., Zheng k., Zhao Y., Bi J., Wang C., Huang Y.S. Investigation the effect of freeze–thaw cycle on fracture mode classification in concrete based on acoustic emission parameter analysis. Constr. Build. Mater. 2023;362:129789. doi: 10.1016/j.conbuildmat.2022.129789. DOI

Hiasa S., Birgul R., Matsumoto M., Catbas F.N. Experimental and numerical studies for suitable infrared thermography implementation on concrete bridge decks. Measurement. 2018;121:144–159. doi: 10.1016/j.measurement.2018.02.019. DOI

Pedram M., Taylor S., Hamill G., Robinson D., OBrien E.J., Uddin N. Experimental evaluation of heat transition mechanism in concrete with subsurface defects using infrared thermography. Constr. Build. Mater. 2022;360:129531. doi: 10.1016/j.conbuildmat.2022.129531. DOI

Gu J., Unjoh S. Image processing methodology for detecting delaminations using infrared thermography in CFRP-jacketed concrete members by infrared thermography. Compos. Struct. 2021;270:114040. doi: 10.1016/j.compstruct.2021.114040. DOI

Liu F., Liu J., Wang L. Asphalt pavement fatigue crack severity classification by infrared thermography and deep learning. Autom. Constr. 2022;143:104575. doi: 10.1016/j.autcon.2022.104575. DOI

Cotič P., Kolarič D., Bosiljkov V.B., Bosiljkov V., Jagličić Z. Determination of the applicability and limits of void and delamination detection in concrete structures using infrared thermography. NDT E Int. 2015;74:87–93. doi: 10.1016/j.ndteint.2015.05.003. DOI

Barreira E., Almeida R.M.S.F., Ferreira J.P.B. Assessing the humidification process of lightweight concrete specimens through infrared thermography. Energy Procedia. 2017;132:213–218. doi: 10.1016/j.egypro.2017.09.757. DOI

Gu J.-C., Unjoh S., Naito H. Detectability of delamination regions using infrared thermography in concrete members strengthened by CFRP jacketing. Compos. Struct. 2020;245:112328. doi: 10.1016/j.compstruct.2020.112328. DOI

Ichi E., Dorafshan S. Effectiveness of infrared thermography for delamination detection in reinforced concrete bridge decks. Autom. Constr. 2022;142:104523. doi: 10.1016/j.autcon.2022.104523. DOI

Woldeamanuel M.M., Kim T., Cho S., Kim H.-K. Estimation of concrete strength using thermography integrated with deep-learning-based image segmentation: Case studies and economic analysis. Expert Syst. Appl. 2023;213:119249. doi: 10.1016/j.eswa.2022.119249. DOI

Yumnam M., Gupta H., Ghosh D., Jaganathan J. Inspection of concrete structures externally reinforced with FRP composites using active infrared thermography: A review. Constr. Build. Mater. 2021;310:125265. doi: 10.1016/j.conbuildmat.2021.125265. DOI

Kulkarni N.N., Dabetwar S., Benoit J., Yu T., Sabato A. Comparative analysis of infrared thermography processing techniques for roadways’ sub-pavement voids detection. NDT E Int. 2022;129:102652. doi: 10.1016/j.ndteint.2022.102652. DOI

Mahmoodzadeh M., Gretka V., Mukhopadhyaya P. Challenges and opportunities in quantitative aerial thermography of building envelopes. J. Build. Eng. 2023;69:106214. doi: 10.1016/j.jobe.2023.106214. DOI

Xie L., Zhu X., Liu Z., Liu X., Wang T., Xing J. A rebar corrosion sensor embedded in concrete based on surface acoustic wave. Measurement. 2020;165:108118. doi: 10.1016/j.measurement.2020.108118. DOI

Pour-Ghaz M., Kim J., Nadukuru S.S., O’Connor S.M., Michalowski R.L., Bradshaw A.S., Green R.A., Lynch J.P., Poursaee A., Weiss W.J. Using electrical, magnetic and acoustic sensors to detect damage in segmental concrete pipes subjected to permanent ground displacement. Cem. Concr. Compos. 2011;33:749–762. doi: 10.1016/j.cemconcomp.2011.04.004. DOI

Guo R., Liu F., Zhang X., Zhao Y., Huang S., Lin X., Yang C. Feasibility evaluation of the development of type 1-3 acoustic emission sensors for health monitoring of large bridge structures. Ceram. Int. 2023;49:14645–14654. doi: 10.1016/j.ceramint.2023.01.055. DOI

Liu X., Feng X. A near-wall acoustic wave-based localization method for broken wires in a large diameter PCCP using an FBG sensor array. Measurement. 2022;205:112154. doi: 10.1016/j.measurement.2022.112154. DOI

Hamdi S.E., Sbartaï Z.-M., Boniface A., Saliba J., Henault J.-M. Pressure-induced damage monitoring in prestressed concrete of nuclear containment wall segments using acoustic emission technique—Application to VeRCoRs containment building. Eng. Fract. Mech. 2023;281:109089. doi: 10.1016/j.engfracmech.2023.109089. DOI

Liu F., Guo R., Lin X., Zhang X., Huang S., Yang F., Cheng X. Monitoring the damage evolution of reinforced concrete during tunnel boring machine hoisting by acoustic emission. Constr. Build. Mater. 2022;327:127000. doi: 10.1016/j.conbuildmat.2022.127000. DOI

Yue J.G., Beskos D.E., Feng C., Wu K. Hardened fracture characteristics of printed concrete using acoustic emission monitoring technique. Constr. Build. Mater. 2022;361:129684. doi: 10.1016/j.conbuildmat.2022.129684. DOI

Deng H.-S., Fu H.-L., Zhao Y.-B., Shi Y., Huang X. Using acoustic emission parameters to study damage and fracture characteristics of concrete with different pour intervals cold joints. Theor. Appl. Fract. Mech. 2022;122:103601. doi: 10.1016/j.tafmec.2022.103601. DOI

Hou Y., Sun M., Chen J. Electrical resistance and capacitance responses of smart ultra-high performance concrete with compressive strain by DC and AC measurements. Constr. Build. Mater. 2022;327:127007. doi: 10.1016/j.conbuildmat.2022.127007. DOI

Alrousan R.Z., Alnemrawi B.R. Punching shear behavior of FRP reinforced concrete slabs under different opening configurations and loading conditions. Case Stud. Constr. Mater. 2022;17:e01508. doi: 10.1016/j.cscm.2022.e01508. DOI

Fan L., Bao Y., Meng W., Chen G. In-situ monitoring of corrosion-induced expansion and mass loss of steel bar in steel fiber reinforced concrete using a distributed fiber optic sensor. Compos. Part B Eng. 2019;165:679–689. doi: 10.1016/j.compositesb.2019.02.051. DOI

Kesavan K., Ravisankar K., Parivallal S., Sreeshylam P., Sridhar S. Experimental studies on fiber optic sensors embedded in concrete. Measurement. 2010;43:157–163. doi: 10.1016/j.measurement.2009.08.010. DOI

Hong W., Jiang Y., Li B., Qin Z., Hu X. Nonlinear parameter identification of timber-concrete composite beams using long-gauge fiber optic sensors. Constr. Build. Mater. 2018;164:217–227. doi: 10.1016/j.conbuildmat.2017.12.211. DOI

Nguyen T.H., Venugopala T., Chen S., Sun T., Grattan K.T.V., Taylor S.E., Basheer P.A.M., Long A.E. Fluorescence based fibre optic pH sensor for the pH 10–13 range suitable for corrosion monitoring in concrete structures. Sens. Actuators B Chem. 2014;191:498–507. doi: 10.1016/j.snb.2013.09.072. DOI

Uva G., Porco F., Fiore A., Porco G. Structural monitoring using fiber optic sensors of a pre-stressed concrete viaduct during construction phases. Case Stud. Nondestruct. Test. Eval. 2014;2:27–37. doi: 10.1016/j.csndt.2014.06.002. DOI

Liu Y., Bao Y. Automatic interpretation of strain distributions measured from distributed fiber optic sensors for crack monitoring. Measurement. 2023;211:112629. doi: 10.1016/j.measurement.2023.112629. DOI

Aulakh D.S., Bhalla S. 3D torsional experimental strain modal analysis for structural health monitoring using piezoelectric sensors. Measurement. 2021;180:109476. doi: 10.1016/j.measurement.2021.109476. DOI

Wang J., Cao Y., Xiang H., Zhang Z., Liang J., Li X., Ding D., Li T., Tang L. A piezoelectric smart backing ring for high-performance power generation subject to train induced steel-spring fulcrum forces. Energy Convers. Manag. 2022;257:115442. doi: 10.1016/j.enconman.2022.115442. DOI

Liu X., Yu Y., Li J., Zhu J., Wang Y., Qing X. Leaky Lamb wave–based resin impregnation monitoring with noninvasive and integrated piezoelectric sensor network. Measurement. 2022;189:110480. doi: 10.1016/j.measurement.2021.110480. DOI

Miao S., Gao L., Tong F., Zhong Y. Research on high precision optical fiber acoustic emission system for weak damage location on concrete. Constr. Build. Mater. 2022;347:128331. doi: 10.1016/j.conbuildmat.2022.128331. DOI

Demircilioğlu E., Teomete E., Schlangen E., Baeza F.J. Temperature and moisture effects on electrical resistance and strain sensitivity of smart concrete. Constr. Build. Mater. 2019;224:420–427. doi: 10.1016/j.conbuildmat.2019.07.091. DOI

Bouzaffour K., Lescop B., Talbot P., Nguyen-Vien G., Gallée F., Rioual S. Decoupling free chloride and water ingress in concrete by a dielectric resonant sensor. Constr. Build. Mater. 2023;372:130806. doi: 10.1016/j.conbuildmat.2023.130806. DOI

He S., He J., Guo X., Ueda T., Wang Y. Detection of CFRP-concrete interfacial defects by using electrical measurement. Compos. Struct. 2022;295:115843. doi: 10.1016/j.compstruct.2022.115843. DOI

Priou J., Lecieux Y., Chevreuil M., Gaillard V., Lupi C., Leduc D., Rozière E., Guyard R., Schoefs F. In situ DC electrical resistivity mapping performed in a reinforced concrete wharf using embedded sensors. Constr. Build. Mater. 2019;211:244–260. doi: 10.1016/j.conbuildmat.2019.03.152. DOI

Jiang B., Wu S. Resistance measurement for monitoring bending cracks in steel fiber concrete beams test. Alex. Eng. J. 2023;66:691–699. doi: 10.1016/j.aej.2022.10.074. DOI

Tafesse M., Alemu A.S., Lee H.K., Cho C.-G., Kim H.-K. Effect of chloride penetration on electrical resistivity of CNT–CF/cement composites and its application as chloride sensor for reinforced mortar. Cem. Concr. Compos. 2022;133:104662. doi: 10.1016/j.cemconcomp.2022.104662. DOI

Jiao W., Sha A., Liu Z., Jiang W., Hu L., Qin W. Analytic investigations of snow melting efficiency and temperature field of thermal conductive asphalt concrete combined with electrical-thermal system. J. Clean. Prod. 2023;399:136622. doi: 10.1016/j.jclepro.2023.136622. DOI

Zhang J., Heath A., Abdalgadir H.M.T., Ball R.J., Paine K. Electrical impedance behaviour of carbon fibre reinforced cement-based sensors at different moisture contents. Constr. Build. Mater. 2022;353:129049. doi: 10.1016/j.conbuildmat.2022.129049. DOI

Pei H., Li Z., Zhang B., Ma H. Multipoint measurement of early age shrinkage in low w/c ratio mortars by using fiber Bragg gratings. Mater. Lett. 2014;131:370–372. doi: 10.1016/j.matlet.2014.05.202. DOI

Zhang J., Liu C., Sun M., Li Z. An innovative corrosion evaluation technique for reinforced concrete structures using magnetic sensors. Constr. Build. Mater. 2017;135:68–75. doi: 10.1016/j.conbuildmat.2016.12.157. DOI

Davis A.M., Mirsayar M.M., Hartl D.J. A novel structural health monitoring approach in concrete structures using embedded magnetic shape memory alloy components. Constr. Build. Mater. 2021;311:125212. doi: 10.1016/j.conbuildmat.2021.125212. DOI

Tran D.A., Shen X., Sorelli L., Ftima M.B., Brühwiler E. Predicting the effect of non-uniform fiber distribution on the tensile response of ultra-high-performance fiber reinforced concrete by magnetic inductance-based finite element analysis. Cem. Concr. Compos. 2023;135:104810. doi: 10.1016/j.cemconcomp.2022.104810. DOI

Alabi D.J., Voss M., Ferraro C.C., Riding K., Harley J.B. Electromagnetic method field test for characterizing steel fibers in ultra-high performance concrete (UHPC) Constr. Build. Mater. 2023;374:130873. doi: 10.1016/j.conbuildmat.2023.130873. DOI

Li Z., Jin Z., Zhao T., Wang P., Li Z., Xiong C., Zhang K. Use of a novel electro-magnetic apparatus to monitor corrosion of reinforced bar in concrete. Sens. Actuators A Phys. 2019;286:14–27. doi: 10.1016/j.sna.2018.12.024. DOI

Xie Z., Zhang D., Ueda T., Jin W. Fatigue damage analysis of prefabricated concrete composite beams based on metal magnetic memory technique. J. Magn. Magn. Mater. 2022;544:168722. doi: 10.1016/j.jmmm.2021.168722. DOI

Yang Z., Li Y., Sang X., Ding Y., Ma B., Chen Q., Kong Q. Concrete implantable bar enabled smart sensing technology for structural health monitoring. Cem. Concr. Compos. 2023;139:105035. doi: 10.1016/j.cemconcomp.2023.105035. DOI

Loubet G., Sidibe A., Takacs A., Dragomirescu D. Autonomous Wireless Sensors Network for the Implementation of a Cyber-Physical System Monitoring Reinforced Concrete Civil Engineering Structures. IFAC-PapersOnLine. 2022;55:19–24. doi: 10.1016/j.ifacol.2022.08.004. PubMed DOI

Chen J., Li P., Song G., Ren Z. Piezo-based wireless sensor network for early-age concrete strength monitoring. Optik. 2016;127:2983–2987. doi: 10.1016/j.ijleo.2015.11.170. DOI

Barroca N., Borges L.M., Velez F.J., Monteiro F., Górski M., Castro-Gomes J. Wireless sensor networks for temperature and humidity monitoring within concrete structures. Constr. Build. Mater. 2013;40:1156–1166. doi: 10.1016/j.conbuildmat.2012.11.087. DOI

Liu G. A Q-Learning-based distributed routing protocol for frequency-switchable magnetic induction-based wireless underground sensor networks. Future Gener. Comput. Syst. 2023;139:253–266. doi: 10.1016/j.future.2022.10.004. DOI

Siha A., Zhou C. Experimental study and numerical analysis of composite strengthened timber columns under lateral cyclic loading. J. Build. Eng. 2023;67:106077. doi: 10.1016/j.jobe.2023.106077. DOI

Soltanzadeh F., Edalat-Behbahani A., Pereira E.N.B. Bond behavior of recycled tyre steel fiber reinforced concrete and basalt fiber-reinforced polymer bars under static and fatigue loading conditions. J. Build. Eng. 2023;70:106291. doi: 10.1016/j.jobe.2023.106291. DOI

Liu C., Wei Y. Experimental study on interface performance between implantable cement-based sensor and matrix concrete. Constr. Build. Mater. 2022;345:128316. doi: 10.1016/j.conbuildmat.2022.128316. DOI

Gao D., Chen X., Chen G., Zhang L., Zhan Z. Shear-bond behaviour between concrete and hybrid fibre-reinforced cementitious composites for repairing: Experimental and modelling. J. Build. Eng. 2023;64:105636. doi: 10.1016/j.jobe.2022.105636. DOI

Cheng S., He H., Chen Y., Lan B. Capacity prediction and crack width calculation of RC beam strengthened with textile and modified concrete. J. Build. Eng. 2023;69:106261. doi: 10.1016/j.jobe.2023.106261. DOI

Ma J., Bai G., Ma H., Bai X., Ni T. Beam-type experimental study on interfacial bond-slip behavior of steel reinforcement recycled concrete. Constr. Build. Mater. 2022;351:128888. doi: 10.1016/j.conbuildmat.2022.128888. DOI

Li P., Zeng J., Li W., Zhao Y. Effect of concrete heterogeneity on interfacial bond behavior of externally bonded FRP-to-concrete joints. Constr. Build. Mater. 2022;359:129483. doi: 10.1016/j.conbuildmat.2022.129483. DOI

Pang Y., Wu G., Wang H., Liu Y. Interfacial bond-slip degradation relationship between CFRP plate and steel plate under freeze-thaw cycles. Constr. Build. Mater. 2019;214:242–253. doi: 10.1016/j.conbuildmat.2019.04.114. DOI

Bai G., Ma J., Liu B., Chen X. Study on the interfacial bond slip constitutive relation of I-section steel and fully recycled aggregate concrete. Constr. Build. Mater. 2020;238:117688. doi: 10.1016/j.conbuildmat.2019.117688. DOI

Liu W., Liu C., Liu M., Xu F., Li Z. Investigation on interfacial properties and calculation models of bamboo scrimber-to-concrete bonding joint. Constr. Build. Mater. 2021;313:125530. doi: 10.1016/j.conbuildmat.2021.125530. DOI

Ding Y., Liu J.-P., Yao G., Wei W., Mao W.-H. Cyclic bond behavior and bond stress-slip constitutive model of rebar embedded in hybrid fiber reinforced strain-hardening cementitious composites. Constr. Build. Mater. 2023;369:130582. doi: 10.1016/j.conbuildmat.2023.130582. DOI

Ramanathan S., Benzecry V., Suraneni P., Nanni A. Condition assessment of concrete and glass fiber reinforced polymer (GFRP) rebar after 18 years of service life. Case Stud. Constr. Mater. 2021;14:e00494. doi: 10.1016/j.cscm.2021.e00494. DOI

Liu M., Cheng X., Li X., Hu J., Pan Y., Jin Z. Indoor accelerated corrosion test and marine field test of corrosion-resistant low-alloy steel rebars. Case Stud. Constr. Mater. 2016;5:87–99. doi: 10.1016/j.cscm.2016.09.005. DOI

Soltani A., Nasserasadi K., Ahmadi J., Tafakori E. Empirical assessment and refinement of corrosion distribution models in the perimeter of corroded steel rebar subjected to chloride ions attack. Case Stud. Constr. Mater. 2022;17:e01398. doi: 10.1016/j.cscm.2022.e01398. DOI

Li J., Yang E.-H. Macroscopic and microstructural properties of engineered cementitious composites incorporating recycled concrete fines. Cem. Concr. Compos. 2017;78:33–42. doi: 10.1016/j.cemconcomp.2016.12.013. DOI

Han X., Wang P., Cui D., Tawfik T.A., Chen Z., Tian L., Gao Y. Rebar corrosion detection in concrete based on capacitance principle. Measurement. 2023;209:112526. doi: 10.1016/j.measurement.2023.112526. DOI

Fan L., Tan X., Zhang Q., Meng W., Chen G., Bao Y. Monitoring corrosion of steel bars in reinforced concrete based on helix strains measured from a distributed fiber optic sensor. Eng. Struct. 2020;204:110039. doi: 10.1016/j.engstruct.2019.110039. DOI

Ye C., Butler L.J., Elshafie M.Z.E.B., Middleton C.R. Evaluating prestress losses in a prestressed concrete girder railway bridge using distributed and discrete fibre optic sensors. Constr. Build. Mater. 2020;247:118518. doi: 10.1016/j.conbuildmat.2020.118518. DOI

Liao W., Zhuang Y., Zeng C., Deng W., Huang J., Ma H. Fiber optic sensors enabled monitoring of thermal curling of concrete pavement slab: Temperature, strain and inclination. Measurement. 2020;165:108203. doi: 10.1016/j.measurement.2020.108203. DOI

Li Q., Yuan L., Ansari F. Model for measurement of thermal expansion coefficient of concrete by fiber optic sensor. Int. J. Solids Struct. 2002;39:2927–2937. doi: 10.1016/S0020-7683(02)00248-2. DOI

Pan H.H., Huang M.-W. Piezoelectric cement sensor-based electromechanical impedance technique for the strength monitoring of cement mortar. Constr. Build. Mater. 2020;254:119307. doi: 10.1016/j.conbuildmat.2020.119307. DOI

Guo Y., Li W., Dong W., Luo Z., Qu F., Yang F., Wang K. Self-sensing performance of cement-based sensor with carbon black and polypropylene fibre subjected to different loading conditions. J. Build. Eng. 2022;59:105003. doi: 10.1016/j.jobe.2022.105003. DOI

Luo B., Dong J. Optimizing piezoresistivity of alkali-activated mortar using carboxylated multi-walled carbon nanotubes/basalt fibers. Mater. Lett. 2022;329:133151. doi: 10.1016/j.matlet.2022.133151. DOI

Pan H.H., Guan J.-C. Stress and strain behavior monitoring of concrete through electromechanical impedance using piezoelectric cement sensor and PZT sensor. Constr. Build. Mater. 2022;324:126685. doi: 10.1016/j.conbuildmat.2022.126685. DOI

Lee M., Mata-Falcón J., Kaufmann W. Influence of short glass fibres and spatial features on the mechanical behaviour of weft-knitted textile reinforced concrete elements in bending. Constr. Build. Mater. 2022;344:128167. doi: 10.1016/j.conbuildmat.2022.128167. DOI

Chung W.J., Khattak S.H., Cecinati F., Jeong S.-G., Kershaw T., Allen S., Park C.-S., Coley D., Natarajan S. Resistive and capacitive technology recipes for peak cooling load reductions in the global south. J. Build. Eng. 2023;67:105900. doi: 10.1016/j.jobe.2023.105900. DOI

Ding Y., Liu G., Hussain A., Pacheco-Torgal F., Zhang Y. Effect of steel fiber and carbon black on the self-sensing ability of concrete cracks under bending. Constr. Build. Mater. 2019;207:630–639. doi: 10.1016/j.conbuildmat.2019.02.160. DOI

Ling D.C.H., Razak R.A., Yahya Z., Abdullah M.M.A.B., Chaiprapa J., Phan V.T.-A., Mohamed R., Aziz I.H. Investigation of influence factors and surface treatment on palm oil boiler ash (POBA) based geopolymer artificial aggregate: Impregnation vs. coating method. J. Build. Eng. 2023;66:105936. doi: 10.1016/j.jobe.2023.105936. DOI

Aziz I.H.A., Abdullah M.M.A.B., Razak R.A., Yahya Z., Salleh M.A.A.M., Chaiprapa J., Rojviriya C., Vizureanu P., Sandu A.V., Tahir M.F., et al. Microstructure, and Porosity Evolution of Fly Ash Geopolymer after Ten Years of Curing Age. Materials. 2023;16:1096. doi: 10.3390/ma16031096. PubMed DOI PMC

Ibrahim W.M.A.W., Abdullah M.M.A.B., Jamil N.H., Mohamad H., Salleh M.A.A.M., Sandu A.V., Vizureanu P., Baltatu M.S., Sukmak P. Alkaline-Activation Technique to Produce Low-Temperature Sintering Activated-HAp Ceramic. Appl. Sci. 2023;13:2643. doi: 10.3390/app13042643. DOI

Wang L., Aslani F. Structural performance of reinforced concrete beams with 3D printed cement-based sensor embedded and self-sensing cementitious composites. Eng. Struct. 2023;275:115266. doi: 10.1016/j.engstruct.2022.115266. DOI

Lemaire E., Thuau D., Souêtre M., Zgainski L., Royet A., Atli A. Revisiting two piezoelectric salts within an eco-design paradigm for sensors and actuators applications. Sens. Actuators A Phys. 2021;318:112483. doi: 10.1016/j.sna.2020.112483. DOI

Zhang H., Wang L., Li J., Kang F. Embedded PZT aggregates for monitoring crack growth and predicting surface crack in reinforced concrete beam. Constr. Build. Mater. 2023;364:129979. doi: 10.1016/j.conbuildmat.2022.129979. DOI

Xu B., Chen H., Mo Y.-L., Chen X. Multi-physical field guided wave simulation for circular concrete-filled steel tubes coupled with piezoelectric patches considering debonding defects. Int. J. Solids Struct. 2017;122–123:25–32. doi: 10.1016/j.ijsolstr.2017.05.040. DOI

Xu D., Huang S., Cheng X. Electromechanical impedance spectra investigation of impedance-based PZT and cement/polymer based piezoelectric composite sensors. Constr. Build. Mater. 2014;65:543–550. doi: 10.1016/j.conbuildmat.2014.05.035. DOI

Du P., Xu D., Huang S., Cheng X. Assessment of corrosion of reinforcing steel bars in concrete using embedded piezoelectric transducers based on ultrasonic wave. Constr. Build. Mater. 2017;151:925–930. doi: 10.1016/j.conbuildmat.2017.06.153. DOI

Yan J., Zhou W., Zhang X., Lin Y. Interface monitoring of steel-concrete-steel sandwich structures using piezoelectric transducers. Nucl. Eng. Technol. 2019;51:1132–1141. doi: 10.1016/j.net.2019.01.013. DOI

Monazami M., Sharma A., Gupta R. Evaluating performance of carbon fiber-reinforced pavement with embedded sensors using destructive and non-destructive testing. Case Stud. Constr. Mater. 2022;17:e01460. doi: 10.1016/j.cscm.2022.e01460. DOI

Zhai Q., Zhang J., Xiao J., Du G., Huang Y. Feasibility of piezoceramic transducer-enabled active sensing for the monitoring cross-shaped concrete filled steel tubular (CCFST) columns under cyclic loading. Measurement. 2021;182:109646. doi: 10.1016/j.measurement.2021.109646. DOI

Cao P., Zhang S., Wang Z., Zhou K. Damage identification using piezoelectric electromechanical Impedance: A brief review from a numerical framework perspective. Structures. 2023;50:1906–1921. doi: 10.1016/j.istruc.2023.03.017. DOI

Xie J., Yang H., Jing Z., Zhang Y., Hong W., Hu X. Condition assessment of concrete piers subjected to impact load using fiber optic sensing. Case Stud. Constr. Mater. 2022;17:e01597. doi: 10.1016/j.cscm.2022.e01597. DOI

Mahjoubi S., Tan X., Bao Y. Inverse analysis of strain distributions sensed by distributed fiber optic sensors subject to strain transfer. Mech. Syst. Signal Process. 2022;166:108474. doi: 10.1016/j.ymssp.2021.108474. DOI

Yan M., Tan X., Mahjoubi S., Bao Y. Strain transfer effect on measurements with distributed fiber optic sensors. Autom. Constr. 2022;139:104262. doi: 10.1016/j.autcon.2022.104262. DOI

Jayawickrema U.M.N., Herath H.M.C.M., Hettiarachchi N.K., Sooriyaarachchi H.P., Epaarachchi J.A. Fibre-optic sensor and deep learning-based structural health monitoring systems for civil structures: A review. Measurement. 2022;199:111543. doi: 10.1016/j.measurement.2022.111543. DOI

Li M., Feng X., Han Y. Brillouin fiber optic sensors and mobile augmented reality-based digital twins for quantitative safety assessment of underground pipelines. Autom. Constr. 2022;144:104617. doi: 10.1016/j.autcon.2022.104617. DOI

Zhang X., Broere W. Sensing fiber selection for point displacement measuring with distributed optic fiber sensor. Measurement. 2022;197:111275. doi: 10.1016/j.measurement.2022.111275. DOI

Shaikh A., Butler L.J. Self-sensing fabric reinforced cementitious matrix systems for combined strengthening and monitoring of concrete structures. Constr. Build. Mater. 2022;331:127243. doi: 10.1016/j.conbuildmat.2022.127243. DOI

Zeng M., Chen H., Ling J., Zhao H., Wu D. Monitoring of prestressing forces in cross-tensioned concrete pavements during construction and maintenance based on distributed optical fiber sensing. Autom. Constr. 2022;142:104526. doi: 10.1016/j.autcon.2022.104526. DOI

Zdanowicz K., Marx S. Flexural behaviour of thin textile reinforced concrete slabs enhanced by chemical prestressing. Eng. Struct. 2022;256:113946. doi: 10.1016/j.engstruct.2022.113946. DOI

Raju B., Kumar R., Senthilkumar M., Sulaiman R., Kama N., Dhanalakshmi S. Humidity sensor based on fibre bragg grating for predicting microbial induced corrosion. Sustain. Energy Technol. Assess. 2022;52:102306. doi: 10.1016/j.seta.2022.102306. DOI

Sakaki T., Lüthi B.F., Vogt T. Investigation of the emplacement dry density of granulated bentonite mixtures using dielectric, mass-balance and actively heated fiber-optic distributed temperature sensing methods. Geomech. Energy Environ. 2022;32:100329. doi: 10.1016/j.gete.2022.100329. DOI

Zhu J., Wang C., Yang Y., Wang Y. Hygro-thermal–mechanical coupling analysis for early shrinkage of cast in situ concrete slabs of composite beams: Theory and experiment. Constr. Build. Mater. 2023;372:130774. doi: 10.1016/j.conbuildmat.2023.130774. DOI

Li D., Nie J.-H., Wang H., Yan J.-B., Hu C.-X., Shen P. Damage location, quantification and characterization of steel-concrete composite beams using acoustic emission. Eng. Struct. 2023;283:115866. doi: 10.1016/j.engstruct.2023.115866. DOI

Wang Y., Li P., Liu H., Wang W., Liu Y., Wang L. Multiple laboratory characterization methods to identify the D-Load of reinforced concrete pipes based on three edge bearing tests. Constr. Build. Mater. 2023;366:130156. doi: 10.1016/j.conbuildmat.2022.130156. DOI

Tailhan J.-L., Rastiello G., Renaud J.-C., Boulay C. An experimental test for gas pressure measurement within a realistic crack in concrete. Nucl. Eng. Des. 2023;403:112138. doi: 10.1016/j.nucengdes.2022.112138. DOI

Martinelli F.R.B., Ribeiro F.R.C., Marvila M.T., Monteiro S.N., da Costa Garcia Filho F., de Azevedo A.R.G. A Review of the Use of Coconut Fiber in Cement Composites. Polymers. 2023;15:1309. doi: 10.3390/polym15051309. PubMed DOI PMC

Boumaaza M., Belaadi A., Bourchak M., Juhany K.A., Jawaid M., Marvila M.T., de Azevedo A.R.G. Optimization of flexural properties and thermal conductivity of Washingtonia plant biomass waste biochar reinforced bio-mortar. J. Mater. Res. Technol. 2023;23:3515–3536. doi: 10.1016/j.jmrt.2023.02.009. DOI

Du W., Qian C., Xie Y. Demonstration application of microbial self-healing concrete in sidewall of underground engineering: A case study. J. Build. Eng. 2023;63:105512. doi: 10.1016/j.jobe.2022.105512. DOI

Ji Y., Chen A., Chen Y., Han X., Li B., Gao Y., Liu C., Xie J. A state-of-the-art review of concrete strength detection/monitoring methods: With special emphasis on PZT transducers. Constr. Build. Mater. 2023;362:129742. doi: 10.1016/j.conbuildmat.2022.129742. DOI

Jayakumari B.Y., Swaminathan E.N., Partheeban P. A review on characteristics studies on carbon nanotubes-based cement concrete. Constr. Build. Mater. 2023;367:130344. doi: 10.1016/j.conbuildmat.2023.130344. DOI

Geballa-Koukoula A., Ross G.M.S., Bosman A.J., Zhao Y., Zhou H., Nielen M.W.F., Rafferty K., Elliott C.T., Salentijn G.I.J. Best practices and current implementation of emerging smartphone-based (bio)sensors—Part 2: Development, validation, and social impact. TrAC Trends Anal. Chem. 2023;161:116986. doi: 10.1016/j.trac.2023.116986. DOI

Tayeh B.A., Ahmed S.M., Hafez R.D.A. Sugarcane pulp sand and paper grain sand as partial fine aggregate replacement in environment-friendly concrete bricks. Case Stud. Constr. Mater. 2023;18:e01612. doi: 10.1016/j.cscm.2022.e01612. DOI

Bayrak B., Mostafa S.A., Öz A., Tayeh B.A., Kaplan G., Aydın A.C. The effect of clinker aggregate on acid resistance in prepacked geopolymers containing metakaolin and quartz powder in the presence of ground blast furnace slag. J. Build. Eng. 2023;69:106290. doi: 10.1016/j.jobe.2023.106290. DOI

Lin G.L., Lin A.X., Liu M.Y., Ye X.Q., Lu D.W. Barium titanate–bismuth ferrite/polyvinylidene fluoride nanocomposites as flexible piezoelectric sensors with excellent thermal stability. Sens. Actuators A Phys. 2022;346:113885. doi: 10.1016/j.sna.2022.113885. DOI

Shilar F.A., Ganachari S.V., Patil V.B. Advancement of nano-based construction materials-A review. Constr. Build. Mater. 2022;359:129535. doi: 10.1016/j.conbuildmat.2022.129535. DOI

Shilar F.A., Ganachari S.V., Patil V.B., Javed S., Khan T.M.Y., Baig R.U. Assessment of Destructive and Nondestructive Analysis for GGBS Based Geopolymer Concrete and Its Statistical Analysis. Polymers. 2022;14:3132. doi: 10.3390/polym14153132. PubMed DOI PMC

Shilar F.A., Ganachari S.V., Patil V.B. Investigation of the effect of granite waste powder as a binder for different molarity of geopolymer concrete on fresh and mechanical properties. Mater. Lett. 2022;309:131302. doi: 10.1016/j.matlet.2021.131302. DOI

Zheng Y., Zhang Y., Zhuo J., Zhang P., Hu S. Mesoscale synergistic effect mechanism of aggregate grading and specimen size on compressive strength of concrete with large aggregate size. Constr. Build. Mater. 2023;367:130346. doi: 10.1016/j.conbuildmat.2023.130346. DOI

Zhang P., Sun X., Wang F., Wang J. Mechanical Properties and Durability of Geopolymer Recycled Aggregate Concrete: A Review. Polymers. 2023;15:615. doi: 10.3390/polym15030615. PubMed DOI PMC

Shilar F.A., Ganachari S.V., Patil V.B., Khan T.M.Y., Khadar S.D.A. Molarity activity effect on mechanical and microstructure properties of geopolymer concrete: A review. Case Stud. Constr. Mater. 2022;16:e01014. doi: 10.1016/j.cscm.2022.e01014. DOI

Shilar F.A., Ganachari S.V., Patil V.B., Khan T.M.Y., Javed S., Baig R.U. Optimization of Alkaline Activator on the Strength Properties of Geopolymer Concrete. Polymers. 2022;14:2434. doi: 10.3390/polym14122434. PubMed DOI PMC

Shilar F.A., Ganachari S.V., Patil V.B., Reddy I.N., Shim J. Preparation and validation of sustainable metakaolin based geopolymer concrete for structural application. Constr. Build. Mater. 2023;371:130688. doi: 10.1016/j.conbuildmat.2023.130688. DOI

Shilar F.A., Ganachari S.V., Patil V.B., Khan T.M.Y., Almakayeel N.M., Alghamdi S. Review on the Relationship between Nano Modifications of Geopolymer Concrete and Their Structural Characteristics. Polymers. 2022;14:1421. doi: 10.3390/polym14071421. PubMed DOI PMC

Bong S.H., Nematollahi B., Xia M., Ghaffar S.H., Pan J., Dai J.-G. Properties of additively manufactured geopolymer incorporating mineral wollastonite microfibers. Constr. Build. Mater. 2022;331:127282. doi: 10.1016/j.conbuildmat.2022.127282. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...