Assessment of Destructive and Nondestructive Analysis for GGBS Based Geopolymer Concrete and Its Statistical Analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
R.G.P 2/235/43
King Khalid University
PubMed
35956647
PubMed Central
PMC9371249
DOI
10.3390/polym14153132
PII: polym14153132
Knihovny.cz E-zdroje
- Klíčová slova
- alkaline to binder ratio, casting, compressive strength, geopolymer concrete,
- Publikační typ
- časopisecké články MeSH
Geopolymer is the alternative to current construction material trends. In this paper, an attempt is made to produce a sustainable construction composite material using geopolymer. Ground granulated blast furnace slag (GGBS)-based geopolymer concrete was prepared and tested for different alkaline to binder ratios (A/B). The effect of various temperatures on compressive strength properties was assessed. The cubes were exposed to temperature ranging from 50 to 70 °C for a duration ranging from 2 to 10 h, and the compressive strength of the specimens was analyzed for destructive and non-destructive analysis and tested for 7, 28, and 90 days. The obtained compressive strength (CS) results were analyzed employing the probability plot (PP) curve, distribution overview curve (DOC), probability density function (PDF), Weibull, survival, and hazard function curve. Maximum compressive strength was achieved for the temperature of 70 °C and an A/B of 0.45 for destructive tests and non-destructive tests with 44.6 MPa and 43.56 MPa, respectively, on 90 days of testing. The survival and hazard function curves showed incremental distribution characteristics for 28 and 90 days of testing results with a probability factor ranging from 0.8 to 1.0.
Department of Civil Engineering Jain College of Engineering Belagavi 590014 Karnataka India
Research Center for Advanced Materials Science King Khalid University Abha 61413 Saudi Arabia
Zobrazit více v PubMed
Hattaf R., Aboulayt A., Lahlou N., Touhami M.O., Gomina M., Samdi A., Moussa R. Influence of the Integration of Geopolymer Wastes on the Characteristics of Binding Matrices Subjected to the Action of Temperature and Acid Environments. Polymers. 2022;14:917. doi: 10.3390/polym14050917. PubMed DOI PMC
Shill S.K., Al-Deen S., Ashraf M., Hutchison W. Resistance of fly ash based geopolymer mortar to both chemicals and high thermal cycles simultaneously. Constr. Build. Mater. 2019;239:117886. doi: 10.1016/j.conbuildmat.2019.117886. DOI
Shill S.K., Al-Deen S., Ashraf M., Garcez E.O., Subhani M., Hossain M.M. Resistance of Geopolymer, Epoxy and Cement Mortar to Hydrocarbon-Based Synthetic Engine Lubricant, Hydraulic Fluid, Jet Fuel and Elevated Temperatures. Constr. Mater. 2022;2:15–26. doi: 10.3390/constrmater2010002. DOI
Wong L.S. Durability Performance of Geopolymer Concrete: A Review. Polymers. 2022;14:868. doi: 10.3390/polym14050868. PubMed DOI PMC
Mendes B.C., Pedroti L.G., Vieira C.M.F., Marvilla M., Azevedo A.R., de Carvalho J.M.F., Ribeiro J.C.L. Application of eco-friendly alternative activators in alkali-activated materials: A review. J. Build. Eng. 2020;35:102010. doi: 10.1016/j.jobe.2020.102010. DOI
Moreno-Maroto J.M., Delgado-Plana P., Cabezas-Rodríguez R., de Gutiérrez R.M., Eliche-Quesada D., Pérez-Villarejo L., Galán-Arboledas R.J., Bueno S. Alkaline activation of high-crystalline low-Al2O3 Construction and Demolition Wastes to obtain geopolymers. J. Clean. Prod. 2021;330:129770. doi: 10.1016/j.jclepro.2021.129770. DOI
Robayo-Salazar R., Valencia-Saavedra W., de Gutiérrez R.M. Recycling of concrete, ceramic, and masonry waste via alkaline activation: Obtaining and characterization of hybrid cements. J. Build. Eng. 2021;46:103698. doi: 10.1016/j.jobe.2021.103698. DOI
Jayarajan G., Arivalagan S. An experimental studies of geopolymer concrete incorporated with fly-ash & GGBS. Mater. Today Proc. 2021;45:6915–6920. doi: 10.1016/j.matpr.2021.01.285. DOI
Abbass M., Singh D., Singh G. Properties of hybrid geopolymer concrete prepared using rice husk ash, fly ash and GGBS with coconut fiber. Mater. Today Proc. 2021;45:4964–4970. doi: 10.1016/j.matpr.2021.01.390. DOI
Ahmed H.U., Mohammed A.A., Rafiq S., Mohammed A.S., Mosavi A., Sor N.H., Qaidi S.M.A. Compressive Strength of Sustainable Geopolymer Concrete Composites: A State-of-the-Art Review. Sustainability. 2021;13:13502. doi: 10.3390/su132413502. DOI
Saini G., Vattipalli U. Assessing properties of alkali activated GGBS based self-compacting geopolymer concrete using nano-silica. Case Stud. Constr. Mater. 2020;12:e00352. doi: 10.1016/j.cscm.2020.e00352. DOI
Zeyad A.M., Magbool H.M., Tayeh B.A., de Azevedo A.R.G., Abutaleb A., Hussain Q. Production of geopolymer concrete by utilizing volcanic pumice dust. Case Stud. Constr. Mater. 2022;16:e00802. doi: 10.1016/j.cscm.2021.e00802. DOI
Saint-Pierre F., Philibert A., Giroux B., Rivard P. Concrete Quality Designation based on Ultrasonic Pulse Velocity. Constr. Build. Mater. 2016;125:1022–1027. doi: 10.1016/j.conbuildmat.2016.08.158. DOI
Lee W.-H., Wang J.-H., Ding Y.-C., Cheng T.-W. A study on the characteristics and microstructures of GGBS/FA based geopolymer paste and concrete. Constr. Build. Mater. 2019;211:807–813. doi: 10.1016/j.conbuildmat.2019.03.291. DOI
Sýkora M., Diamantidis D., Holický M., Marková J., Rózsás Á. Assessment of compressive strength of historic masonry using non-destructive and destructive techniques. Constr. Build. Mater. 2018;193:196–210. doi: 10.1016/j.conbuildmat.2018.10.180. DOI
Cavallaro G., Lazzara G., Lisuzzo L., Milioto S., Parisi F. Filling of Mater-Bi with Nanoclays to Enhance the Biofilm Rigidity. J. Funct. Biomater. 2018;9:60. doi: 10.3390/jfb9040060. PubMed DOI PMC
Nguyen T.A., Guo X., You F., Saha N., Wu S., Scheuermann A., Ren C., Huang L. Co-solidification of bauxite residue and coal ash into indurated monolith via ambient geopolymerisation for in situ environmental application. J. Hazard. Mater. 2021;422:126925. doi: 10.1016/j.jhazmat.2021.126925. PubMed DOI
Banchhor S., Murmu M., Deo S.V. Combined effect of fly-ash and GGBS on performance of alkali activated concrete. J. Build. Pathol. Rehabilitation. 2022;7:1–6. doi: 10.1007/s41024-022-00170-5. DOI
Chen K., Wu D., Yi M., Cai Q., Zhang Z. Mechanical and durability properties of metakaolin blended with slag geopolymer mortars used for pavement repair. Constr. Build. Mater. 2021;281:122566. doi: 10.1016/j.conbuildmat.2021.122566. DOI
Rajini B., Rao A.N., Sashidhar C. Micro-level studies of fly ash and GGBS—based geopolymer concrete using Fourier transform Infra-Red. Mater. Today Proc. 2020;46:586–589. doi: 10.1016/j.matpr.2020.11.291. DOI
Chen Z., Li J.-S., Zhan B.-J., Sharma U., Poon C.S. Compressive strength and microstructural properties of dry-mixed geopolymer pastes synthesized from GGBS and sewage sludge ash. Constr. Build. Mater. 2018;182:597–607. doi: 10.1016/j.conbuildmat.2018.06.159. DOI
Bouaissi A., Li L.-Y., Abdullah M.M.A.B., Bui Q.-B. Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete. Constr. Build. Mater. 2019;210:198–209. doi: 10.1016/j.conbuildmat.2019.03.202. DOI
Islam G.S., Akter S., Reza T.B. Sustainable high-performance, self-compacting concrete using ladle slag. Clean. Eng. Technol. 2022;7:100439. doi: 10.1016/j.clet.2022.100439. DOI
Ahmed H.U., Mohammed A.S., Mohammed A.A., Faraj R.H. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes. PLoS ONE. 2021;16:e0253006. doi: 10.1371/journal.pone.0253006. PubMed DOI PMC
Noori A.S., Oweed K.M., Raouf R.M., Abdulrehman M.A. The relation between destructive and non-destructive tests of geopolymer concrete. Mater. Today Proc. 2021;42:2125–2133. doi: 10.1016/j.matpr.2020.12.296. DOI
Specification for Granulated Slag for the Manufacture of Portland Slag Cement. Bureau of Indian Standards; New Delhi, India: 1987.
Specification for Coarse and Fine Aggregate from Natural Source for Concrete. Bureau of Indian Standards; New Delhi, India: 2016.
Concrete Mix Proportioning—Guidelines. Bureau of Indian Standards; New Delhi, India: 2019.
Methods of Sampling and Analysis of Concrete. Bureau of Indian Standards; New Delhi, India: 1959.
Non-Destructive Testing of Concrete-Methods of Test. Bureau of Indian Standards; New Delhi, India: 1992.
Shahmansouri A.A., Bengar H.A., Ghanbari S. Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method. J. Build. Eng. 2020;31:101326. doi: 10.1016/j.jobe.2020.101326. DOI
Ahmed H.U., Mohammed A.A., Mohammed A.S. The role of nanomaterials in geopolymer concrete composites: A state-of-the-art review. J. Build. Eng. 2022;49:104062. doi: 10.1016/j.jobe.2022.104062. DOI
Cai J., Pan J., Han J., Lin Y., Sheng Z. Impact behaviours of engineered geopolymer composite exposed to elevated temperatures. Constr. Build. Mater. 2021;312:125421. doi: 10.1016/j.conbuildmat.2021.125421. DOI
Xie J., Chen W., Wang J., Fang C., Zhang B., Liu F. Coupling effects of recycled aggregate and GGBS/metakaolin on physicochemical properties of geopolymer concrete. Constr. Build. Mater. 2019;226:345–359. doi: 10.1016/j.conbuildmat.2019.07.311. DOI
Poornima N., Katyal D., Revathi T., Sivasakthi M., Jeyalakshmi R. Effect of curing on mechanical strength and microstructure of fly ash blend GGBS geopolymer, Portland cement mortar and its behavior at elevated temperature. Mater. Today Proc. 2021;47:863–870. doi: 10.1016/j.matpr.2021.04.087. DOI
Salih M.A., Farzadnia N., Demirboga R., Ali A.A.A. Effect of elevated temperatures on mechanical and microstructural properties of alkali-activated mortar made up of POFA and GGBS. Constr. Build. Mater. 2022;328:127041. doi: 10.1016/j.conbuildmat.2022.127041. DOI
Nagajothi S., Elavenil S. Effect of GGBS Addition on Reactivity and Microstructure Properties of Ambient Cured Fly Ash Based Geopolymer Concrete. Silicon. 2020;13:507–516. doi: 10.1007/s12633-020-00470-w. DOI
Sousa L.N., Figueiredo P.F., França S., Silva M.V.d.M.S., Borges P.H.R., Bezerra A.C.D.S. Effect of Non-Calcined Sugarcane Bagasse Ash as an Alternative Precursor on the Properties of Alkali-Activated Pastes. Molecules. 2022;27:1185. doi: 10.3390/molecules27041185. PubMed DOI PMC
Kamseu E., Ponzoni C., Tippayasam C., Taurino R., Chaysuwan D., Sglavo V.M., Thavorniti P., Leonelli C. Self-compacting geopolymer concretes: Effects of addition of aluminosilicate-rich fines. J. Build. Eng. 2016;5:211–221. doi: 10.1016/j.jobe.2016.01.004. DOI
Premkumar R., Hariharan P., Rajesh S. Effect of silica fume and recycled concrete aggregate on the mechanical properties of GGBS based geopolymer concrete. Mater. Today Proc. 2022;60:211–215. doi: 10.1016/j.matpr.2021.12.442. DOI
Kishore K., Gupta N. Mechanical characterization and assessment of composite geopolymer concrete. Mater. Today Proc. 2020;44:58–62. doi: 10.1016/j.matpr.2020.06.319. DOI
Jagadeeswari K., Mohiddin S.L., Srinivas K., Vijaya S.K. Mechanical characterization of alkali activated GGBS based geopolymer concrete. Mater. Today Proc. 2021;64:28–31. doi: 10.1016/j.matpr.2020.12.476. DOI
Poloju K.K., Srinivasu K. Impact of GGBS and strength ratio on mechanical properties of geopolymer concrete under ambient curing and oven curing. Mater. Today Proc. 2021;42:962–968. doi: 10.1016/j.matpr.2020.11.934. DOI
Chiranjeevi K., Vijayalakshmi M.M., Praveenkumar T.R. Investigation of fly ash and rice husk ash-based geopolymer concrete using nano particles. Appl. Nanosci. 2021;15:1–8. doi: 10.1007/s13204-021-01916-2. DOI
Shilar F.A., Ganachari S.V., Patil V.B. Investigation of the effect of granite waste powder as a binder for different molarity of geopolymer concrete on fresh and mechanical properties. Mater. Lett. 2021;309:131302. doi: 10.1016/j.matlet.2021.131302. DOI
Ghosh R., Sagar S.P., Kumar A., Gupta S.K., Kumar S. Estimation of geopolymer concrete strength from ultrasonic pulse velocity (UPV) using high power pulser. J. Build. Eng. 2018;16:39–44. doi: 10.1016/j.jobe.2017.12.009. DOI
Jindal B.B. Investigations on the properties of geopolymer mortar and concrete with mineral admixtures: A review. Constr. Build. Mater. 2019;227:116644. doi: 10.1016/j.conbuildmat.2019.08.025. DOI
Marvila M., de Azevedo A., de Matos P., Monteiro S., Vieira C. Materials for Production of High and Ultra-High Performance Concrete: Review and Perspective of Possible Novel Materials. Materials. 2021;14:4304. doi: 10.3390/ma14154304. PubMed DOI PMC
Marvila M., Azevedo A., Matos P., Monteiro S., Vieira C. Rheological and the Fresh State Properties of Alkali-Activated Mortars by Blast Furnace Slag. Materials. 2021;14:2069. doi: 10.3390/ma14082069. PubMed DOI PMC
Hwang S., Yeon J.H. Fly Ash-Added, Seawater-Mixed Pervious Concrete: Compressive Strength, Permeability, and Phosphorus Removal. Materials. 2022;15:1407. doi: 10.3390/ma15041407. PubMed DOI PMC
Sreenivasulu C., Jawahar J.G., Sashidhar C. Predicting compressive strength of geopolymer concrete using NDT techniques. Asian J. Civ. Eng. 2018;19:513–525. doi: 10.1007/s42107-018-0036-1. DOI
Xie J., Wang J., Rao R., Wang C., Fang C. Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate. Compos. Part B Eng. 2018;164:179–190. doi: 10.1016/j.compositesb.2018.11.067. DOI
Ju T., Achenbach J.D., Jacobs L., Guimaraes M., Qu J. Ultrasonic nondestructive evaluation of alkali–silica reaction damage in concrete prism samples. Mater. Struct. 2017;50:1–13. doi: 10.1617/s11527-016-0869-6. DOI
Ahmad S., Bahraq A.A., Shaqraa A.A., Khalid H.R., Al-Gadhib A.H., Maslehuddin M. Effects of key factors on the compressive strength of metakaolin and limestone powder-based alkali-activated concrete mixtures: An experimental and statistical study. Case Stud. Constr. Mater. 2022;16:e00915. doi: 10.1016/j.cscm.2022.e00915. DOI
Mendes B.C., Pedroti L.G., Vieira C.M.F., Carvalho J.M.F., Ribeiro J.C.L., Albuini-Oliveira N.M., Andrade I.K.R. Evaluation of eco-efficient geopolymer using chamotte and waste glass-based alkaline solutions. Case Stud. Constr. Mater. 2022;16:e00847. doi: 10.1016/j.cscm.2021.e00847. DOI
Almutairi A.L., Tayeh B.A., Adesina A., Isleem H.F., Zeyad A.M. Potential applications of geopolymer concrete in construction: A review. Case Stud. Constr. Mater. 2021;15:e00733. doi: 10.1016/j.cscm.2021.e00733. DOI
Shilar F.A., Ganachari S.V., Patil V.B., Khan T.Y., Dawood S. Molarity Activity Effect on Mechanical and Microstructure Properties of Geopolymer Concrete: A Review. Case Stud. Constr. Mater. 2022;16:e01014. doi: 10.1016/j.cscm.2022.e01014. DOI
Marvila M.T., Azevedo A.R.G., Delaqua G.C.G., Mendes B.C., Pedroti L.G., Vieira C.M.F. Performance of geopolymer tiles in high temperature and saturation conditions. Constr. Build. Mater. 2021;286:122994. doi: 10.1016/j.conbuildmat.2021.122994. DOI
Shi X., Zhang C., Wang X., Zhang T., Wang Q. Response surface methodology for multi-objective optimization of fly ash-GGBS based geopolymer mortar. Constr. Build. Mater. 2022;315:125644. doi: 10.1016/j.conbuildmat.2021.125644. DOI
Hallad S., Banapurmath N., Khan T., Umarfarooq M., Soudagar M., Hunashyal A., Gujjar S., Yaradoddi J., Ganachari S., Elfasakhany A., et al. Statistical Analysis of Polymer Nanocomposites for Mechanical Properties. Molecules. 2021;26:4135. doi: 10.3390/molecules26144135. PubMed DOI PMC
Divvala S., Rani M.S. Strength properties and durability studies on modified geopolymer concrete composites incorporating GGBS and metakaolin. Appl. Nanosci. 2021;15:1–16. doi: 10.1007/s13204-021-02015-y. DOI
Vishnu N., Kolli R., Ravella D.P. Studies on Self-Compacting geopolymer concrete containing flyash, GGBS, wollastonite and graphene oxide. Mater. Today Proc. 2021;43:2422–2427. doi: 10.1016/j.matpr.2021.02.142. DOI
Wang J.J., Xie J.H., Wang C.H., Zhao J.B., Liu F., Fang C. Study on the optimum initial curing condition for fly ash and GGBS based geopolymer recycled aggregate concrete. Constr. Build. Mater. 2015;247:118540. doi: 10.1016/j.conbuildmat.2020.118540. DOI
Exploring the Potential of Promising Sensor Technologies for Concrete Structural Health Monitoring