Assessment of Destructive and Nondestructive Analysis for GGBS Based Geopolymer Concrete and Its Statistical Analysis

. 2022 Jul 31 ; 14 (15) : . [epub] 20220731

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35956647

Grantová podpora
R.G.P 2/235/43 King Khalid University

Geopolymer is the alternative to current construction material trends. In this paper, an attempt is made to produce a sustainable construction composite material using geopolymer. Ground granulated blast furnace slag (GGBS)-based geopolymer concrete was prepared and tested for different alkaline to binder ratios (A/B). The effect of various temperatures on compressive strength properties was assessed. The cubes were exposed to temperature ranging from 50 to 70 °C for a duration ranging from 2 to 10 h, and the compressive strength of the specimens was analyzed for destructive and non-destructive analysis and tested for 7, 28, and 90 days. The obtained compressive strength (CS) results were analyzed employing the probability plot (PP) curve, distribution overview curve (DOC), probability density function (PDF), Weibull, survival, and hazard function curve. Maximum compressive strength was achieved for the temperature of 70 °C and an A/B of 0.45 for destructive tests and non-destructive tests with 44.6 MPa and 43.56 MPa, respectively, on 90 days of testing. The survival and hazard function curves showed incremental distribution characteristics for 28 and 90 days of testing results with a probability factor ranging from 0.8 to 1.0.

Zobrazit více v PubMed

Hattaf R., Aboulayt A., Lahlou N., Touhami M.O., Gomina M., Samdi A., Moussa R. Influence of the Integration of Geopolymer Wastes on the Characteristics of Binding Matrices Subjected to the Action of Temperature and Acid Environments. Polymers. 2022;14:917. doi: 10.3390/polym14050917. PubMed DOI PMC

Shill S.K., Al-Deen S., Ashraf M., Hutchison W. Resistance of fly ash based geopolymer mortar to both chemicals and high thermal cycles simultaneously. Constr. Build. Mater. 2019;239:117886. doi: 10.1016/j.conbuildmat.2019.117886. DOI

Shill S.K., Al-Deen S., Ashraf M., Garcez E.O., Subhani M., Hossain M.M. Resistance of Geopolymer, Epoxy and Cement Mortar to Hydrocarbon-Based Synthetic Engine Lubricant, Hydraulic Fluid, Jet Fuel and Elevated Temperatures. Constr. Mater. 2022;2:15–26. doi: 10.3390/constrmater2010002. DOI

Wong L.S. Durability Performance of Geopolymer Concrete: A Review. Polymers. 2022;14:868. doi: 10.3390/polym14050868. PubMed DOI PMC

Mendes B.C., Pedroti L.G., Vieira C.M.F., Marvilla M., Azevedo A.R., de Carvalho J.M.F., Ribeiro J.C.L. Application of eco-friendly alternative activators in alkali-activated materials: A review. J. Build. Eng. 2020;35:102010. doi: 10.1016/j.jobe.2020.102010. DOI

Moreno-Maroto J.M., Delgado-Plana P., Cabezas-Rodríguez R., de Gutiérrez R.M., Eliche-Quesada D., Pérez-Villarejo L., Galán-Arboledas R.J., Bueno S. Alkaline activation of high-crystalline low-Al2O3 Construction and Demolition Wastes to obtain geopolymers. J. Clean. Prod. 2021;330:129770. doi: 10.1016/j.jclepro.2021.129770. DOI

Robayo-Salazar R., Valencia-Saavedra W., de Gutiérrez R.M. Recycling of concrete, ceramic, and masonry waste via alkaline activation: Obtaining and characterization of hybrid cements. J. Build. Eng. 2021;46:103698. doi: 10.1016/j.jobe.2021.103698. DOI

Jayarajan G., Arivalagan S. An experimental studies of geopolymer concrete incorporated with fly-ash & GGBS. Mater. Today Proc. 2021;45:6915–6920. doi: 10.1016/j.matpr.2021.01.285. DOI

Abbass M., Singh D., Singh G. Properties of hybrid geopolymer concrete prepared using rice husk ash, fly ash and GGBS with coconut fiber. Mater. Today Proc. 2021;45:4964–4970. doi: 10.1016/j.matpr.2021.01.390. DOI

Ahmed H.U., Mohammed A.A., Rafiq S., Mohammed A.S., Mosavi A., Sor N.H., Qaidi S.M.A. Compressive Strength of Sustainable Geopolymer Concrete Composites: A State-of-the-Art Review. Sustainability. 2021;13:13502. doi: 10.3390/su132413502. DOI

Saini G., Vattipalli U. Assessing properties of alkali activated GGBS based self-compacting geopolymer concrete using nano-silica. Case Stud. Constr. Mater. 2020;12:e00352. doi: 10.1016/j.cscm.2020.e00352. DOI

Zeyad A.M., Magbool H.M., Tayeh B.A., de Azevedo A.R.G., Abutaleb A., Hussain Q. Production of geopolymer concrete by utilizing volcanic pumice dust. Case Stud. Constr. Mater. 2022;16:e00802. doi: 10.1016/j.cscm.2021.e00802. DOI

Saint-Pierre F., Philibert A., Giroux B., Rivard P. Concrete Quality Designation based on Ultrasonic Pulse Velocity. Constr. Build. Mater. 2016;125:1022–1027. doi: 10.1016/j.conbuildmat.2016.08.158. DOI

Lee W.-H., Wang J.-H., Ding Y.-C., Cheng T.-W. A study on the characteristics and microstructures of GGBS/FA based geopolymer paste and concrete. Constr. Build. Mater. 2019;211:807–813. doi: 10.1016/j.conbuildmat.2019.03.291. DOI

Sýkora M., Diamantidis D., Holický M., Marková J., Rózsás Á. Assessment of compressive strength of historic masonry using non-destructive and destructive techniques. Constr. Build. Mater. 2018;193:196–210. doi: 10.1016/j.conbuildmat.2018.10.180. DOI

Cavallaro G., Lazzara G., Lisuzzo L., Milioto S., Parisi F. Filling of Mater-Bi with Nanoclays to Enhance the Biofilm Rigidity. J. Funct. Biomater. 2018;9:60. doi: 10.3390/jfb9040060. PubMed DOI PMC

Nguyen T.A., Guo X., You F., Saha N., Wu S., Scheuermann A., Ren C., Huang L. Co-solidification of bauxite residue and coal ash into indurated monolith via ambient geopolymerisation for in situ environmental application. J. Hazard. Mater. 2021;422:126925. doi: 10.1016/j.jhazmat.2021.126925. PubMed DOI

Banchhor S., Murmu M., Deo S.V. Combined effect of fly-ash and GGBS on performance of alkali activated concrete. J. Build. Pathol. Rehabilitation. 2022;7:1–6. doi: 10.1007/s41024-022-00170-5. DOI

Chen K., Wu D., Yi M., Cai Q., Zhang Z. Mechanical and durability properties of metakaolin blended with slag geopolymer mortars used for pavement repair. Constr. Build. Mater. 2021;281:122566. doi: 10.1016/j.conbuildmat.2021.122566. DOI

Rajini B., Rao A.N., Sashidhar C. Micro-level studies of fly ash and GGBS—based geopolymer concrete using Fourier transform Infra-Red. Mater. Today Proc. 2020;46:586–589. doi: 10.1016/j.matpr.2020.11.291. DOI

Chen Z., Li J.-S., Zhan B.-J., Sharma U., Poon C.S. Compressive strength and microstructural properties of dry-mixed geopolymer pastes synthesized from GGBS and sewage sludge ash. Constr. Build. Mater. 2018;182:597–607. doi: 10.1016/j.conbuildmat.2018.06.159. DOI

Bouaissi A., Li L.-Y., Abdullah M.M.A.B., Bui Q.-B. Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete. Constr. Build. Mater. 2019;210:198–209. doi: 10.1016/j.conbuildmat.2019.03.202. DOI

Islam G.S., Akter S., Reza T.B. Sustainable high-performance, self-compacting concrete using ladle slag. Clean. Eng. Technol. 2022;7:100439. doi: 10.1016/j.clet.2022.100439. DOI

Ahmed H.U., Mohammed A.S., Mohammed A.A., Faraj R.H. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes. PLoS ONE. 2021;16:e0253006. doi: 10.1371/journal.pone.0253006. PubMed DOI PMC

Noori A.S., Oweed K.M., Raouf R.M., Abdulrehman M.A. The relation between destructive and non-destructive tests of geopolymer concrete. Mater. Today Proc. 2021;42:2125–2133. doi: 10.1016/j.matpr.2020.12.296. DOI

Specification for Granulated Slag for the Manufacture of Portland Slag Cement. Bureau of Indian Standards; New Delhi, India: 1987.

Specification for Coarse and Fine Aggregate from Natural Source for Concrete. Bureau of Indian Standards; New Delhi, India: 2016.

Concrete Mix Proportioning—Guidelines. Bureau of Indian Standards; New Delhi, India: 2019.

Methods of Sampling and Analysis of Concrete. Bureau of Indian Standards; New Delhi, India: 1959.

Non-Destructive Testing of Concrete-Methods of Test. Bureau of Indian Standards; New Delhi, India: 1992.

Shahmansouri A.A., Bengar H.A., Ghanbari S. Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method. J. Build. Eng. 2020;31:101326. doi: 10.1016/j.jobe.2020.101326. DOI

Ahmed H.U., Mohammed A.A., Mohammed A.S. The role of nanomaterials in geopolymer concrete composites: A state-of-the-art review. J. Build. Eng. 2022;49:104062. doi: 10.1016/j.jobe.2022.104062. DOI

Cai J., Pan J., Han J., Lin Y., Sheng Z. Impact behaviours of engineered geopolymer composite exposed to elevated temperatures. Constr. Build. Mater. 2021;312:125421. doi: 10.1016/j.conbuildmat.2021.125421. DOI

Xie J., Chen W., Wang J., Fang C., Zhang B., Liu F. Coupling effects of recycled aggregate and GGBS/metakaolin on physicochemical properties of geopolymer concrete. Constr. Build. Mater. 2019;226:345–359. doi: 10.1016/j.conbuildmat.2019.07.311. DOI

Poornima N., Katyal D., Revathi T., Sivasakthi M., Jeyalakshmi R. Effect of curing on mechanical strength and microstructure of fly ash blend GGBS geopolymer, Portland cement mortar and its behavior at elevated temperature. Mater. Today Proc. 2021;47:863–870. doi: 10.1016/j.matpr.2021.04.087. DOI

Salih M.A., Farzadnia N., Demirboga R., Ali A.A.A. Effect of elevated temperatures on mechanical and microstructural properties of alkali-activated mortar made up of POFA and GGBS. Constr. Build. Mater. 2022;328:127041. doi: 10.1016/j.conbuildmat.2022.127041. DOI

Nagajothi S., Elavenil S. Effect of GGBS Addition on Reactivity and Microstructure Properties of Ambient Cured Fly Ash Based Geopolymer Concrete. Silicon. 2020;13:507–516. doi: 10.1007/s12633-020-00470-w. DOI

Sousa L.N., Figueiredo P.F., França S., Silva M.V.d.M.S., Borges P.H.R., Bezerra A.C.D.S. Effect of Non-Calcined Sugarcane Bagasse Ash as an Alternative Precursor on the Properties of Alkali-Activated Pastes. Molecules. 2022;27:1185. doi: 10.3390/molecules27041185. PubMed DOI PMC

Kamseu E., Ponzoni C., Tippayasam C., Taurino R., Chaysuwan D., Sglavo V.M., Thavorniti P., Leonelli C. Self-compacting geopolymer concretes: Effects of addition of aluminosilicate-rich fines. J. Build. Eng. 2016;5:211–221. doi: 10.1016/j.jobe.2016.01.004. DOI

Premkumar R., Hariharan P., Rajesh S. Effect of silica fume and recycled concrete aggregate on the mechanical properties of GGBS based geopolymer concrete. Mater. Today Proc. 2022;60:211–215. doi: 10.1016/j.matpr.2021.12.442. DOI

Kishore K., Gupta N. Mechanical characterization and assessment of composite geopolymer concrete. Mater. Today Proc. 2020;44:58–62. doi: 10.1016/j.matpr.2020.06.319. DOI

Jagadeeswari K., Mohiddin S.L., Srinivas K., Vijaya S.K. Mechanical characterization of alkali activated GGBS based geopolymer concrete. Mater. Today Proc. 2021;64:28–31. doi: 10.1016/j.matpr.2020.12.476. DOI

Poloju K.K., Srinivasu K. Impact of GGBS and strength ratio on mechanical properties of geopolymer concrete under ambient curing and oven curing. Mater. Today Proc. 2021;42:962–968. doi: 10.1016/j.matpr.2020.11.934. DOI

Chiranjeevi K., Vijayalakshmi M.M., Praveenkumar T.R. Investigation of fly ash and rice husk ash-based geopolymer concrete using nano particles. Appl. Nanosci. 2021;15:1–8. doi: 10.1007/s13204-021-01916-2. DOI

Shilar F.A., Ganachari S.V., Patil V.B. Investigation of the effect of granite waste powder as a binder for different molarity of geopolymer concrete on fresh and mechanical properties. Mater. Lett. 2021;309:131302. doi: 10.1016/j.matlet.2021.131302. DOI

Ghosh R., Sagar S.P., Kumar A., Gupta S.K., Kumar S. Estimation of geopolymer concrete strength from ultrasonic pulse velocity (UPV) using high power pulser. J. Build. Eng. 2018;16:39–44. doi: 10.1016/j.jobe.2017.12.009. DOI

Jindal B.B. Investigations on the properties of geopolymer mortar and concrete with mineral admixtures: A review. Constr. Build. Mater. 2019;227:116644. doi: 10.1016/j.conbuildmat.2019.08.025. DOI

Marvila M., de Azevedo A., de Matos P., Monteiro S., Vieira C. Materials for Production of High and Ultra-High Performance Concrete: Review and Perspective of Possible Novel Materials. Materials. 2021;14:4304. doi: 10.3390/ma14154304. PubMed DOI PMC

Marvila M., Azevedo A., Matos P., Monteiro S., Vieira C. Rheological and the Fresh State Properties of Alkali-Activated Mortars by Blast Furnace Slag. Materials. 2021;14:2069. doi: 10.3390/ma14082069. PubMed DOI PMC

Hwang S., Yeon J.H. Fly Ash-Added, Seawater-Mixed Pervious Concrete: Compressive Strength, Permeability, and Phosphorus Removal. Materials. 2022;15:1407. doi: 10.3390/ma15041407. PubMed DOI PMC

Sreenivasulu C., Jawahar J.G., Sashidhar C. Predicting compressive strength of geopolymer concrete using NDT techniques. Asian J. Civ. Eng. 2018;19:513–525. doi: 10.1007/s42107-018-0036-1. DOI

Xie J., Wang J., Rao R., Wang C., Fang C. Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate. Compos. Part B Eng. 2018;164:179–190. doi: 10.1016/j.compositesb.2018.11.067. DOI

Ju T., Achenbach J.D., Jacobs L., Guimaraes M., Qu J. Ultrasonic nondestructive evaluation of alkali–silica reaction damage in concrete prism samples. Mater. Struct. 2017;50:1–13. doi: 10.1617/s11527-016-0869-6. DOI

Ahmad S., Bahraq A.A., Shaqraa A.A., Khalid H.R., Al-Gadhib A.H., Maslehuddin M. Effects of key factors on the compressive strength of metakaolin and limestone powder-based alkali-activated concrete mixtures: An experimental and statistical study. Case Stud. Constr. Mater. 2022;16:e00915. doi: 10.1016/j.cscm.2022.e00915. DOI

Mendes B.C., Pedroti L.G., Vieira C.M.F., Carvalho J.M.F., Ribeiro J.C.L., Albuini-Oliveira N.M., Andrade I.K.R. Evaluation of eco-efficient geopolymer using chamotte and waste glass-based alkaline solutions. Case Stud. Constr. Mater. 2022;16:e00847. doi: 10.1016/j.cscm.2021.e00847. DOI

Almutairi A.L., Tayeh B.A., Adesina A., Isleem H.F., Zeyad A.M. Potential applications of geopolymer concrete in construction: A review. Case Stud. Constr. Mater. 2021;15:e00733. doi: 10.1016/j.cscm.2021.e00733. DOI

Shilar F.A., Ganachari S.V., Patil V.B., Khan T.Y., Dawood S. Molarity Activity Effect on Mechanical and Microstructure Properties of Geopolymer Concrete: A Review. Case Stud. Constr. Mater. 2022;16:e01014. doi: 10.1016/j.cscm.2022.e01014. DOI

Marvila M.T., Azevedo A.R.G., Delaqua G.C.G., Mendes B.C., Pedroti L.G., Vieira C.M.F. Performance of geopolymer tiles in high temperature and saturation conditions. Constr. Build. Mater. 2021;286:122994. doi: 10.1016/j.conbuildmat.2021.122994. DOI

Shi X., Zhang C., Wang X., Zhang T., Wang Q. Response surface methodology for multi-objective optimization of fly ash-GGBS based geopolymer mortar. Constr. Build. Mater. 2022;315:125644. doi: 10.1016/j.conbuildmat.2021.125644. DOI

Hallad S., Banapurmath N., Khan T., Umarfarooq M., Soudagar M., Hunashyal A., Gujjar S., Yaradoddi J., Ganachari S., Elfasakhany A., et al. Statistical Analysis of Polymer Nanocomposites for Mechanical Properties. Molecules. 2021;26:4135. doi: 10.3390/molecules26144135. PubMed DOI PMC

Divvala S., Rani M.S. Strength properties and durability studies on modified geopolymer concrete composites incorporating GGBS and metakaolin. Appl. Nanosci. 2021;15:1–16. doi: 10.1007/s13204-021-02015-y. DOI

Vishnu N., Kolli R., Ravella D.P. Studies on Self-Compacting geopolymer concrete containing flyash, GGBS, wollastonite and graphene oxide. Mater. Today Proc. 2021;43:2422–2427. doi: 10.1016/j.matpr.2021.02.142. DOI

Wang J.J., Xie J.H., Wang C.H., Zhao J.B., Liu F., Fang C. Study on the optimum initial curing condition for fly ash and GGBS based geopolymer recycled aggregate concrete. Constr. Build. Mater. 2015;247:118540. doi: 10.1016/j.conbuildmat.2020.118540. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Exploring the Potential of Promising Sensor Technologies for Concrete Structural Health Monitoring

. 2024 May 17 ; 17 (10) : . [epub] 20240517

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...