• This record comes from PubMed

Boswellia serrata Extract as an Antibiofilm Agent against Candida spp

. 2022 Jan 13 ; 10 (1) : . [epub] 20220113

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Links

PubMed 35056620
PubMed Central PMC8778954
DOI 10.3390/microorganisms10010171
PII: microorganisms10010171
Knihovny.cz E-resources

The use of antibiotics or antifungals to control infections caused by pathogenic microorganisms is currently insufficiently effective because of their emerging resistance. Thanks to the ability of microorganisms to form a biofilm and thus increase their resistance to administered drugs even more, modern medicine faces the task of finding novel substances to combat infections caused by them. In this regard, the effects of essential oils or plant extracts are often studied. Among the relatively neglected plants is Boswellia serrata, which has a high content of biologically active boswellic acids. In this study, we focused on one of the most common nosocomial infections, which are caused by Candida species. The most common representative is C. albicans, although the number of infections caused by non-albicans species has recently been increasing. We focused on the antifungal activity of Boswellia serrata extract Bioswellix against planktonic and adhering cells of Candida albicans, Candida parapsilosis and Candida krusei. The antifungal activity against adhering cells was further explored by determining the metabolic activity of cells (MTT) and determining the total amount of biofilm using crystal violet. Boswellic acid-containing plant extract was shown to suppress the growth of a suspension population of all tested Candida species. Boswellia serrata extract Bioswellix was most effective in inhibiting C. albicans biofilm formation.

See more in PubMed

Abdallah M., Benoliel C., Drider D., Dhulster P., Chihib N.-E. Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Arch. Microbiol. 2014;196:453–472. doi: 10.1007/s00203-014-0983-1. PubMed DOI

Kašparová P., Maťátková O., Čejková A. Can the advantages of the genus Candida exceed the strong pathogenesis of some of its species? Chem. Lett. 2019;113:415–421.

Schindler J. The Universe. Vesmír, s.r.o.; Prague, Czech Republic: 2001.

Bridier A., Sanchez-Vizuete P., Guilbaud M., Piard J.-C., Naïtali M., Briandet R. Biofilm-associated persistence of food-borne pathogens. Food Microbiol. 2015;45:167–178. doi: 10.1016/j.fm.2014.04.015. PubMed DOI

Melicharčíková V. Sterilization and Disinfection in Healthcare. GRADA Publishing; Prague, Czech Republic: 1998.

Patocka J. Biologically active pentacyclic triterpenes and their current medicine signification. J. Appl. Biomed. 2003;1:7–12. doi: 10.32725/jab.2003.002. DOI

Kolouchová I., Melzoch K., Šmidrkal J., Filip V. The content of resveratrol in vegetables and fruit. Chem. Lett. 2005;99:492–495.

Yauan G., Wahlqvist M., He G., Yang M., Li D. Natural products and anti inflammatory activity. Asia Pac. J. Clin. Nutr. 2006;15:143. PubMed

Etzel R. Use of Incense in the Treatment of Alzheimer’s. US720975A. Disease Patent. 1998 February 24;

Tsukada T., Nakashima K., Shirakawa S. Arachidonate 5 lipoxygenase inhibitors show potent antiproliferative effects on human leukemia cell lines. Biochem. Biophys. Res. Commun. 1986;140:832–836. doi: 10.1016/0006-291X(86)90709-6. PubMed DOI

Huang M.T., Badmaev V., Ding Y., Liu Y., Xie J.G., Ho C.T. Anti tumor and anti carcinogenic activities of triterpenoid, beta boswellic acid. Biofactors. 2000;13:225–230. doi: 10.1002/biof.5520130135. PubMed DOI

Gupta I., Gupta V., Parihar A., Gupta S., Lüdtke R., Safayhi H., Ammon H.P. Effects of Boswellia serrata gum resin in patients with bronchial asthma. Results of a double blind, placebo controlled, 6 week clinical study. Eur. J. Med. Res. 1998;3:511–514. PubMed

Krieglstein C.F., Anthoni C., Rijcken E.J., Laukötter M., Spiegel H.U., Boden S.E., Schweizer S., Safayhi H., Senninger N., Schürmann G. Acetyl 11 keto beta boswellic acid, a constituent of a herbal medicine from Boswellia serrata resin, attenuates experimental ileitis. Int. J. Colorectal Dis. 2001;16:88–95. doi: 10.1007/s003840100292. PubMed DOI

Ravanan P., Singh S.K., Rao G.S., Kondaiah P. Growth inhibitory, apoptotic and anti inflammatory activities displayed by a novel modified triterpenoid, cyano enone of methyl boswellates. J. Biosci. 2011;36:297–307. doi: 10.1007/s12038-011-9056-7. PubMed DOI

Flavin D.F. A lipoxygenase inhibitor in breast cancer brain metastases. J. Neurooncol. 2007;82:91–93. doi: 10.1007/s11060-006-9248-4. PubMed DOI

Gyawali R., Ibrahim S.A. Natural products as antimicrobial agents. Food Control. 2014;46:412–429. doi: 10.1016/j.foodcont.2014.05.047. DOI

Safayhi H., Rall B., Sailer E.R. Ammon, H.P. Inhibition by boswellic acids of human leukocyte elastase. J. Pharm. Exp. Ther. 1997;281:460–463. PubMed

Ammon H.P., Mack T., Singh G.B., Safayhi H. Inhibition of leukotriene B4 formation in rat peritoneal neutrophils by an ethanolic extract of the gum resin exudate of Boswellia Serrata. Planta Med. 1991;57:203–207. doi: 10.1055/s-2006-960074. PubMed DOI

Camarda L., Dayton T., Di Stefano V., Pitonzo R., Schillaci D. Chemical composition and antimicrobial activity of some oleogum resin essential oils from Boswellia spp. (Burseraceae) Ann. Chim. 2007;97:837–844. doi: 10.1002/adic.200790068. PubMed DOI

Schillaci D., Arizza V., Dayton T., Camarda L., Di Stefano V. In vitro anti- biofilm activity of Boswellia spp. oleogum resin essential oils. Lett. Appl. Microbiol. 2008;47:433–438. doi: 10.1111/j.1472-765X.2008.02469.x. PubMed DOI

Raja A.F., Ali F., Khan I.A., Shawl A.S., Arora D.S., Shah B.A., Taneja S.C. Antistaphylococcal and biofilm inhibitory activities of acetyl-11-keto-β-boswellic acid from Boswellia serrata. BMC Microbiol. 2011;11:54. doi: 10.1186/1471-2180-11-54. PubMed DOI PMC

Ammon H.P.T. Boswellic Acids in chronic inflammatory diseases. Planta Med. 2006;72:1100–1116. doi: 10.1055/s-2006-947227. PubMed DOI

Siddiqui M.Z. Boswellia serrata, a potential antiinflammatory agent. Indian J. Pharm. Sci. 2011;73:255–261. PubMed PMC

Silva S., Negri M., Henriques M., Oliveira R., Williams D.W., Azeredo J. Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol. 2011;19:241–247. doi: 10.1016/j.tim.2011.02.003. PubMed DOI

Trofa D., Gacser A., Nosanchuk J.D. Candida parapsilosis, an Emerging Fungal Pathogen. Clin. Microbiol. Rev. 2008;21:606–625. doi: 10.1128/CMR.00013-08. PubMed DOI PMC

Ghannoum M.A., Rice L.B. Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 1999;12:501–517. doi: 10.1128/CMR.12.4.501. PubMed DOI PMC

Vitale R.G. Role of Antifungal Combinations in difficult to treat Candida infections. J. Fungi. 2021;7:731. doi: 10.3390/jof7090731. PubMed DOI PMC

Kato H., Hagihara M., Shibata Y., Asai N., Yamagishi Y., Iwamoto T., Mikamo H. Comparison of mortality between echinocandins and polyenes for an initial treatment of candidemia: A systematic review and meta-analysis. J. Infect. Chemother. 2021;27:1562–1570. doi: 10.1016/j.jiac.2021.06.017. PubMed DOI

Baillie G.S., Douglas L.J. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J. Antimicrob. Chemother. 2000;46:397–403. doi: 10.1093/jac/46.3.397. PubMed DOI

Mukherjee P.K., Chandra J., Kuhn D.M., Ghannoum M.A. Mechanism of fluconazole resistance in Candida albicans biofilms: Phase-specific role of efflux pumps and membrane sterols. Infect. Immun. 2003;71:4333–4340. doi: 10.1128/IAI.71.8.4333-4340.2003. PubMed DOI PMC

Tobudic S., Kratzer C., Lassnigg A., Presterl E. Antifungal susceptibility of Candida albicans in biofilms. Mycoses. 2012;55:199–204. doi: 10.1111/j.1439-0507.2011.02076.x. PubMed DOI

Singh B., Upreti D., Singh B., Pandey G., Verma S., Roy S., Naqvi A., Rawat A. Quercetin sensitizes fluconazole-resistant Candida albicans to induce apoptotic cell death by modulating quorum sensing. Antimicrob. Agents Chemother. 2015;59:2153–2168. doi: 10.1128/AAC.03599-14. PubMed DOI PMC

Andrews H.P. Determination of minimum inhibitory concentrations. J. Antimicrob Chemother. 2001;48:5–16. doi: 10.1093/jac/48.suppl_1.5. PubMed DOI

Li X., Yan Z., Xu J. Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiology. 2003;149:353–362. doi: 10.1099/mic.0.25932-0. PubMed DOI

Sabaeifard P., Abdi-Ali A., Soudi M.R., Dinarvand R. Optimization of tetrazolium salt assay for Pseudomonas aeruginosa biofilm using microtiter plate method. J. Microbiol. Methods. 2014;105:134–140. doi: 10.1016/j.mimet.2014.07.024. PubMed DOI

Riss T., Moravec R., Niles A., Benink H., Worzella T., Minor L. Cell Viability Assays. Assay Guidance Manual [Internet] Eli Lilly & Company and the National Center for Advancing Translational Sciences; Bethesda, MD, USA: 2004. PubMed

Paldrychová M., Kolouchová I., Vaňková E., Maťátková O., Šmidrkal J., Krmela A., Schulzová V., Hajšlová J., Masák J. Effect of resveratrol and regrapex-R-forte on Trichosporon cutaneum biofilm. Folia Microbiol. 2019;64:73–81. doi: 10.1007/s12223-018-0633-0. PubMed DOI

Stanbury R.M., Graham E.M. Systemic corticosteroid therapy side effects and their management. Br. J. Ophthalmol. 1998;82:704–708. doi: 10.1136/bjo.82.6.704. PubMed DOI PMC

Wiseman A.C. Immunosuppressive medications. Clin. J. Am. Soc. Nephrol. 2016;11:332–343. doi: 10.2215/CJN.08570814. PubMed DOI PMC

Kazemi S., Shirzad H., Rafieian-Kopaei M. Recent findings in molecular basis of inflammation and anti-inflammatory plants. Curr. Pharm. Des. 2018;24:1551–1562. doi: 10.2174/1381612824666180403122003. PubMed DOI

Fürst R., Zündorf I. Plant-derived anti-inflammatory compounds: Hopes and disappointments regarding the translation of preclinical knowledge into clinical progress. Mediat. Inflamm. 2014;2014:146832. doi: 10.1155/2014/146832. PubMed DOI PMC

Krcmery V.C. Antifungal Chemotherapeutics. Med. Princ. Pract. 2005;14:125–135. doi: 10.1159/000084627. PubMed DOI

Krausová L., Grim J., Pávek P. Azolová antimykotika: Mechanizmy lékových interakcí. Klin. Farmakol. Farm. 2009;23:86–89.

Afrin S.R., Islam M.R., Proma N.M., Shorna M.K., Akbar S., Hossain M.K. Quantitative screening of phytochemicals and pharmacological attributions of the leaves and stem barks of Macropanax dispermus (Araliaceae) in treating the inflammation and arthritis. J. Herbmed. Pharmacol. 2020;10:75–83. doi: 10.34172/jhp.2021.07. DOI

Al Qaraghuli M.M., Alzahrani A.R., Niwasabutra K., Obeid M.A., Ferro V.A. Where traditional drug discovery meets modern technology in the quest for new drugs. Ann. Pharmacol. Pharm. 2017;2:1–5.

Mukherjee P.K. Evidence-Based Validation of Herbal Medicine. Elsevier; Boston, MA, USA: 2015.

Hamza M., Nadir M., Mehmood N., Farooq A. In vitro effectiveness of triterpenoids and their synergistic effect with antibiotics against Staphylococcus aureus strains. Indian J. Pharmacol. 2016;48:710–714. doi: 10.4103/0253-7613.194851. PubMed DOI PMC

Roy N.K., Parama D., Banik K., Bordoloi D., Devi A.K., Thakur K.K., Padmavathi G., Shakibaei M., Fan L., Sethi G. An update on pharmacological potential of boswellic acids against chronic diseases. Int. J. Mol. Sci. 2019;20:4101. doi: 10.3390/ijms20174101. PubMed DOI PMC

Wang Q., Pan X., Wong H., Wagner C., Lahey L., Robinson W., Sokolove J. Oral and topical boswellic acid attenuates mouse osteoarthritis. Osteoarth. Cartil. 2017;22:128–132. doi: 10.1016/j.joca.2013.10.012. PubMed DOI PMC

Harsha K., Shreya K. Topical Nanoemmigel Formulation of Boswellia serrata. Indian Pharm. Sci. 2018;80:261–267. doi: 10.4172/pharmaceutical-sciences.1000353. DOI

Bertocchi M., Isani G., Medici F., Andreani G., Tubon Usca I., Roncada P., Forni M., Bernardini C. Anti-inflammatory activity of Boswellia serrata extracts: An in vitro study on porcine aortic endothelial cells. Oxidative Med. Cell Longev. 2018;2018:2504305. doi: 10.1155/2018/2504305. PubMed DOI PMC

Kumar R., Singh S., Saksena A.K., Pal R., Jaiswal R., Kumar R. Effect of Boswellia serrata extract on acute inflammatory parameters and tumor necrosis factor-a in complete Freund’s adjuvant-induced animal model of rheumatoid arthritis. Int. J. Appl. Basic Med. Res. 2019;9:100–106. doi: 10.4103/ijabmr.IJABMR_248_18. PubMed DOI PMC

Ebrahimpour S., Fazeli M., Mehri S., Taherianfard M., Hosseinzadeh H. Boswellic acid improves cognitive function in a rat model through its antioxidant activity:-Neuroprotective effect of Boswellic acid. J. Pharmacopunct. 2017;20:10–17. PubMed PMC

Ismail S.M., Rao S., Bhaskar M. Evaluation of antiinflammatory activity of Boswellia serrata on carrageenan induced paw edema in albino Wistar rats. Int. J. Res. Med. Sci. 2016;4:2980–2986. doi: 10.18203/2320-6012.ijrms20161989. DOI

Lv M., Shao S., Zhang Q., Zhuang X., Qiao T. Acetyl-11-Keto-b-Boswellic Acid Exerts the Anti-Cancer Effects via Cell Cycle Arrest, Apoptosis Induction and Autophagy Suppression in Non-Small Cell Lung Cancer Cells. OncoTargets Ther. 2020;13:733–744. doi: 10.2147/OTT.S236346. PubMed DOI PMC

Büchele B., Simmet T. Analysis of 12 different pentacyclic triterpenic acids from frankincense in human plasma by high-performance liquid chromatography and photodiode array detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2003;795:355–362. doi: 10.1016/S1570-0232(03)00555-5. PubMed DOI

Karpinski T.M., Ozarowski M., Seremak-Mrozikiewicz A., Wolski H., Adamczak A. plant preparations and compounds with activities against biofilms formed by Candida spp. J. Fungi. 2021;7:360. doi: 10.3390/jof7050360. PubMed DOI PMC

Arumugam G., Rajendran R., Syed N., Ramanathan K.S. Anti-candidal and anti-virulence efficiency of selected seaweeds againstazole resistance Candida albicans. Biocatal. Agric. Biotechnol. 2019;20:101195. doi: 10.1016/j.bcab.2019.101195. DOI

Rajkowska K., Nowicka-Krawczyk P., Kunicka-Styczynska A. Efect of clove and thyme essential oils on Candida biofilm formation and the oil distribution in yeast cells. Molecules. 2019;24:1954. doi: 10.3390/molecules24101954. PubMed DOI PMC

Sharma M., Manoharlal R., Negi A.S., Prasad R. Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis. FEMS Yeast Res. 2010;10:570–578. doi: 10.1111/j.1567-1364.2010.00637.x. PubMed DOI

Choonharuangdej S., Srithavaj T., Thummawanit S. Fungicidal and inhibitory efficacy of cinnamon and lemongrass essential oils on Candida albicans biofilm established on acrylic resin: An in vitro study. J. Prosthet. Dent. 2021;125:707.e1–707.e6. doi: 10.1016/j.prosdent.2020.12.017. PubMed DOI

Freires I.A., Murata R.M., Furletti V.F., Sartoratto A., Alencar S., de Alencar S.M., Figueira G.M., de Oliveira Rodrigues J.A., Duarte M.C., Rosalen P.L. Coriandrum sativum L. (Coriander) Essential oil: Antifungal activity and mode of action on Candida spp., and molecular targets affected in human whole-genome expression. PLoS ONE. 2014;9:e099086. doi: 10.1371/journal.pone.0099086. PubMed DOI PMC

Barbieri D.S., Tonial F., Lopez P.V., Sales Maia B.H., Santos G.D., Ribas M.O., Glienke C., Vicente V.A. Antiadherent activity of Schinus terebinthifolius and Croton urucurana extracts on in vitro biofilm formation of Candida albicans and Streptococcus mutans. Arch. Oral. Biol. 2014;59:887–896. doi: 10.1016/j.archoralbio.2014.05.006. PubMed DOI

Zago P.M.W., Dos Santos Castelo Branco S.J., de Albuquerque Bogea Fecury L., Carvalho L.T., Rocha C.Q., Madeira P.L.B., de Sousa E.M., de Siqueira F.S.F., Paschoal M.A.B., Diniz R.S., et al. Anti-biofilm action of Chenopodium ambrosioides extract, cytotoxic potential and effects on acrylic denture surface. Front. Microbiol. 2019;10:1724. doi: 10.3389/fmicb.2019.01724. PubMed DOI PMC

Madeira P.L.B., Carvalho L.T., Paschoal M., de Sousa E.M., Moffa E., da Silva M.A.S., Tavarez R.R., Gonçalves L. In vitro effects of lemongrass extract on Candida albicans biofilms, human cells viability, and denture surface. Front. Cell Infect. Microbiol. 2016;6:71. doi: 10.3389/fcimb.2016.00071. PubMed DOI PMC

Quatrin P.M., Verdi C.M., de Souza M.E., de Godoi S.N., Klein B., Gundel A., Wagner R., Vaucher R.A., Ourique A., Santos R.C. Antimicrobial and antibiofilm activities of nanoemulsions containing Eucalyptus globulus oil against Pseudomonas aeruginosa and Candida spp. Microb. Pathog. 2017;112:230–242. doi: 10.1016/j.micpath.2017.09.062. PubMed DOI

Salete M.F.B., Galvo L.C.C., Goes V.F.F., Sartoratto A., Figueira G., Rehder V.L., Alencar S.M., Duarte R.M., Rosalen P.L., Duarte M.C. Action of essential oils from Brazilian native and exotic medicinal species on oral biofilms. BMC Complement. Altern. Med. 2014;14:451. PubMed PMC

Sun F.-J., Li M., Gu L., Wang M.-L., Yang M.-H. Recent progress on anti-Candida natural products. Chin. J. Nat. Med. 2021;19:561–579. doi: 10.1016/S1875-5364(21)60057-2. PubMed DOI

Weckesser S., Engel K., Simon-Haarhaus B., Wittmer A., Pelz K., Schempp C.M. Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance. Phytomedicine. 2017;14:508–516. doi: 10.1016/j.phymed.2006.12.013. PubMed DOI

Vahabi S., Hakemi-Vala M., Gholami S. In vitro antibacterial effect of hydroalcoholic extract of Lawsonia inermis, Malva sylvestris, and Boswellia serrata on Aggregatibacter actinomycetemcomitans. Adv. Biomed. Res. 2019;8:22. doi: 10.4103/abr.abr_205_18. PubMed DOI PMC

Sadhasivam S., Palanivel S., Ghosh S. Synergistic antimicrobial activity of Boswellia serrata Roxb. ex Colebr. (Burseraceae) essential oil with various azoles against pathogens associated with skin, scalp and nail infections. Lett. Appl. Microbiol. 2016;63:495–501. doi: 10.1111/lam.12683. PubMed DOI

Maiolo E.M., Tafin U.F., Borens O., Trampuz A. Activities of fluconazole, caspofungin, anidulafungin, and amphotericin b on planktonic and biofilm Candida species determined by microcalorimetry. Antimicrob. Agents Chemother. 2014;58:2709–2717. doi: 10.1128/AAC.00057-14. PubMed DOI PMC

Swinne D., Watelle M., Nolard N. In vitro activities of voriconazole, fluconazole, itraconazole and amphotericin B against non Candida albicans yeast isolates. Rev. Iberoam. Micol. 2005;22:24–28. doi: 10.1016/S1130-1406(05)70002-4. PubMed DOI

Peixoto L.R., Rosalen P.L., Ferreira G.L.S., Freires I.A., de Carvalho F.G., Castellano L.R., de Castro R.D. Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp. Arch. Oral. Biol. 2017;73:179–185. doi: 10.1016/j.archoralbio.2016.10.013. PubMed DOI

Butassi E., Svetaz L., Carpinella M.C., Efferth T., Zacchino S. Fungal biofilms as a valuable target for the discovery of natural products that cope with the resistance of medically important fungi—Latest findings. Antibiotics. 2021;10:1053. doi: 10.3390/antibiotics10091053. PubMed DOI PMC

Khan F., Bamunuarachchic N.I., Tabassum N., Jo D.-M., Khan M.M., Kim Y.-M. Suppression of hyphal formation and virulence of Candida albicans by natural and synthetic compounds. Biofouling. 2021;37:626–655. doi: 10.1080/08927014.2021.1948538. PubMed DOI

Jenks J.D., Cornely O.A., Chen S.C.A., Thompson III G.R., Hoenigl M. Breakthrough invasive fungal infections: Who is at risk? Mycoses. 2020;63:1021–1032. doi: 10.1111/myc.13148. PubMed DOI

Katragkou A., Roilides E., Walsh T.J. Role of echinocandins in fungal biofilm–related disease: Vascular catheter–related infections, immunomodulation, and mucosal surfaces. Clin. Infect. Dis. 2015;61:622–629. doi: 10.1093/cid/civ746. PubMed DOI

Pfaller M.A., Diekema D.J. Epidemiology of invasive candidiasis: A persistent public health problem. Clin. Microbiol Rev. 2007;20:133–163. doi: 10.1128/CMR.00029-06. PubMed DOI PMC

Borjian Boroujeni Z., Shamsaei S., Yarahmadi M., Getso M.I., Salimi Khorashad A., Haghighi L., Raissi V., Zareei M., Saleh Mohammadzade A., Moqarabzadeh V., et al. Distribution of invasive fungal infections: Molecular epidemiology, etiology, clinical conditions, diagnosis and risk factors: A 3-year experience with 490 patients under intensive care. Microb. Pathog. 2021;152:104616. doi: 10.1016/j.micpath.2020.104616. PubMed DOI

McCarthy M.W., Walsh T.J. Drug development challenges and strategies to address emerging and resistant fungal pathogens. Expert Rev. Anti Infect Ther. 2017;15:577–584. doi: 10.1080/14787210.2017.1328279. PubMed DOI

Guimarães R., Milho C., Liberal A., Silva J., Fonseca C., Barbosa A., Ferreira I.C.F.R., Alves M.J., Barros L. Antibiofilm Potential of Medicinal Plants against Candida spp. Oral Biofilms: A Review. Antibiotics. 2021;10:1142. doi: 10.3390/antibiotics10091142. PubMed DOI PMC

Alam M.Z., Khan M.S.A. Phytomedicine from Middle Eastern countries: An alternative remedy to modern medicine against Candida spp. infection. Evid.-Based Complement. Altern. Med. 2021;2021:6694876. doi: 10.1155/2021/6694876. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...