Quercetin sensitizes fluconazole-resistant candida albicans to induce apoptotic cell death by modulating quorum sensing
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25645848
PubMed Central
PMC4356769
DOI
10.1128/aac.03599-14
PII: AAC.03599-14
Knihovny.cz E-resources
- MeSH
- Antifungal Agents pharmacology MeSH
- Antioxidants pharmacology MeSH
- Apoptosis drug effects MeSH
- Biofilms drug effects MeSH
- Candida albicans drug effects MeSH
- Virulence Factors metabolism MeSH
- Fluconazole pharmacology MeSH
- Drug Resistance, Fungal drug effects MeSH
- Hyphae drug effects MeSH
- Microbial Sensitivity Tests MeSH
- Quercetin pharmacology MeSH
- Quorum Sensing drug effects MeSH
- Usnea chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antifungal Agents MeSH
- Antioxidants MeSH
- Virulence Factors MeSH
- Fluconazole MeSH
- Quercetin MeSH
Quorum sensing (QS) regulates group behaviors of Candida albicans such as biofilm, hyphal growth, and virulence factors. The sesquiterpene alcohol farnesol, a QS molecule produced by C. albicans, is known to regulate the expression of virulence weapons of this fungus. Fluconazole (FCZ) is a broad-spectrum antifungal drug that is used for the treatment of C. albicans infections. While FCZ can be cytotoxic at high concentrations, our results show that at much lower concentrations, quercetin (QC), a dietary flavonoid isolated from an edible lichen (Usnea longissima), can be implemented as a sensitizing agent for FCZ-resistant C. albicans NBC099, enhancing the efficacy of FCZ. QC enhanced FCZ-mediated cell killing of NBC099 and also induced cell death. These experiments indicated that the combined application of both drugs was FCZ dose dependent rather than QC dose dependent. In addition, we found that QC strongly suppressed the production of virulence weapons-biofilm formation, hyphal development, phospholipase, proteinase, esterase, and hemolytic activity. Treatment with QC also increased FCZ-mediated cell death in NBC099 biofilms. Interestingly, we also found that QC enhances the anticandidal activity of FCZ by inducing apoptotic cell death. We have also established that this sensitization is reliant on the farnesol response generated by QC. Molecular docking studies also support this conclusion and suggest that QC can form hydrogen bonds with Gln969, Thr1105, Ser1108, Arg1109, Asn1110, and Gly1061 in the ATP binding pocket of adenylate cyclase. Thus, this QS-mediated combined sensitizer (QC)-anticandidal agent (FCZ) strategy may be a novel way to enhance the efficacy of FCZ-based therapy of C. albicans infections.
See more in PubMed
Chander J, Singla N, Sidhu SK, Gombar S. 2013. Epidemiology of Candida blood stream infections: experience of a tertiary care centre in North India. J Infect Dev Ctries 7:670–675. doi:10.3855/jidc.2623. PubMed DOI
Pfaller MA, Diekema DJ. 2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163. doi:10.1128/CMR.00029-06. PubMed DOI PMC
Li DD, Xu Y, Zhang DZ, Quan H, Mylonakis E, Hu DD, Li MB, Zhao LX, Zhu LH, Wang Y, Jiang YY. 2013. Fluconazole assists berberine to kill fluconazole-resistant Candida albicans. Antimicrob Agents Chemother 57:6016–6027. doi:10.1128/AAC.00499-13. PubMed DOI PMC
Castelo-Branco DS, Brilhante RS, Paiva MA, Teixeira CE, Caetano EP, Ribeiro JF, Cordeiro RA, Sidrim JJ, Monteiro AJ, Rocha MF. 2013. Azole-resistant Candida albicans from a wild Brazilian porcupine (Coendou prehensilis): a sign of an environmental imbalance? Med Mycol 51:555–560. doi:10.3109/13693786.2012.752878. PubMed DOI
Youngsaye W, Hartland CL, Morgan BJ, Ting A, Nag PP, Vincent B, Mosher CA, Bittker JA, Dandapani S, Palmer M, Whitesell L, Lindquist S, Schreiber SL, Munoz B. 2013. ML212: A small-molecule probe for investigating fluconazole resistance mechanisms in Candida albicans. Beilstein J Org Chem 9:1501–1507. doi:10.3762/bjoc.9.171. PubMed DOI PMC
Ben-Ami R, Olshtain-Pops K, Krieger M, Oren I, Bishara J, Dan M, Wiener-Well Y, Weinberger M, Zimhony O, Chowers M, Weber G, Potasman I, Chazan B, Kassis I, Shalit I, Block C, Keller N, Kontoyiannis DP, Giladi M. 2012. Antibiotic exposure as a risk factor for fluconazole-resistant Candida bloodstream infection. Antimicrob Agents Chemother 56:2518–2523. doi:10.1128/AAC.05947-11. PubMed DOI PMC
Robbins N, Leach MD, Cowen LE. 2012. Lysine deacetylases Hda1 and Rpd3 regulate Hsp90 function thereby governing fungal drug resistance. Cell Rep 2:878–888. doi:10.1016/j.celrep.2012.08.035. PubMed DOI PMC
Cowen LE, Lindquist S. 2005. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309:2185–2189. doi:10.1126/science.1118370. PubMed DOI
Cowen LE, Carpenter AE, Matangkasombut O, Fink GR, Lindquist S. 2006. Genetic architecture of Hsp90-dependent drug resistance. Eukaryot Cell 5:2184–2188. doi:10.1128/EC.00274-06. PubMed DOI PMC
Cowen LE. 2008. The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat Rev Microbiol 6:187–198. doi:10.1038/nrmicro1835. PubMed DOI
Sarkar S, Uppuluri P, Pierce CG, Lopez-Ribot JL. 2014. In vitro study of sequential fluconazole/caspofungin treatment against Candida albicans biofilms. Antimicrob Agents Chemother 58:1183–1186. doi:10.1128/AAC.01745-13. PubMed DOI PMC
Han S, Kim J, Yim H, Hur J, Song W, Lee J, Jeon S, Hong T, Woo H, Yim DS. 2013. Population pharmacokinetic analysis of fluconazole to predict therapeutic outcome in burn patients with Candida infection. Antimicrob Agents Chemother 57:1006–1011. doi:10.1128/AAC.01372-12. PubMed DOI PMC
Fiori A, Van Dijck P. 2012. Potent synergistic effect of doxycycline with fluconazole against Candida albicans is mediated by interference with iron homeostasis. Antimicrob Agents Chemother 56:3785–3796. doi:10.1128/AAC.06017-11. PubMed DOI PMC
Angiolella L, Stringaro AR, De Bernardis F, Posteraro B, Bonito M, Toccacieli L, Torosantucci A, Colone M, Sanguinetti M, Cassone A, Palamara AT. 2008. Increase of virulence and its phenotypic traits in drug-resistant strains of Candida albicans. Antimicrob Agents Chemother 52:927–936. doi:10.1128/AAC.01223-07. PubMed DOI PMC
Yu LH, Wei X, Ma M, Chen XJ, Xu SB. 2012. Possible inhibitory molecular mechanism of farnesol on the development of fluconazole resistance in Candida albicans biofilm. Antimicrob Agents Chemother 56:770–775. doi:10.1128/AAC.05290-11. PubMed DOI PMC
Hogan DA. 2006. Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot Cell 5:613–619. doi:10.1128/EC.5.4.613-619.2006. PubMed DOI PMC
Lewis K. 2007. Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48–56. doi:10.1038/nrmicro1557. PubMed DOI
Langford ML, Hargarten JC, Patefield KD, Marta E, Blankenship JR, Fanning S, Nickerson KW, Atkin AL. 2013. Candida albicans Czf1 and Efg1 coordinate the response to farnesol during quorum sensing, white-opaque thermal dimorphism, and cell death. Eukaryot Cell 12:1281–1292. doi:10.1128/EC.00311-12. PubMed DOI PMC
Deveau A, Hogan DA. 2011. Linking quorum sensing regulation and biofilm formation by Candida albicans. Methods Mol Biol 692:219–233. doi:10.1007/978-1-60761-971-0_16. PubMed DOI
Ramage G, Saville SP, Wickes BL, Lopez-Ribot JL. 2002. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68:5459–5463. doi:10.1128/AEM.68.11.5459-5463.2002. PubMed DOI PMC
Borges A, Serra S, Cristina Abreu A, Saavedra MJ, Salgado A, Simoes M. 2014. Evaluation of the effects of selected phytochemicals on quorum sensing inhibition and in vitro cytotoxicity. Biofouling 30:183–195. doi:10.1080/08927014.2013.852542. PubMed DOI
Kalia VC. 2013. Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245. doi:10.1016/j.biotechadv.2012.10.004. PubMed DOI
Singh BN, Singh HB, Singh A, Singh BR, Mishra A, Nautiyal CS. 2012. Lagerstroemia speciosa fruit extract modulates quorum sensing-controlled virulence factor production and biofilm formation in Pseudomonas aeruginosa. Microbiology 158:529–538. doi:10.1099/mic.0.052985-0. PubMed DOI
Singh BN, Singh BR, Singh RL, Prakash D, Dhakarey R, Upadhyay G, Singh HB. 2009. Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food Chem Toxicol 47:1109–1116. doi:10.1016/j.fct.2009.01.034. PubMed DOI
Singh BN, Singh BR, Singh RL, Prakash D, Sarma BK, Singh HB. 2009. Antioxidant and anti-quorum sensing activities of green pod of Acacia nilotica L. Food Chem Toxicol 47:778–786. doi:10.1016/j.fct.2009.01.009. PubMed DOI
Adonizio A, Kong KF, Mathee K. 2008. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by south Florida plant extracts. Antimicrob Agents Chemother 52:198–203. doi:10.1128/AAC.00612-07. PubMed DOI PMC
Adonizio A, Dawlaty J, Ausubel FM, Clardy J, Mathee K. 2008. Ellagitannins from Conocarpus erectus exhibit anti-quorum sensing activity against Pseudomonas aeruginosa. Planta Med 74:1035–1035. doi:10.1055/s-0028-1084373. DOI
Proestos C, Komaitis M. 2013. Analysis of naturally occurring phenolic compounds in aromatic plants by RP-HPLC coupled to diode array detector (DAD) and GC-MS after silylation. Foods 2:90–99. doi:10.3390/foods2010090. PubMed DOI PMC
Samaranayake LP, Raeside JM, MacFarlane TW. 1984. Factors affecting the phospholipase activity of Candida species in vitro. Sabouraudia 22:201–207. doi:10.1080/00362178485380331. PubMed DOI
Lu Y, Su C, Unoje O, Liu H. 2014. Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation. Proc Natl Acad Sci U S A 111:1975–1980. doi:10.1073/pnas.1318690111. PubMed DOI PMC
Finkel JS, Mitchell AP. 2011. Genetic control of Candida albicans biofilm development. Nat Rev Microbiol 9:109–118. doi:10.1038/nrmicro2475. PubMed DOI PMC
Rocha CRC, Schröppel K, Harcus D, Marcil A, Dignard D, Taylor BN, Thomas DY, Whiteway M, Leberer E. 2001. Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol Biol Cell 12:3631–3643. doi:10.1091/mbc.12.11.3631. PubMed DOI PMC
Hogan DA, Muhlschlegel FA. 2011. Candida albicans developmental regulation: adenylyl cyclase as a coincidence detector of parallel signals. Curr Opin Microbiol 14:682–686. doi:10.1016/j.mib.2011.09.014. PubMed DOI
Ferry DR, Smith A, Malkhandi J, Fyfe DW, deTakats PG, Anderson D, Baker J, Kerr DJ. 1996. Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin Cancer Res 2:659–668. PubMed
Zhao J, Xu Y, Li C. 2013. Association of T916C (Y257H) mutation in Candida albicans ERG11 with fluconazole resistance. Mycoses 56:315–320. doi:10.1111/myc.12027. PubMed DOI
Jacquemin G, Granci V, Gallouet AS, Lalaoui N, Morle A, Iessi E, Morizot A, Garrido C, Guillaudeux T, Micheau O. 2012. Quercetin-mediated Mcl-1 and survivin downregulation restores TRAIL-induced apoptosis in non-Hodgkin's lymphoma B cells. Haematologica 97:38–46. doi:10.3324/haematol.2011.046466. PubMed DOI PMC
Psahoulia FH, Drosopoulos KG, Doubravska L, Andera L, Pintzas A. 2007. Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts. Mol Cancer Ther 6:2591–2599. doi:10.1158/1535-7163.MCT-07-0001. PubMed DOI
Kim YH, Lee DH, Jeong JH, Guo ZS, Lee YJ. 2008. Quercetin augments TRAIL-induced apoptotic death: involvement of the ERK signal transduction pathway. Biochem Pharmacol 75:1946–1958. doi:10.1016/j.bcp.2008.02.016. PubMed DOI PMC
Chen W, Wang X, Zhuang J, Zhang L, Lin Y. 2007. Induction of death receptor 5 and suppression of survivin contribute to sensitization of TRAIL-induced cytotoxicity by quercetin in non-small cell lung cancer cells. Carcinogenesis 28:2114–2121. doi:10.1093/carcin/bgm133. PubMed DOI
Russo M, Nigro P, Rosiello R, D'Arienzo R, Russo GL. 2007. Quercetin enhances CD95- and TRAIL-induced apoptosis in leukemia cell lines. Leukemia 21:1130–1133. (Letter.) doi:10.1038/sj.leu.2404610. PubMed DOI
Vashisth P, Nikhil K, Pemmaraju SC, Pruthi PA, Mallick V, Singh H, Patel A, Mishra NC, Singh RP, Pruthi V. 2013. Antibiofilm activity of quercetin-encapsulated cytocompatible nanofibers against Candida albicans. J Bioact Compat Polym 28:652–665. doi:10.1177/0883911513502279. DOI
Schaller M, Januschke E, Schackert C, Woerle B, Korting HC. 2001. Different isoforms of secreted aspartyl proteinases (Sap) are expressed by Candida albicans during oral and cutaneous candidosis in vivo. J Med Microbiol 50:743–747. PubMed
Reynaud AH, Nygaard-Ostby B, Boygard GK, Eribe ER, Olsen I, Gjermo P. 2001. Yeasts in periodontal pockets. J Clin Periodontol 28:860–864. doi:10.1034/j.1600-051x.2001.028009860.x. PubMed DOI
Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW. 2001. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67:2982–2992. doi:10.1128/AEM.67.7.2982-2992.2001. PubMed DOI PMC
Shirtliff ME, Krom BP, Meijering RA, Peters BM, Zhu J, Scheper MA, Harris ML, Jabra-Rizk MA. 2009. Farnesol-induced apoptosis in Candida albicans. Antimicrob Agents Chemother 53:2392–2401. doi:10.1128/AAC.01551-08. PubMed DOI PMC
Boswellia serrata Extract as an Antibiofilm Agent against Candida spp
Composition and Biological Activity of Vitis vinifera Winter Cane Extract on Candida Biofilm
PDB
1FX2