Optimization of Alkaline Activator on the Strength Properties of Geopolymer Concrete
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
R.G.P 2/235/43
King Khalid University
PubMed
35746009
PubMed Central
PMC9230036
DOI
10.3390/polym14122434
PII: polym14122434
Knihovny.cz E-zdroje
- Klíčová slova
- fresh and mechanical properties, geopolymer concrete, molar ratio, red mud, setting time,
- Publikační typ
- časopisecké články MeSH
This study investigates the effects of red mud on the performance of geopolymer concrete in regard to fresh and mechanical properties. Red mud was used as a binder, and GGBS replaced the binder. Different proportions of red mud ranging from 0 to 30% with an interval of 2% and activator agents such as KOH and K2SiO3 for various alkaline-to-binder ratios such as 0.30, 0.40, and 0.50 were used; their effect on the fresh and mechanical properties of geopolymer concrete were the focusing parameter on the current study. Fresh properties such as setting time, slump, compaction factor, and vee-bee consistometer test, and mechanical properties such as compressive strength, split tensile strength, flexural strength, modulus of elasticity, and impact energy were studied. ANOVA and radar plot analysis were studied for various alkaline to binder (A/B) compressive strength results tested for 7 to 90 days. The increase of red mud quantity caused the decline of workability, but there was continuous enhancement of mechanical properties of GPC up to a specific limit. An alkaline-to-binder ratio of 0.4 shows excellent results compared with other ratios at ambient conditions for strength properties. ANOVA and radar plot reveal that A/B of 0.40 for 90 days shows excellent results compared with other ratios, and CS values vary in a linear manner.
Department of Civil Engineering Jain College of Engineering Belagavi 590014 India
Research Center for Advanced Materials Science King Khalid University Abha 61413 Saudi Arabia
Zobrazit více v PubMed
Babu D.V. Assessing the performance of molarity and alkaline activator ratio on engineering properties of self-compacting alkaline activated concrete at ambient temperature. J. Build. Eng. 2018;20:137–155. doi: 10.1016/j.jobe.2018.07.005. DOI
Topçu I.B., Toprak M.U., Uygunoğlu T. Durability and microstructure characteristics of alkali activated coal bottom ash geopolymer cement. J. Clean. Prod. 2014;81:211–217. doi: 10.1016/j.jclepro.2014.06.037. DOI
Ismail S., Razali M.F.M., Johari I., Ahmad Z.A., Kasim S.R. Effect of Curing Time and Sintering to the Properties of Geopolymer Mortars. Mater. Sci. Forum. 2017;888:184–187. doi: 10.4028/www.scientific.net/MSF.888.184. DOI
Haruna S., Mohammed B.S., Wahab M., Liew M. Effect of paste aggregate ratio and curing methods on the performance of one-part alkali-activated concrete. Constr. Build. Mater. 2020;261:120024. doi: 10.1016/j.conbuildmat.2020.120024. DOI
Duxson P., Provis J.L., Lukey G.C., Van Deventer J.S.J. The role of inorganic polymer technology in the development of ‘green concrete’. Cem. Concr. Res. 2007;37:1590–1597. doi: 10.1016/j.cemconres.2007.08.018. DOI
Rao A.K., Kumar D.R. Effect of various alkaline binder ratio on geopolymer concrete under ambient curing condition. Mater. Today Proc. 2020;27:1768–1773. doi: 10.1016/j.matpr.2020.03.682. DOI
Ghafoor M.T., Khan Q.S., Qazi A.U., Sheikh M.N., Hadi M. Influence of alkaline activators on the mechanical properties of fly ash based geopolymer concrete cured at ambient temperature. Constr. Build. Mater. 2020;273:121752. doi: 10.1016/j.conbuildmat.2020.121752. DOI
Medri V., Papa E., Mazzocchi M., Laghi L., Morganti M., Francisconi J., Landi E. Production and characterization of lightweight vermiculite/geopolymer-based panels. Mater. Des. 2015;85:266–274. doi: 10.1016/j.matdes.2015.06.145. DOI
Shi C., Qu B., Provis J.L. Recent progress in low-carbon binders. Cem. Concr. Res. 2019;122:227–250. doi: 10.1016/j.cemconres.2019.05.009. DOI
Karthik A., Sudalaimani K., Vijayakumar C., Saravanakumar S. Effect of bio-additives on physico-chemical properties of fly ash-ground granulated blast furnace slag based self cured geopolymer mortars. J. Hazard. Mater. 2019;361:56–63. doi: 10.1016/j.jhazmat.2018.08.078. PubMed DOI
Koushkbaghi M., Alipour P., Tahmouresi B., Mohseni E., Saradar A., Sarker P.K. Influence of different monomer ratios and recycled concrete aggregate on mechanical properties and durability of geopolymer concretes. Constr. Build. Mater. 2019;205:519–528. doi: 10.1016/j.conbuildmat.2019.01.174. DOI
Poloju K.K., Sinivasu K. Influence of GGBS and Alkaline Ratio on Compression Strength of Geopolymer Concrete: Influence of GGBS and Alkaline Ratio on Compression Strength of Geopolymer Concrete. SPAST Abstracts 1.01. [(accessed on 7 June 2022)];2021 Volume 1 Available online: https://spast.org/techrep/article/view/2900.
El Alouani M., Alehyen S., El Achouri M., Hajjaji A., Ennawaoui C., Taibi M. Influence of the Nature and Rate of Alkaline Activator on the Physicochemical Properties of Fly Ash-Based Geopolymers. Adv. Civ. Eng. 2020;2020:e8880906. doi: 10.1155/2020/8880906. DOI
Kurtoglu A.E., Alzeebaree R., Aljumaili O., Nis A., Gulsan M.E., Humur G., Cevik A. Mechanical and durability properties of fly ash and slag based geopolymer concrete. Adv. Concr. Constr. 2018;6:345–362.
Liang X., Ji Y. Mechanical properties and permeability of red mud-blast furnace slag-based geopolymer concrete. SN Appl. Sci. 2021;3:23. doi: 10.1007/s42452-020-03985-4. DOI
Mehta A., Siddique R. Sustainable geopolymer concrete using ground granulated blast furnace slag and rice husk ash: Strength and permeability properties. J. Clean. Prod. 2018;205:49–57. doi: 10.1016/j.jclepro.2018.08.313. DOI
Luo Z., Li W., Gan Y., He X., Castel A., Sheng D. Nanoindentation on micromechanical properties and microstructure of geopolymer with nano-SiO2 and nano-TiO2. Cem. Concr. Compos. 2020;117:103883. doi: 10.1016/j.cemconcomp.2020.103883. DOI
Phummiphan I., Horpibulsuk S., Rachan R., Arulrajah A., Shen S.-L., Chindaprasirt P. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material. J. Hazard. Mater. 2018;341:257–267. doi: 10.1016/j.jhazmat.2017.07.067. PubMed DOI
Santa R.A.A.B., Soares C., Riella H.G. Geopolymers with a high percentage of bottom ash for solidification/immobilization of different toxic metals. J. Hazard. Mater. 2016;318:145–153. doi: 10.1016/j.jhazmat.2016.06.059. PubMed DOI
Garcia-Lodeiro I., Palomo A., Fernández-Jiménez A. 2-An overview of the chemistry of alkali-activated cement-based binders. In: Pacheco-Torgal F., Labrincha J.A., Leonelli C., Palomo A., Chindaprasirt P., editors. Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing; Oxford, UK: 2015. pp. 19–47. DOI
Provis J.L., Palomo A., Shi C. Advances in understanding alkali-activated materials. Cem. Concr. Res. 2015;78:110–125. doi: 10.1016/j.cemconres.2015.04.013. DOI
Chiranjeevi K., Vijayalakshmi M.M., Praveenkumar T.R. Investigation of fly ash and rice husk ash-based geopolymer concrete using nano particles. Appl. Nanosci. 2021:1–8. doi: 10.1007/s13204-021-01916-2. DOI
Das S.K., Shrivastava S. Siliceous fly ash and blast furnace slag based geopolymer concrete under ambient temperature curing condition. Struct. Concr. 2021;22:E341–E351. doi: 10.1002/suco.201900201. DOI
Yip C.K., Lukey G.C., Provis J., Van Deventer J.S. Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res. 2008;38:554–564. doi: 10.1016/j.cemconres.2007.11.001. DOI
Anbarasan I., Soundarapandian N. Investigation of mechanical and micro structural properties of geopolymer concrete blended by dredged marine sand and manufactured sand under ambient curing conditions. Struct. Concr. 2020;21:992–1003. doi: 10.1002/suco.201900343. DOI
Hassan A., Arif M., Shariq M. Age-dependent compressive strength and elastic modulus of fly ash-based geopolymer concrete. Struct. Concr. 2020;23:473–487. doi: 10.1002/suco.202000372. DOI
Bakthavatchalam K., Rajendran M. An experimental investigation on potassium activator based geopolymer concrete incorporated with hybrid fibers. Mater. Today Proc. 2021;46:8494–8501. doi: 10.1016/j.matpr.2021.03.506. DOI
Jayarajan G., Arivalagan S. An experimental studies of geopolymer concrete incorporated with fly-ash & GGBS. Mater. Today Proc. 2021;45:6915–6920. doi: 10.1016/j.matpr.2021.01.285. DOI
Padmakar M., Barhmaiah B., Priyanka M.L. Characteristic compressive strength of a geo polymer concrete. Mater. Today Proc. 2021;37:2219–2222. doi: 10.1016/j.matpr.2020.07.656. DOI
Das S.K., Mishra J., Singh S.K., Mustakim S.M., Patel A., Das S.K., Behera U. Characterization and utilization of rice husk ash (RHA) in fly ash–Blast furnace slag based geopolymer concrete for sustainable future. Mater. Today Proc. 2020;33:5162–5167. doi: 10.1016/j.matpr.2020.02.870. DOI
Lee W., van Deventer J. Chemical interactions between siliceous aggregates and low-Ca alkali-activated cements. Cem. Concr. Res. 2007;37:844–855. doi: 10.1016/j.cemconres.2007.03.012. DOI
Amran Y.M., Alyousef R., Alabduljabbar H., El-Zeadani M. Clean production and properties of geopolymer concrete; A review. J. Clean. Prod. 2020;251:119679. doi: 10.1016/j.jclepro.2019.119679. DOI
Chindaprasirt P., Jaturapitakkul C., Chalee W., Rattanasak U. Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manag. 2009;29:539–543. doi: 10.1016/j.wasman.2008.06.023. PubMed DOI
Garcia-Lodeiro I., Palomo A., Jimenez A.M.F., Macphee D. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cem. Concr. Res. 2011;41:923–931. doi: 10.1016/j.cemconres.2011.05.006. DOI
Huseien G.F., Ismail M., Khalid N.H.A., Hussin M.W., Mirza J. Compressive strength and microstructure of assorted wastes incorporated geopolymer mortars: Effect of solution molarity. Alex. Eng. J. 2018;57:3375–3386. doi: 10.1016/j.aej.2018.07.011. DOI
Xie J., Chen W., Wang J., Fang C., Zhang B., Liu F. Coupling effects of recycled aggregate and GGBS/metakaolin on physicochemical properties of geopolymer concrete. Constr. Build. Mater. 2019;226:345–359. doi: 10.1016/j.conbuildmat.2019.07.311. DOI
Meesala C.R., Verma N.K., Kumar S. Critical review on fly-ash based geopolymer concrete. Struct. Concr. 2020;21:1013–1028. doi: 10.1002/suco.201900326. DOI
Ding Y.-C., Cheng T.-W., Dai Y.-S. Application of geopolymer paste for concrete repair. Struct. Concr. 2017;18:561–570. doi: 10.1002/suco.201600161. DOI
Their J.M., Özakça M. Developing geopolymer concrete by using cold-bonded fly ash aggregate, nano-silica, and steel fiber. Constr. Build. Mater. 2018;180:12–22. doi: 10.1016/j.conbuildmat.2018.05.274. DOI
Ganesh A.C., Muthukannan M. Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength. J. Clean. Prod. 2021;282:124543. doi: 10.1016/j.jclepro.2020.124543. DOI
Luhar S., Chaudhary S., Luhar I. Development of rubberized geopolymer concrete: Strength and durability studies. Constr. Build. Mater. 2019;204:740–753. doi: 10.1016/j.conbuildmat.2019.01.185. DOI
Siyal A.A., Shamsuddin M.R., Khahro S.H., Low A., Ayoub M. Optimization of synthesis of geopolymer adsorbent for the effective removal of anionic surfactant from aqueous solution. J. Environ. Chem. Eng. 2021;9:104949. doi: 10.1016/j.jece.2020.104949. DOI
Luo Z., Li W., Wang K., Castel A., Shah S.P. Comparison on the properties of ITZs in fly ash-based geopolymer and Portland cement concretes with equivalent flowability. Cem. Concr. Res. 2021;143:106392. doi: 10.1016/j.cemconres.2021.106392. DOI
Nath P., Sarker P.K., Rangan V.B. Early Age Properties of Low-calcium Fly Ash Geopolymer Concrete Suitable for Ambient Curing. Procedia Eng. 2015;125:601–607. doi: 10.1016/j.proeng.2015.11.077. DOI
Sethi H., Bansal P.P., Sharma R. Effect of Addition of GGBS and Glass Powder on the Properties of Geopolymer Concrete. Iran. J. Sci. Technol. Trans. Civ. Eng. 2019;43:607–617. doi: 10.1007/s40996-018-0202-4. DOI
Bernal S.A., DE Gutierrez R.M., Pedraza A.L., Provis J., Rodriguez E., Delvasto S. Effect of binder content on the performance of alkali-activated slag concretes. Cem. Concr. Res. 2011;41:1–8. doi: 10.1016/j.cemconres.2010.08.017. DOI
Singh S., Aswath M., Ranganath R. Effect of mechanical activation of red mud on the strength of geopolymer binder. Constr. Build. Mater. 2018;177:91–101. doi: 10.1016/j.conbuildmat.2018.05.096. DOI
Wang J., Huang T., Han L., Xie F., Liu Z., Wang D. Optimization of alkali-activated concrete based on the characteristics of binder systems. Constr. Build. Mater. 2021;300:123952. doi: 10.1016/j.conbuildmat.2021.123952. DOI
Chithambaram S.J., Kumar S., Prasad M.M., Adak D. Effect of parameters on the compressive strength of fly ash based geopolymer concrete. Struct. Concr. 2018;19:1202–1209. doi: 10.1002/suco.201700235. DOI
Singh K. Experimental study on metakolin and baggashe ash based geopolymer concrete. Mater. Today Proc. 2021;37:3289–3295. doi: 10.1016/j.matpr.2020.09.116. DOI
Chindaprasirt P., Chalee W. Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site. Constr. Build. Mater. 2014;63:303–310. doi: 10.1016/j.conbuildmat.2014.04.010. DOI
Aliabdo A.A., Abd Elmoaty A.E.M., Salem H.A. Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. Constr. Build. Mater. 2016;121:694–703. doi: 10.1016/j.conbuildmat.2016.06.062. DOI
Yeoh M.L., Ukritnukun S., Rawal A., Davies J., Kang B.J., Burrough K., Aly Z., Dayal P., Vance E.R., Gregg D.J., et al. Mechanistic impacts of long-term gamma irradiation on physicochemical, structural, and mechanical stabilities of radiation-responsive geopolymer pastes. J. Hazard. Mater. 2021;407:124805. doi: 10.1016/j.jhazmat.2020.124805. PubMed DOI
Anshul A., Moinuddin A.A., Azad A.M., Khera P., Dehariya K., Bherwani H., Gupta A., Kumar S. Morphologically designed micro porous zeolite-geopolymers as cool coating materials. J. Hazard. Mater. 2020;398:123022. doi: 10.1016/j.jhazmat.2020.123022. PubMed DOI
Ravikumar D., Neithalath N. Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH. Cem. Concr. Compos. 2012;34:809–818. doi: 10.1016/j.cemconcomp.2012.03.006. DOI
Nie Q., Hu W., Huang B., Shu X., He Q. Synergistic utilization of red mud for flue-gas desulfurization and fly ash-based geopolymer preparation. J. Hazard. Mater. 2019;369:503–511. doi: 10.1016/j.jhazmat.2019.02.059. PubMed DOI
Malkawi A.B., Nuruddin M.F., Fauzi A., Al-Mattarneh H., Mohammed B.S. Effects of Alkaline Solution on Properties of the HCFA Geopolymer Mortars. Procedia Eng. 2016;148:710–717. doi: 10.1016/j.proeng.2016.06.581. DOI
Yaowarat T., Sudsaynate W., Horpibulsuk S., Chinkulkijniwat A., Arulrajah A., Horpibulsuk J. Mechanical Properties of Fly Ash–Asphalt Emulsion Geopolymer Stabilized Crushed Rock for Sustainable Pavement Base. J. Mater. Civ. Eng. 2021;33:04021220. doi: 10.1061/(ASCE)MT.1943-5533.0003751. DOI
Galiano Y.L., Pereira C.F., Vale J. Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers. J. Hazard. Mater. 2011;185:373–381. doi: 10.1016/j.jhazmat.2010.08.127. PubMed DOI
Mousavinejad S.H.G., Gashti M.F. Effects of alkaline solution/binder and Na2SiO3/NaOH ratios on fracture properties and ductility of ambient-cured GGBFS based heavyweight geopolymer concrete. Structures. 2021;32:2118–2129. doi: 10.1016/j.istruc.2021.04.008. DOI
Hanjitsuwan S., Hunpratub S., Thongbai P., Maensiri S., Sata V., Chindaprasirt P. Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste. Cem. Concr. Compos. 2014;45:9–14. doi: 10.1016/j.cemconcomp.2013.09.012. DOI
Sofi M., van Deventer J., Mendis P., Lukey G. Engineering properties of inorganic polymer concretes (IPCs) Cem. Concr. Res. 2007;37:251–257. doi: 10.1016/j.cemconres.2006.10.008. DOI
Álvarez-Ayuso E., Querol X., Plana F., Alastuey A., Moreno N., Izquierdo M., Font O., Moreno T., Díez S., Vázquez E., et al. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes. J. Hazard. Mater. 2008;154:175–183. doi: 10.1016/j.jhazmat.2007.10.008. PubMed DOI
Pasupathy K., Sanjayan J., Rajeev P. Evaluation of alkalinity changes and carbonation of geopolymer concrete exposed to wetting and drying. J. Build. Eng. 2021;35:102029. doi: 10.1016/j.jobe.2020.102029. DOI
Muraleedharan M., Nadir Y. Factors affecting the mechanical properties and microstructure of geopolymers from red mud and granite waste powder: A review. Ceram. Int. 2021;47:13257–13279. doi: 10.1016/j.ceramint.2021.02.009. DOI
Amran M., Debbarma S., Ozbakkaloglu T. Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Constr. Build. Mater. 2021;270:121857. doi: 10.1016/j.conbuildmat.2020.121857. DOI
Cortes P.P., Escalante-Garcia J.I. Gel composition and molecular structure of alkali-activated metakaolin-limestone cements. Cem. Concr. Res. 2020;137:106211. doi: 10.1016/j.cemconres.2020.106211. DOI
Raijiwala D., Patil H.S. Geopolymer concrete A green concrete; Proceedings of the 2010 2nd International Conference on Chemical, Biological and Environmental Engineering; Cairo, Egypt. 2–4 November 2010; pp. 202–206. DOI
Davidovits J. Proceedings of the 41st International Conference on Advanced Ceramics and Composites. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2018. Geopolymers Based on Natural and Synthetic Metakaolin a Critical Review; pp. 201–214. DOI
Oyebisi S.O., Ede A.N., Olutoge F.A., Ofuyatan O.M., Oluwafemi J. Influence of alkali concentrations on the mechanical properties of geopolymer concrete. Int. J. Civ. Eng. Technol. 2018;9:734–743.
Lee N., Lee H. Influence of the slag content on the chloride and sulfuric acid resistances of alkali-activated fly ash/slag paste. Cem. Concr. Compos. 2016;72:168–179. doi: 10.1016/j.cemconcomp.2016.06.004. DOI
Pilehvar S., Cao V.D., Szczotok A.M., Valentini L., Salvioni D., Magistri M., Pamies R., Kjøniksen A.-L. Mechanical properties and microscale changes of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials. Cem. Concr. Res. 2017;100:341–349. doi: 10.1016/j.cemconres.2017.07.012. DOI
Shehab H.K., Eisa A.S., Wahba A.M. Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement. Constr. Build. Mater. 2016;126:560–565. doi: 10.1016/j.conbuildmat.2016.09.059. DOI
Moya J.S., Cabal B., Sanz J., Torrecillas R. Developments in Strategic Materials and Computational Design III. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2012. Metakaolin-Nanosilver as Biocide Agent in Geopolymer; pp. 1–11. DOI
Haruna S., Mohammed B.S., Wahab M.M.A., Kankia M.U., Amran M., Gora A.M. Long-Term Strength Development of Fly Ash-Based One-Part Alkali-Activated Binders. Materials. 2021;14:4160. doi: 10.3390/ma14154160. PubMed DOI PMC
Luukkonen T., Abdollahnejad Z., Yliniemi J., Kinnunen P., Illikainen M. One-part alkali-activated materials: A review. Cem. Concr. Res. 2018;103:21–34. doi: 10.1016/j.cemconres.2017.10.001. DOI
Abdullah M.M.A.B., Kamarudin H., Abdulkareem O.A., Ghazali C.M.R., Rafiza A., Norazian M. Optimization of Alkaline Activator/Fly ASH Ratio on the Compressive Strength of Manufacturing Fly ASH-BASED Geopolymer. Appl. Mech. Mater. 2011;110–116:734–739. doi: 10.4028/www.scientific.net/AMM.110-116.734. DOI
Vora P.R., Dave U.V. Parametric Studies on Compressive Strength of Geopolymer Concrete. Procedia Eng. 2013;51:210–219. doi: 10.1016/j.proeng.2013.01.030. DOI
Sarkar M., Dana K. Partial replacement of metakaolin with red ceramic waste in geopolymer. Ceram. Int. 2021;47:3473–3483. doi: 10.1016/j.ceramint.2020.09.191. DOI
Aly A.M., El-Feky M., Kohail M., Nasr E.-S.A. Performance of geopolymer concrete containing recycled rubber. Constr. Build. Mater. 2019;207:136–144. doi: 10.1016/j.conbuildmat.2019.02.121. DOI
Saloni, Parveen, Pham T.M., Lim Y.Y., Pradhan S., Jatin, Kumar J. Performance of rice husk Ash-Based sustainable geopolymer concrete with Ultra-Fine slag and Corn cob ash. Constr. Build. Mater. 2021;279:122526. doi: 10.1016/j.conbuildmat.2021.122526. DOI
Liew Y.M., Kamarudin H., Al Bakri A.M.M., Binhussain M., Luqman M., Nizar I.K., Ruzaidi C.M., Heah C.Y. Correlating Composition Design and Properties of Calcined Kaolin Geopolymeric Powder. Adv. Sci. Lett. 2013;19:3671–3674. doi: 10.1166/asl.2013.5186. DOI
Liew Y., Kamarudin H., Al Bakri A.M., Binhussain M., Musa L., Nizar I.K., Ghazali C.M.R., Heah C. Calcined Kaolin Geopolymeric Powder: Influence of Water-to-Geopolymeric Powder Ratio. Adv. Mater. Res. 2012;548:48–53. doi: 10.4028/www.scientific.net/AMR.548.48. DOI
Mendes B.C., Pedroti L.G., Vieira C.M.F., Marvilla M., Azevedo A.R., de Carvalho J.M.F., Ribeiro J.C.L. Application of eco-friendly alternative activators in alkali-activated materials: A review. J. Build. Eng. 2021;35:102010. doi: 10.1016/j.jobe.2020.102010. DOI
Exploring the Potential of Promising Sensor Technologies for Concrete Structural Health Monitoring