The Relationship between Epigenetic Age and Myocardial Infarction/Acute Coronary Syndrome in a Population-Based Nested Case-Control Study
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
20-15-00371
Russian Scientific Foundation
WT064947
Welcome Trust
WT081081
Welcome Trust
106554/Z/14/Z
Welcome Trust
1RO1AG23522
US National Institute of Aging
PubMed
35055425
PubMed Central
PMC8781885
DOI
10.3390/jpm12010110
PII: jpm12010110
Knihovny.cz E-resources
- Keywords
- DNA methylation, HAPIEE project, acute coronary syndrome, epigenetic age, myocardial infarction, nested case-control, population,
- Publication type
- Journal Article MeSH
We investigated the relationship between 'epigenetic age' (EA) derived from DNA methylation (DNAm) and myocardial infarction (MI)/acute coronary syndrome (ACS). A random population sample was examined in 2003/2005 (n = 9360, 45-69, the HAPIEE project) and followed up for 15 years. From this cohort, incident MI/ACS (cases, n = 129) and age- and sex-stratified controls (n = 177) were selected for a nested case-control study. Baseline EA (Horvath's, Hannum's, PhenoAge, Skin and Blood) and the differences between EA and chronological age (CA) were calculated (ΔAHr, ΔAHn, ΔAPh, ΔASB). EAs by Horvath's, Hannum's and Skin and Blood were close to CA (median absolute difference, MAD, of 1.08, -1.91 and -2.03 years); PhenoAge had MAD of -9.29 years vs. CA. The adjusted odds ratios (ORs) of MI/ACS per 1-year increments of ΔAHr, ΔAHn, ΔASB and ΔAPh were 1.01 (95% CI 0.95-1.07), 1.01 (95% CI 0.95-1.08), 1.02 (95% CI 0.97-1.06) and 1.01 (0.93-1.09), respectively. When classified into tertiles, only the highest tertile of ΔAPh showed a suggestion of increased risk of MI/ACS with OR 2.09 (1.11-3.94) independent of age and 1.84 (0.99-3.52) in the age- and sex-adjusted model. Metabolic modulation may be the likely mechanism of this association. In conclusion, this case-control study nested in a prospective population-based cohort did not find strong associations between accelerated epigenetic age markers and risk of MI/ACS. Larger cohort studies are needed to re-examine this important research question.
Institute for Global Health University College London London WC1E 6BT UK
Institute of Epidemiology and Health Care University College London London WC1E 6BT UK
UCL Cancer Institute University College London London WC1E 6BT UK
See more in PubMed
United Nations, Department of Economic and Social Affairs, Population Division (2017) World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. [(accessed on 29 October 2021)]. Working Paper No. ESA/P/WP/248. Available online: https://population.un.org/wpp/Publications/Files/WPP2017_KeyFindings.pdf.
WHO/Global Status Report on Noncommunicable Diseases. 2014. [(accessed on 29 October 2021)]. Available online: https://www.who.int/publications/i/item/9789241564854.
Jylhävä J., Pedersen N.L., Hägg S. Biological Age Predictors. EBioMedicine. 2017;21:29–36. doi: 10.1016/j.ebiom.2017.03.046. PubMed DOI PMC
Horvath S., Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 2018;19:371–384. doi: 10.1038/s41576-018-0004-3. PubMed DOI
Riggs A.D., Martienssen R.F., Russo V.E.A. Introduction. Epigenetic Mechanisms of Gene Regulation. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY, USA: 1996.
Jones M.J., Goodman S.J., Kobor M. DNA methylation and healthy human aging. Aging Cell. 2015;14:924–932. doi: 10.1111/acel.12349. PubMed DOI PMC
Bock C. Analysing and interpreting DNA methylation data. Nat. Rev. Genet. 2012;13:705–719. doi: 10.1038/nrg3273. PubMed DOI
Horvath S., Zhang Y., Langfelder P., Kahn R.S., Boks M.P., Van Eijk K., Van den Berg L.H., Ophoff R.A. Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol. 2012;13:R97. doi: 10.1186/gb-2012-13-10-r97. PubMed DOI PMC
Hannum G., Guinney J., Zhao L., Zhang L., Hughes G., Sadda S., Klotzle B., Bibikova M., Fan J.-B., Gao Y., et al. Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Mol. Cell. 2012;49:359–367. doi: 10.1016/j.molcel.2012.10.016. PubMed DOI PMC
Weidner C.I., Lin Q., Koch C.M., Eisele L., Beier F., Ziegler P., Bauerschlag D.O., Jöckel K.-H., Erbel R., Mühleisen T.W., et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 2014;15:R24. doi: 10.1186/gb-2014-15-2-r24. PubMed DOI PMC
Bell C.G., Lowe R., Adams P.D., Baccarelli A.A., Beck S., Bell J.T., Christensen B.C., Gladyshev V.N., Heijmans B.T., Horvath S., et al. DNA methylation aging clocks: Challenges and recommendations. Genome Biol. 2019;20:249. doi: 10.1186/s13059-019-1824-y. PubMed DOI PMC
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115. doi: 10.1186/gb-2013-14-10-r115. PubMed DOI PMC
Levine M.E., Lu A.T., Quach A., Chen B.H., Assimes T.L., Bandinelli S., Hou L., Baccarelli A.A., Stewart J.D., Li Y., et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging. 2018;10:573–591. doi: 10.18632/aging.101414. PubMed DOI PMC
Horvath S., Oshima J., Martin G.M., Lu A.T., Quach A., Cohen H., Felton S., Matsuyama M., Lowe D., Kabacik S., et al. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging. 2018;10:1758–1775. doi: 10.18632/aging.101508. PubMed DOI PMC
Oblak L., van der Zaag J., Higgins-Chen A.T., Levine M.E., Boks M.P. A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration. Ageing Res. Rev. 2021;69:101348. doi: 10.1016/j.arr.2021.101348. PubMed DOI
Lee Y., Haftorn K.L., Denault W.R.P., Nustad H.E., Page C.M., Lyle R., Lee-Odegard S., Moen G.-H., Prasad R.B., Groop L.C., et al. Blood-based epigenetic estimators of chronological age in human adults using DNA methylation data from the Illumina MethylationEPIC array. BMC Genom. 2020;21:747. doi: 10.1186/s12864-020-07168-8. PubMed DOI PMC
Lu A.T., Quach A., Wilson J.G., Reiner A.P., Aviv A., Raj K., Hou L., Baccarelli A.A., Li Y., Stewart J.D., et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging. 2019;11:303–327. doi: 10.18632/aging.101684. PubMed DOI PMC
Shireby G.L., Davies J.P., Francis P.T., Burrage J., Walker E.M., Neilson G.W.A., Dahir A., Thomas A.J., Love S., Smith R.G., et al. Recalibrating the epigenetic clock: Implications for assessing biological age in the human cortex. Brain. 2020;143:3763–3775. doi: 10.1093/brain/awaa334. PubMed DOI PMC
Christiansen L., Lenart A., Tan Q., Vaupel J., Aviv A., McGue M., Christensen K. DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell. 2015;15:149–154. doi: 10.1111/acel.12421. PubMed DOI PMC
Perna L., Zhang Y., Mons U., Holleczek B., Saum K.-U., Brenner H. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin. Epigenet. 2016;8:64. doi: 10.1186/s13148-016-0228-z. PubMed DOI PMC
Dugué P.-A., Bassett J.K., Joo J.H.E., Baglietto L., Jung C.-H., Wong E.M., Fiorito G., Schmidt D., Makalic E., Li S., et al. Association of DNA Methylation-Based Biological Age With Health Risk Factors and Overall and Cause-Specific Mortality. Am. J. Epidemiol. 2018;187:529–538. doi: 10.1093/aje/kwx291. PubMed DOI
Marioni R.E., Shah S., McRae A.F., Chen B.H., Colicino E., Harris S.E., Gibson J., Henders A.K., Redmond P., Cox S.R., et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015;16:25. doi: 10.1186/s13059-015-0584-6. PubMed DOI PMC
Chen B.H., Marioni R.E., Colicino E., Peters M.J., Ward-Caviness C.K., Tsai P.C., Roetker N.S., Just A.C., Demerath E.W., Guan W., et al. DNA methylation-based measures of biological age: Meta-analysis predicting time to death. Aging. 2016;8:1844–1865. doi: 10.18632/aging.101020. PubMed DOI PMC
Fransquet P.D., Wrigglesworth J., Woods R.L., Ernst M.E., Ryan J. The epigenetic clock as a predictor of disease and mortality risk: A systematic review and meta-analysis. Clin. Epigenet. 2019;11:62. doi: 10.1186/s13148-019-0656-7. PubMed DOI PMC
Horvath S., Gurven M., Levine M.E., Trumble B.C., Kaplan H., Allayee H., Ritz B.R., Chen B., Lu A.T., Rickabaugh T.M., et al. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 2016;17:171. doi: 10.1186/s13059-016-1030-0. PubMed DOI PMC
EUROSTAT Mortality and Life Expectancy Statistics. 2021. [(accessed on 30 October 2021)]. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Mortality_and_life_expectancy_statistics.
Global Age Watch Index 2015: Insight report. [(accessed on 29 October 2021)]. Available online: https://www.helpage.org/global-agewatch/reports/global-agewatch-index-2015-insight-report-summary-and-methodology/
Bobak M., Malyutina S., Horvat P., Pajak A., Tamosiunas A., Kubinova R., Simonova G., Topor-Madry R., Peasey A., Pikhart H., et al. Alcohol, drinking pattern and all-cause, cardiovascular and alcohol-related mortality in Eastern Europe. Eur. J. Epidemiol. 2016;31:21–30. doi: 10.1007/s10654-015-0092-8. PubMed DOI PMC
Tillmann T., Pikhart H., Peasey A., Kubínová R., Pajak A., Tamosiūnas A., Malyutina S., Steptoe A., Kivimäki M., Marmot M., et al. Psychosocial and socioeconomic determinants of cardiovascular mortality in Eastern Europe: A multicentre prospective cohort study. PLoS Med. 2017;14:e1002459. doi: 10.1371/journal.pmed.1002459. PubMed DOI PMC
Stefler D., Brett D., Sarkadi-Nagy E., Kopczynska E., Detchev S., Bati A., Scrob M., Koenker D., Aleksov B., Douarin E., et al. Traditional Eastern European diet and mortality: Prospective evidence from the HAPIEE study. Eur. J. Nutr. 2021;60:1091–1100. doi: 10.1007/s00394-020-02319-9. PubMed DOI PMC
Ryabikov A., Maksimov V., Holmes M., Bobak M., Malyutina S. The association between epigenetic age and progression of subclinical atherosclerosis in ageing cohort. Atheroscler. 2020;315:e132. doi: 10.1016/j.atherosclerosis.2020.10.409. DOI
Peasey A., Bobak M., Kubinova R., Malyutina S., Pajak A., Tamosiunas A., Pikhart H., Nicholson A., Marmot M. Determinants of cardiovascular disease and other non-communicable diseases in Central and Eastern Europe: Rationale and design of the HAPIEE study. BMC Public Health. 2006;6:255–264. doi: 10.1186/1471-2458-6-255. PubMed DOI PMC
Fortin J.-P., Triche T.J., Jr., Hansen K.D. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics. 2016;33:558–560. doi: 10.1093/bioinformatics/btw691. PubMed DOI PMC
Tian Y., Morris T.J., Webster A., Yang Z., Beck S., Feber A., Teschendorff A. ChAMP: Updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics. 2017;33:3982–3984. doi: 10.1093/bioinformatics/btx513. PubMed DOI PMC
Xu Z., Langie S.A.S., De Boever P., Taylor J.A., Niu L., De Boever P. RELIC: A novel dye-bias correction method for Illumina Methylation BeadChip. BMC Genom. 2017;18:4. doi: 10.1186/s12864-016-3426-3. PubMed DOI PMC
Chervova O., Conde L., Guerra-Assunção J.A., Moghul I., Webster A.P., Berner A., Cadieux E.L., Tian Y., Voloshin V., Jesus T.F., et al. The Personal Genome Project-UK, an open access resource of human multi-omics data. Sci. Data. 2019;6:257. doi: 10.1038/s41597-019-0205-4. PubMed DOI PMC
Fix E., Hodges J.L., Jr. Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties. Int. Stat. Rev. 1989;57:238–247. doi: 10.2307/1403797. DOI
Altman N.S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 1992;46:175. doi: 10.2307/2685209. DOI
Ryan J., Wrigglesworth J., Loong J., Fransquet P., Woods R.L. A Systematic Review and Meta-analysis of Environmental, Lifestyle, and Health Factors Associated With DNA Methylation Age. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2020;75:481–494. doi: 10.1093/gerona/glz099. PubMed DOI PMC
Marioni R., Shah S., McRae A., Ritchie S.J., Terrera G.M., Harris S.E., Gibson J., Redmond P., Cox S.R., Pattie A., et al. The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. Int. J. Epidemiol. 2015;44:1388–1396. doi: 10.1093/ije/dyu277. PubMed DOI PMC
Levine M.E., Lu A.T., Bennett D.A., Horvath S. Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning. Aging. 2015;7:1198–1211. doi: 10.18632/aging.100864. PubMed DOI PMC
Levine M.E., Lu A.T., Chen B.H., Hernandez D.G., Singleton A.B., Ferrucci L., Bandinelli S., Salfati E., Manson J.E., Quach A., et al. Menopause accelerates biological aging. Proc. Natl. Acad. Sci. USA. 2016;113:9327–9332. doi: 10.1073/pnas.1604558113. PubMed DOI PMC
Wang C., Ni W., Yao Y., Just A., Heiss J., Wei Y., Gao X., Coull B.A., Kosheleva A., Baccarelli A.A., et al. DNA methylation-based biomarkers of age acceleration and all-cause death, myocardial infarction, stroke, and cancer in two cohorts: The NAS, and KORA F4. EBioMedicine. 2021;63:103151. doi: 10.1016/j.ebiom.2020.103151. PubMed DOI PMC
Roetker N.S., Pankow J., Bressler J., Morrison A.C., Boerwinkle E. Prospective Study of Epigenetic Age Acceleration and Incidence of Cardiovascular Disease Outcomes in the ARIC Study (Atherosclerosis Risk in Communities) Circ. Genom. Precis. Med. 2018;11:e001937. doi: 10.1161/CIRCGEN.117.001937. PubMed DOI PMC
Horvath S., Erhart W., Brosch M., Ammerpohl O., von Schönfels W., Ahrens M., Heits N., Bell J., Tsai P.-C., Spector T.D., et al. Obesity accelerates epigenetic aging of human liver. Proc. Natl. Acad. Sci. USA. 2014;111:15538–15543. doi: 10.1073/pnas.1412759111. PubMed DOI PMC
Pagiatakis C., Musolino E., Gornati R., Bernardini G., Papait R. Epigenetics of aging and disease: A brief overview. Aging Clin. Exp. Res. 2021;33:737–745. doi: 10.1007/s40520-019-01430-0. PubMed DOI PMC
Fernández-Sanlés A., Baixeras S.S., Subirana I., Degano I.R., Elosua R. Association between DNA methylation and coronary heart disease or other atherosclerotic events: A systematic review. Atherosclerosis. 2017;263:325–333. doi: 10.1016/j.atherosclerosis.2017.05.022. PubMed DOI
Fernández-Sanlés A., Sayols-Baixeras S., Curcio S., Subirana I., Marrugat J., Elosua R. DNA Methylation and Age-Independent Cardiovascular Risk, an Epigenome-Wide Approach. Arter. Thromb. Vasc. Biol. 2018;38:645–652. doi: 10.1161/ATVBAHA.117.310340. PubMed DOI PMC
Gonzalez-Jaramillo V., Portilla-Fernandez E., Glisic M., Voortman T., Bramer W., Chowdhury R., Roks A.J., Danser A.H.J., Muka T., Nano J., et al. The role of DNA methylation and histone modifications in blood pressure: A systematic review. J. Hum. Hypertens. 2019;33:703–715. doi: 10.1038/s41371-019-0218-7. PubMed DOI
Hartman R.J.G., Huisman S., Ruijter H.M.D. Sex differences in cardiovascular epigenetics-a systematic review. Biol. Sex Differ. 2018;9:19. doi: 10.1186/s13293-018-0180-z. PubMed DOI PMC
Xia Y., Brewer A., Bell J.T. DNA methylation signatures of incident coronary heart disease: Findings from epigenome-wide association studies. Clin. Epigenet. 2021;13:186. doi: 10.1186/s13148-021-01175-6. PubMed DOI PMC