Boswellia serrata Extract as an Antibiofilm Agent against Candida spp
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
35056620
PubMed Central
PMC8778954
DOI
10.3390/microorganisms10010171
PII: microorganisms10010171
Knihovny.cz E-resources
- Keywords
- Candida albicans, Candida krusei, Candida parapsilosis, biofilm, boswellic acid, fluconazole,
- Publication type
- Journal Article MeSH
The use of antibiotics or antifungals to control infections caused by pathogenic microorganisms is currently insufficiently effective because of their emerging resistance. Thanks to the ability of microorganisms to form a biofilm and thus increase their resistance to administered drugs even more, modern medicine faces the task of finding novel substances to combat infections caused by them. In this regard, the effects of essential oils or plant extracts are often studied. Among the relatively neglected plants is Boswellia serrata, which has a high content of biologically active boswellic acids. In this study, we focused on one of the most common nosocomial infections, which are caused by Candida species. The most common representative is C. albicans, although the number of infections caused by non-albicans species has recently been increasing. We focused on the antifungal activity of Boswellia serrata extract Bioswellix against planktonic and adhering cells of Candida albicans, Candida parapsilosis and Candida krusei. The antifungal activity against adhering cells was further explored by determining the metabolic activity of cells (MTT) and determining the total amount of biofilm using crystal violet. Boswellic acid-containing plant extract was shown to suppress the growth of a suspension population of all tested Candida species. Boswellia serrata extract Bioswellix was most effective in inhibiting C. albicans biofilm formation.
See more in PubMed
Abdallah M., Benoliel C., Drider D., Dhulster P., Chihib N.-E. Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Arch. Microbiol. 2014;196:453–472. doi: 10.1007/s00203-014-0983-1. PubMed DOI
Kašparová P., Maťátková O., Čejková A. Can the advantages of the genus Candida exceed the strong pathogenesis of some of its species? Chem. Lett. 2019;113:415–421.
Schindler J. The Universe. Vesmír, s.r.o.; Prague, Czech Republic: 2001.
Bridier A., Sanchez-Vizuete P., Guilbaud M., Piard J.-C., Naïtali M., Briandet R. Biofilm-associated persistence of food-borne pathogens. Food Microbiol. 2015;45:167–178. doi: 10.1016/j.fm.2014.04.015. PubMed DOI
Melicharčíková V. Sterilization and Disinfection in Healthcare. GRADA Publishing; Prague, Czech Republic: 1998.
Patocka J. Biologically active pentacyclic triterpenes and their current medicine signification. J. Appl. Biomed. 2003;1:7–12. doi: 10.32725/jab.2003.002. DOI
Kolouchová I., Melzoch K., Šmidrkal J., Filip V. The content of resveratrol in vegetables and fruit. Chem. Lett. 2005;99:492–495.
Yauan G., Wahlqvist M., He G., Yang M., Li D. Natural products and anti inflammatory activity. Asia Pac. J. Clin. Nutr. 2006;15:143. PubMed
Etzel R. Use of Incense in the Treatment of Alzheimer’s. US720975A. Disease Patent. 1998 February 24;
Tsukada T., Nakashima K., Shirakawa S. Arachidonate 5 lipoxygenase inhibitors show potent antiproliferative effects on human leukemia cell lines. Biochem. Biophys. Res. Commun. 1986;140:832–836. doi: 10.1016/0006-291X(86)90709-6. PubMed DOI
Huang M.T., Badmaev V., Ding Y., Liu Y., Xie J.G., Ho C.T. Anti tumor and anti carcinogenic activities of triterpenoid, beta boswellic acid. Biofactors. 2000;13:225–230. doi: 10.1002/biof.5520130135. PubMed DOI
Gupta I., Gupta V., Parihar A., Gupta S., Lüdtke R., Safayhi H., Ammon H.P. Effects of Boswellia serrata gum resin in patients with bronchial asthma. Results of a double blind, placebo controlled, 6 week clinical study. Eur. J. Med. Res. 1998;3:511–514. PubMed
Krieglstein C.F., Anthoni C., Rijcken E.J., Laukötter M., Spiegel H.U., Boden S.E., Schweizer S., Safayhi H., Senninger N., Schürmann G. Acetyl 11 keto beta boswellic acid, a constituent of a herbal medicine from Boswellia serrata resin, attenuates experimental ileitis. Int. J. Colorectal Dis. 2001;16:88–95. doi: 10.1007/s003840100292. PubMed DOI
Ravanan P., Singh S.K., Rao G.S., Kondaiah P. Growth inhibitory, apoptotic and anti inflammatory activities displayed by a novel modified triterpenoid, cyano enone of methyl boswellates. J. Biosci. 2011;36:297–307. doi: 10.1007/s12038-011-9056-7. PubMed DOI
Flavin D.F. A lipoxygenase inhibitor in breast cancer brain metastases. J. Neurooncol. 2007;82:91–93. doi: 10.1007/s11060-006-9248-4. PubMed DOI
Gyawali R., Ibrahim S.A. Natural products as antimicrobial agents. Food Control. 2014;46:412–429. doi: 10.1016/j.foodcont.2014.05.047. DOI
Safayhi H., Rall B., Sailer E.R. Ammon, H.P. Inhibition by boswellic acids of human leukocyte elastase. J. Pharm. Exp. Ther. 1997;281:460–463. PubMed
Ammon H.P., Mack T., Singh G.B., Safayhi H. Inhibition of leukotriene B4 formation in rat peritoneal neutrophils by an ethanolic extract of the gum resin exudate of Boswellia Serrata. Planta Med. 1991;57:203–207. doi: 10.1055/s-2006-960074. PubMed DOI
Camarda L., Dayton T., Di Stefano V., Pitonzo R., Schillaci D. Chemical composition and antimicrobial activity of some oleogum resin essential oils from Boswellia spp. (Burseraceae) Ann. Chim. 2007;97:837–844. doi: 10.1002/adic.200790068. PubMed DOI
Schillaci D., Arizza V., Dayton T., Camarda L., Di Stefano V. In vitro anti- biofilm activity of Boswellia spp. oleogum resin essential oils. Lett. Appl. Microbiol. 2008;47:433–438. doi: 10.1111/j.1472-765X.2008.02469.x. PubMed DOI
Raja A.F., Ali F., Khan I.A., Shawl A.S., Arora D.S., Shah B.A., Taneja S.C. Antistaphylococcal and biofilm inhibitory activities of acetyl-11-keto-β-boswellic acid from Boswellia serrata. BMC Microbiol. 2011;11:54. doi: 10.1186/1471-2180-11-54. PubMed DOI PMC
Ammon H.P.T. Boswellic Acids in chronic inflammatory diseases. Planta Med. 2006;72:1100–1116. doi: 10.1055/s-2006-947227. PubMed DOI
Siddiqui M.Z. Boswellia serrata, a potential antiinflammatory agent. Indian J. Pharm. Sci. 2011;73:255–261. PubMed PMC
Silva S., Negri M., Henriques M., Oliveira R., Williams D.W., Azeredo J. Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol. 2011;19:241–247. doi: 10.1016/j.tim.2011.02.003. PubMed DOI
Trofa D., Gacser A., Nosanchuk J.D. Candida parapsilosis, an Emerging Fungal Pathogen. Clin. Microbiol. Rev. 2008;21:606–625. doi: 10.1128/CMR.00013-08. PubMed DOI PMC
Ghannoum M.A., Rice L.B. Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 1999;12:501–517. doi: 10.1128/CMR.12.4.501. PubMed DOI PMC
Vitale R.G. Role of Antifungal Combinations in difficult to treat Candida infections. J. Fungi. 2021;7:731. doi: 10.3390/jof7090731. PubMed DOI PMC
Kato H., Hagihara M., Shibata Y., Asai N., Yamagishi Y., Iwamoto T., Mikamo H. Comparison of mortality between echinocandins and polyenes for an initial treatment of candidemia: A systematic review and meta-analysis. J. Infect. Chemother. 2021;27:1562–1570. doi: 10.1016/j.jiac.2021.06.017. PubMed DOI
Baillie G.S., Douglas L.J. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J. Antimicrob. Chemother. 2000;46:397–403. doi: 10.1093/jac/46.3.397. PubMed DOI
Mukherjee P.K., Chandra J., Kuhn D.M., Ghannoum M.A. Mechanism of fluconazole resistance in Candida albicans biofilms: Phase-specific role of efflux pumps and membrane sterols. Infect. Immun. 2003;71:4333–4340. doi: 10.1128/IAI.71.8.4333-4340.2003. PubMed DOI PMC
Tobudic S., Kratzer C., Lassnigg A., Presterl E. Antifungal susceptibility of Candida albicans in biofilms. Mycoses. 2012;55:199–204. doi: 10.1111/j.1439-0507.2011.02076.x. PubMed DOI
Singh B., Upreti D., Singh B., Pandey G., Verma S., Roy S., Naqvi A., Rawat A. Quercetin sensitizes fluconazole-resistant Candida albicans to induce apoptotic cell death by modulating quorum sensing. Antimicrob. Agents Chemother. 2015;59:2153–2168. doi: 10.1128/AAC.03599-14. PubMed DOI PMC
Andrews H.P. Determination of minimum inhibitory concentrations. J. Antimicrob Chemother. 2001;48:5–16. doi: 10.1093/jac/48.suppl_1.5. PubMed DOI
Li X., Yan Z., Xu J. Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiology. 2003;149:353–362. doi: 10.1099/mic.0.25932-0. PubMed DOI
Sabaeifard P., Abdi-Ali A., Soudi M.R., Dinarvand R. Optimization of tetrazolium salt assay for Pseudomonas aeruginosa biofilm using microtiter plate method. J. Microbiol. Methods. 2014;105:134–140. doi: 10.1016/j.mimet.2014.07.024. PubMed DOI
Riss T., Moravec R., Niles A., Benink H., Worzella T., Minor L. Cell Viability Assays. Assay Guidance Manual [Internet] Eli Lilly & Company and the National Center for Advancing Translational Sciences; Bethesda, MD, USA: 2004. PubMed
Paldrychová M., Kolouchová I., Vaňková E., Maťátková O., Šmidrkal J., Krmela A., Schulzová V., Hajšlová J., Masák J. Effect of resveratrol and regrapex-R-forte on Trichosporon cutaneum biofilm. Folia Microbiol. 2019;64:73–81. doi: 10.1007/s12223-018-0633-0. PubMed DOI
Stanbury R.M., Graham E.M. Systemic corticosteroid therapy side effects and their management. Br. J. Ophthalmol. 1998;82:704–708. doi: 10.1136/bjo.82.6.704. PubMed DOI PMC
Wiseman A.C. Immunosuppressive medications. Clin. J. Am. Soc. Nephrol. 2016;11:332–343. doi: 10.2215/CJN.08570814. PubMed DOI PMC
Kazemi S., Shirzad H., Rafieian-Kopaei M. Recent findings in molecular basis of inflammation and anti-inflammatory plants. Curr. Pharm. Des. 2018;24:1551–1562. doi: 10.2174/1381612824666180403122003. PubMed DOI
Fürst R., Zündorf I. Plant-derived anti-inflammatory compounds: Hopes and disappointments regarding the translation of preclinical knowledge into clinical progress. Mediat. Inflamm. 2014;2014:146832. doi: 10.1155/2014/146832. PubMed DOI PMC
Krcmery V.C. Antifungal Chemotherapeutics. Med. Princ. Pract. 2005;14:125–135. doi: 10.1159/000084627. PubMed DOI
Krausová L., Grim J., Pávek P. Azolová antimykotika: Mechanizmy lékových interakcí. Klin. Farmakol. Farm. 2009;23:86–89.
Afrin S.R., Islam M.R., Proma N.M., Shorna M.K., Akbar S., Hossain M.K. Quantitative screening of phytochemicals and pharmacological attributions of the leaves and stem barks of Macropanax dispermus (Araliaceae) in treating the inflammation and arthritis. J. Herbmed. Pharmacol. 2020;10:75–83. doi: 10.34172/jhp.2021.07. DOI
Al Qaraghuli M.M., Alzahrani A.R., Niwasabutra K., Obeid M.A., Ferro V.A. Where traditional drug discovery meets modern technology in the quest for new drugs. Ann. Pharmacol. Pharm. 2017;2:1–5.
Mukherjee P.K. Evidence-Based Validation of Herbal Medicine. Elsevier; Boston, MA, USA: 2015.
Hamza M., Nadir M., Mehmood N., Farooq A. In vitro effectiveness of triterpenoids and their synergistic effect with antibiotics against Staphylococcus aureus strains. Indian J. Pharmacol. 2016;48:710–714. doi: 10.4103/0253-7613.194851. PubMed DOI PMC
Roy N.K., Parama D., Banik K., Bordoloi D., Devi A.K., Thakur K.K., Padmavathi G., Shakibaei M., Fan L., Sethi G. An update on pharmacological potential of boswellic acids against chronic diseases. Int. J. Mol. Sci. 2019;20:4101. doi: 10.3390/ijms20174101. PubMed DOI PMC
Wang Q., Pan X., Wong H., Wagner C., Lahey L., Robinson W., Sokolove J. Oral and topical boswellic acid attenuates mouse osteoarthritis. Osteoarth. Cartil. 2017;22:128–132. doi: 10.1016/j.joca.2013.10.012. PubMed DOI PMC
Harsha K., Shreya K. Topical Nanoemmigel Formulation of Boswellia serrata. Indian Pharm. Sci. 2018;80:261–267. doi: 10.4172/pharmaceutical-sciences.1000353. DOI
Bertocchi M., Isani G., Medici F., Andreani G., Tubon Usca I., Roncada P., Forni M., Bernardini C. Anti-inflammatory activity of Boswellia serrata extracts: An in vitro study on porcine aortic endothelial cells. Oxidative Med. Cell Longev. 2018;2018:2504305. doi: 10.1155/2018/2504305. PubMed DOI PMC
Kumar R., Singh S., Saksena A.K., Pal R., Jaiswal R., Kumar R. Effect of Boswellia serrata extract on acute inflammatory parameters and tumor necrosis factor-a in complete Freund’s adjuvant-induced animal model of rheumatoid arthritis. Int. J. Appl. Basic Med. Res. 2019;9:100–106. doi: 10.4103/ijabmr.IJABMR_248_18. PubMed DOI PMC
Ebrahimpour S., Fazeli M., Mehri S., Taherianfard M., Hosseinzadeh H. Boswellic acid improves cognitive function in a rat model through its antioxidant activity:-Neuroprotective effect of Boswellic acid. J. Pharmacopunct. 2017;20:10–17. PubMed PMC
Ismail S.M., Rao S., Bhaskar M. Evaluation of antiinflammatory activity of Boswellia serrata on carrageenan induced paw edema in albino Wistar rats. Int. J. Res. Med. Sci. 2016;4:2980–2986. doi: 10.18203/2320-6012.ijrms20161989. DOI
Lv M., Shao S., Zhang Q., Zhuang X., Qiao T. Acetyl-11-Keto-b-Boswellic Acid Exerts the Anti-Cancer Effects via Cell Cycle Arrest, Apoptosis Induction and Autophagy Suppression in Non-Small Cell Lung Cancer Cells. OncoTargets Ther. 2020;13:733–744. doi: 10.2147/OTT.S236346. PubMed DOI PMC
Büchele B., Simmet T. Analysis of 12 different pentacyclic triterpenic acids from frankincense in human plasma by high-performance liquid chromatography and photodiode array detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2003;795:355–362. doi: 10.1016/S1570-0232(03)00555-5. PubMed DOI
Karpinski T.M., Ozarowski M., Seremak-Mrozikiewicz A., Wolski H., Adamczak A. plant preparations and compounds with activities against biofilms formed by Candida spp. J. Fungi. 2021;7:360. doi: 10.3390/jof7050360. PubMed DOI PMC
Arumugam G., Rajendran R., Syed N., Ramanathan K.S. Anti-candidal and anti-virulence efficiency of selected seaweeds againstazole resistance Candida albicans. Biocatal. Agric. Biotechnol. 2019;20:101195. doi: 10.1016/j.bcab.2019.101195. DOI
Rajkowska K., Nowicka-Krawczyk P., Kunicka-Styczynska A. Efect of clove and thyme essential oils on Candida biofilm formation and the oil distribution in yeast cells. Molecules. 2019;24:1954. doi: 10.3390/molecules24101954. PubMed DOI PMC
Sharma M., Manoharlal R., Negi A.S., Prasad R. Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis. FEMS Yeast Res. 2010;10:570–578. doi: 10.1111/j.1567-1364.2010.00637.x. PubMed DOI
Choonharuangdej S., Srithavaj T., Thummawanit S. Fungicidal and inhibitory efficacy of cinnamon and lemongrass essential oils on Candida albicans biofilm established on acrylic resin: An in vitro study. J. Prosthet. Dent. 2021;125:707.e1–707.e6. doi: 10.1016/j.prosdent.2020.12.017. PubMed DOI
Freires I.A., Murata R.M., Furletti V.F., Sartoratto A., Alencar S., de Alencar S.M., Figueira G.M., de Oliveira Rodrigues J.A., Duarte M.C., Rosalen P.L. Coriandrum sativum L. (Coriander) Essential oil: Antifungal activity and mode of action on Candida spp., and molecular targets affected in human whole-genome expression. PLoS ONE. 2014;9:e099086. doi: 10.1371/journal.pone.0099086. PubMed DOI PMC
Barbieri D.S., Tonial F., Lopez P.V., Sales Maia B.H., Santos G.D., Ribas M.O., Glienke C., Vicente V.A. Antiadherent activity of Schinus terebinthifolius and Croton urucurana extracts on in vitro biofilm formation of Candida albicans and Streptococcus mutans. Arch. Oral. Biol. 2014;59:887–896. doi: 10.1016/j.archoralbio.2014.05.006. PubMed DOI
Zago P.M.W., Dos Santos Castelo Branco S.J., de Albuquerque Bogea Fecury L., Carvalho L.T., Rocha C.Q., Madeira P.L.B., de Sousa E.M., de Siqueira F.S.F., Paschoal M.A.B., Diniz R.S., et al. Anti-biofilm action of Chenopodium ambrosioides extract, cytotoxic potential and effects on acrylic denture surface. Front. Microbiol. 2019;10:1724. doi: 10.3389/fmicb.2019.01724. PubMed DOI PMC
Madeira P.L.B., Carvalho L.T., Paschoal M., de Sousa E.M., Moffa E., da Silva M.A.S., Tavarez R.R., Gonçalves L. In vitro effects of lemongrass extract on Candida albicans biofilms, human cells viability, and denture surface. Front. Cell Infect. Microbiol. 2016;6:71. doi: 10.3389/fcimb.2016.00071. PubMed DOI PMC
Quatrin P.M., Verdi C.M., de Souza M.E., de Godoi S.N., Klein B., Gundel A., Wagner R., Vaucher R.A., Ourique A., Santos R.C. Antimicrobial and antibiofilm activities of nanoemulsions containing Eucalyptus globulus oil against Pseudomonas aeruginosa and Candida spp. Microb. Pathog. 2017;112:230–242. doi: 10.1016/j.micpath.2017.09.062. PubMed DOI
Salete M.F.B., Galvo L.C.C., Goes V.F.F., Sartoratto A., Figueira G., Rehder V.L., Alencar S.M., Duarte R.M., Rosalen P.L., Duarte M.C. Action of essential oils from Brazilian native and exotic medicinal species on oral biofilms. BMC Complement. Altern. Med. 2014;14:451. PubMed PMC
Sun F.-J., Li M., Gu L., Wang M.-L., Yang M.-H. Recent progress on anti-Candida natural products. Chin. J. Nat. Med. 2021;19:561–579. doi: 10.1016/S1875-5364(21)60057-2. PubMed DOI
Weckesser S., Engel K., Simon-Haarhaus B., Wittmer A., Pelz K., Schempp C.M. Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance. Phytomedicine. 2017;14:508–516. doi: 10.1016/j.phymed.2006.12.013. PubMed DOI
Vahabi S., Hakemi-Vala M., Gholami S. In vitro antibacterial effect of hydroalcoholic extract of Lawsonia inermis, Malva sylvestris, and Boswellia serrata on Aggregatibacter actinomycetemcomitans. Adv. Biomed. Res. 2019;8:22. doi: 10.4103/abr.abr_205_18. PubMed DOI PMC
Sadhasivam S., Palanivel S., Ghosh S. Synergistic antimicrobial activity of Boswellia serrata Roxb. ex Colebr. (Burseraceae) essential oil with various azoles against pathogens associated with skin, scalp and nail infections. Lett. Appl. Microbiol. 2016;63:495–501. doi: 10.1111/lam.12683. PubMed DOI
Maiolo E.M., Tafin U.F., Borens O., Trampuz A. Activities of fluconazole, caspofungin, anidulafungin, and amphotericin b on planktonic and biofilm Candida species determined by microcalorimetry. Antimicrob. Agents Chemother. 2014;58:2709–2717. doi: 10.1128/AAC.00057-14. PubMed DOI PMC
Swinne D., Watelle M., Nolard N. In vitro activities of voriconazole, fluconazole, itraconazole and amphotericin B against non Candida albicans yeast isolates. Rev. Iberoam. Micol. 2005;22:24–28. doi: 10.1016/S1130-1406(05)70002-4. PubMed DOI
Peixoto L.R., Rosalen P.L., Ferreira G.L.S., Freires I.A., de Carvalho F.G., Castellano L.R., de Castro R.D. Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp. Arch. Oral. Biol. 2017;73:179–185. doi: 10.1016/j.archoralbio.2016.10.013. PubMed DOI
Butassi E., Svetaz L., Carpinella M.C., Efferth T., Zacchino S. Fungal biofilms as a valuable target for the discovery of natural products that cope with the resistance of medically important fungi—Latest findings. Antibiotics. 2021;10:1053. doi: 10.3390/antibiotics10091053. PubMed DOI PMC
Khan F., Bamunuarachchic N.I., Tabassum N., Jo D.-M., Khan M.M., Kim Y.-M. Suppression of hyphal formation and virulence of Candida albicans by natural and synthetic compounds. Biofouling. 2021;37:626–655. doi: 10.1080/08927014.2021.1948538. PubMed DOI
Jenks J.D., Cornely O.A., Chen S.C.A., Thompson III G.R., Hoenigl M. Breakthrough invasive fungal infections: Who is at risk? Mycoses. 2020;63:1021–1032. doi: 10.1111/myc.13148. PubMed DOI
Katragkou A., Roilides E., Walsh T.J. Role of echinocandins in fungal biofilm–related disease: Vascular catheter–related infections, immunomodulation, and mucosal surfaces. Clin. Infect. Dis. 2015;61:622–629. doi: 10.1093/cid/civ746. PubMed DOI
Pfaller M.A., Diekema D.J. Epidemiology of invasive candidiasis: A persistent public health problem. Clin. Microbiol Rev. 2007;20:133–163. doi: 10.1128/CMR.00029-06. PubMed DOI PMC
Borjian Boroujeni Z., Shamsaei S., Yarahmadi M., Getso M.I., Salimi Khorashad A., Haghighi L., Raissi V., Zareei M., Saleh Mohammadzade A., Moqarabzadeh V., et al. Distribution of invasive fungal infections: Molecular epidemiology, etiology, clinical conditions, diagnosis and risk factors: A 3-year experience with 490 patients under intensive care. Microb. Pathog. 2021;152:104616. doi: 10.1016/j.micpath.2020.104616. PubMed DOI
McCarthy M.W., Walsh T.J. Drug development challenges and strategies to address emerging and resistant fungal pathogens. Expert Rev. Anti Infect Ther. 2017;15:577–584. doi: 10.1080/14787210.2017.1328279. PubMed DOI
Guimarães R., Milho C., Liberal A., Silva J., Fonseca C., Barbosa A., Ferreira I.C.F.R., Alves M.J., Barros L. Antibiofilm Potential of Medicinal Plants against Candida spp. Oral Biofilms: A Review. Antibiotics. 2021;10:1142. doi: 10.3390/antibiotics10091142. PubMed DOI PMC
Alam M.Z., Khan M.S.A. Phytomedicine from Middle Eastern countries: An alternative remedy to modern medicine against Candida spp. infection. Evid.-Based Complement. Altern. Med. 2021;2021:6694876. doi: 10.1155/2021/6694876. PubMed DOI PMC