The Impact of Fullerenes as Doxorubicin Nano-Transporters on Metallothionein and Superoxide Dismutase Status in MCF-10A Cells

. 2022 Jan 02 ; 14 (1) : . [epub] 20220102

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35056998

Grantová podpora
2019/03/X/NZ7/01704 MINIATURA-3 National Science Center

Odkazy

PubMed 35056998
PubMed Central PMC8777724
DOI 10.3390/pharmaceutics14010102
PII: pharmaceutics14010102
Knihovny.cz E-zdroje

This study aimed to synthesise C60-DOX complexes followed by the analysis of their effect on the concentration of metallothionein (MT) as a non-enzymatic antioxidant and on the concentration and activity of superoxide dismutase (SOD) as an antioxidant enzyme in healthy human mammary MCF-10A cells. Dynamic light scattering and electrophoretic light scattering were used to establish the size and zeta potential of the complexes. The MT and SOD concentrations were determined using the ELISA method; SOD activity was determined by tetrazolium salt reduction inhibition. Lower MT concentration following exposure of cells to both DOX and C60 fullerene compared to the control sample was found. However, the concentration of this protein increased as a consequence of the C60-DOX complexes action on MCF-10A cells compared to the control. C60 used alone did not affect the concentration and activity of SOD in MCF-10A cells. Application of free DOX did not activate cellular antioxidant defence in the form of an increase in SOD concentration or its activity. In contrast treatment of cells with the C60-DOX complex resulted in a decrease in SOD1 concentration and a significant increase in SOD activity compared to cells treated with free DOX, C60 and control. Thus, it was found that C60-DOX complexes showed potential for protective effects against DOX-induced toxicity to MCF-10A cells.

Zobrazit více v PubMed

McGowan J.V., Chung R., Maulik A., Piotrowska I., Walker J.M., Yellon D.M. Anthracycline Chemotherapy and Cardiotoxicity. Cardiovasc. Drugs Ther. 2017;31:63–75. doi: 10.1007/s10557-016-6711-0. PubMed DOI PMC

Korbut R. Farmakologia. PZWL Wydawnictwo Lekarskie; Warszawa, Poland: 2017. pp. 240–248.

Pilco-Ferreto N., Calaf G.M. Influence of doxorubicin on apoptosis and oxidative stress in breast cancer cell lines. Int. J. Oncol. 2016;49:753–762. doi: 10.3892/ijo.2016.3558. PubMed DOI

International Agency for Research on Cancer. [(accessed on 23 September 2021)]. Available online: https://www.iarc.who.int/

Van der Zanden S.Y., Qiao X., Neefjes J. New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J. 2020;288:6095–6111. doi: 10.1111/febs.15583. PubMed DOI PMC

Tacar O., Sriamornsak P., Dass C.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 2013;65:157–170. doi: 10.1111/j.2042-7158.2012.01567.x. PubMed DOI

Kudryavtseva A.V., Krasnov G.S., Dmitriev A., Alekseev B.Y., Kardymon O., Sadritdinova A.F., Fedorova M.S., Pokrovsky A.V., Melnikova N.V., Kaprin A.D., et al. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget. 2016;7:44879–44905. doi: 10.18632/oncotarget.9821. PubMed DOI PMC

Yang H., Villani R.M., Wang H., Simpson M.J., Roberts MS., Tang M., Liang X. The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res. 2018;37:266. doi: 10.1186/s13046-018-0909-x. PubMed DOI PMC

Borgstahl G.E.O., Oberley-Deegan R.E. Superoxide dismutases (SODs) and SOD mimetics. Antioxidants. 2018;7:156. doi: 10.3390/antiox7110156. PubMed DOI PMC

Weinberg F., Ramnath N., Nagrath D. Reactive oxygen species in the tumor. Cancers. 2019;11:1191. doi: 10.3390/cancers11081191. PubMed DOI PMC

Case A.J. On the origin of superoxide dismutase: An evolutionary perspective of superoxide-mediated redox signaling. Antioxidants. 2017;6:82. doi: 10.3390/antiox6040082. PubMed DOI PMC

Gałecka E., Jacewicz R., Mrowicka M., Gałecki P. Antioxidative enzymes-structure, properties, functions. Pol. Merkur. Lek. 2008;25:266–268. PubMed

Zaręba N., Kepinska M. The Function of Transthyretin Complexes with Metallothionein in Alzheimer’s Disease. Int. J. Mol. Sci. 2020;21:9003. doi: 10.3390/ijms21239003. PubMed DOI PMC

Ostrakhovitch E.A., Olsson P.E., Jiang S., Cherian M.G. Interaction of metallothionein with tumor suppressor p53 protein. FEBS Lett. 2006;580:1235–1238. doi: 10.1016/j.febslet.2006.01.036. PubMed DOI

Shimoda R., Achanzar W.E., Qu W., Nagamine T., Takagi H., Mori M., Waalkes M.P. Metallothionein is a potential negative regulator of apoptosis. Toxicol Sci. 2003;73:294–300. doi: 10.1093/toxsci/kfg095. PubMed DOI

Si M., Lang J. The roles of metallothioneins in carcinogenesis. J. Hematol. Oncol. 2018;11:107. doi: 10.1186/s13045-018-0645-x. PubMed DOI PMC

Lewandowski Ł., Kepinska M., Milnerowicz H. Alterations in Concentration/Activity of Superoxide Dismutases in Context of Obesity and Selected Single Nucleotide Polymorphisms in Genes: SOD1, SOD2, SOD3. Int. J. Mol. Sci. 2020;21:5069. doi: 10.3390/ijms21145069. PubMed DOI PMC

Lewandowski Ł., Kepinska M., Milnerowicz H. Inhibition of copper-zinc superoxide dismutase activity by selected environmental xenobiotics. Environ. Toxicol. Pharmacol. 2018;58:105–113. doi: 10.1016/j.etap.2017.12.022. PubMed DOI

Papa L., Hahn M., Marsh E.L., Evans B.S., Germain D. SOD2 to SOD1 switch in breast cancer. J. Biol. Chem. 2014;289:5412–5416. doi: 10.1074/jbc.C113.526475. PubMed DOI PMC

Papa L., Manfredi G., Germain D. SOD1, an unexpected novel target for cancer therapy. Genes Cancer. 2018;5:15–21. doi: 10.18632/genesandcancer.4. PubMed DOI PMC

Songbo M., Lang H., Xinyong C., Bin X., Ping Z., Liang S. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol. Lett. 2019;307:41–48. doi: 10.1016/j.toxlet.2019.02.013. PubMed DOI

Gomari H., Moghadam M.F., Soleimani M., Ghavami M., Khodashenas S. Targeted delivery of doxorubicin to HER2 positive tumor models. Int. J. Nanomed. 2019;14:5679–5690. doi: 10.2147/IJN.S210731. PubMed DOI PMC

Rašović I. Water-soluble fullerenes for medical applications. Mater. Sci. Technol. 2016;33:777–794. doi: 10.1080/02670836.2016.1198114. DOI

Goodarzi S., da Ros T., Conde J., Sefat F., Mozafari M. Fullerene: Biomedical engineers get to revisit an old friend. Mater. Today. 2017;20:460–480. doi: 10.1016/j.mattod.2017.03.017. DOI

Castro E., Hernandez Garcia A., Zavala G., Echegoyen L. Fullerenes in Biology and Medicine. J. Mater. Chem. B. 2017;5:6523–6535. doi: 10.1039/C7TB00855D. PubMed DOI PMC

Kerna A., Pruitt K., Flores J., Nwokorie U. The application of fullerene derivatives in medicine and specific endocrinological conditions. EC Endocrinol. Metab. Res. 2020;5:56–66.

Mirkamali E.S., Ahmadi R., Kalateh K., Zarei G. Adsorption of melphalan anticancer drug on the surface of fullerene (C24): A comprehensive DFT study. Nanomed. J. 2019;6:112–119.

Kazemzadeh H., Mozafari M. Fullerene-based delivery systems. Drug Discov. Today. 2019;24:898–905. doi: 10.1016/j.drudis.2019.01.013. PubMed DOI

Misra C., Kumar M., Sharma G., Kumar R., Singh B., Katare O.P., Raza K. Glycinated fullerenes for tamoxifen intracellular delivery with improved anticancer activity and pharmacokinetics. Nanomedicine. 2017;12:1011–1023. doi: 10.2217/nnm-2016-0432. PubMed DOI

Lichota A., Krokosz A. Fullerenols in therapy and diagnosis of cancer. Med. Pr. 2016;67:817–831. doi: 10.13075/mp.5893.00466. PubMed DOI

Kepinska M., Kizek R., Milnerowicz H. Fullerene as a doxorubicin nanotransporter for targeted breast cancer therapy: Capillary electrophoresis analysis. Electrophoresis. 2018;39:2370–2379. doi: 10.1002/elps.201800148. PubMed DOI

Milnerowicz H., Bizoń A. Determination of metallothionein in biological fluids using enzyme-linked immunoassay with commercial antibody. Acta Bioch. Pol. 2010;57:99–104. doi: 10.18388/abp.2010_2379. PubMed DOI

Buzdar A.U. Preoperative chemotherapy treatment of breast cancer-A review. Cancer. 2007;110:2394–2407. doi: 10.1002/cncr.23083. PubMed DOI

Mahalingaiah P.K.S., Singh K.P. Chronic oxidative stress increases growth and tumorigenic potential of MCF-7 breast cancer cells. PLoS ONE. 2014;9:e87371. PubMed PMC

Prylutska S., Grynyuk I., Matyshevska O., Prylutskyy Y., Evstigneev M., Scharff P., Ritter U. C60 Fullerene as Synergistic Agent in Tumor-Inhibitory Doxorubicin Treatment. Drugs R D. 2014;14:333–340. doi: 10.1007/s40268-014-0074-4. PubMed DOI PMC

Prylutskyy Y.I., Evstigneev M.P., Pashkova I.S., Wyrzykowski D. Characterization of C 60 fullerene complexation with antibiotic doxorubicin. Phys. Chem. Chem. Phys. 2014;16:23164–23172. doi: 10.1039/C4CP03367A. PubMed DOI

Brant J. Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J. Nanoparticle Res. 2005;7:545–553. doi: 10.1007/s11051-005-4884-8. DOI

Alargova R.G., Deguchi S., Tsujii K. Stable colloidal dispersions of fullerenes in polar organic solvents. J. Am. Chem. Soc. 2001;123:10460–10467. doi: 10.1021/ja010202a. PubMed DOI

Kumar A., Dixit C.K. Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. Woodhead Publishing; Cambridge, UK: 2017. Methods for Characterization of Nanoparticles.

Joseph E., Singhvi G. Nanomaterials for Drug Delivery and Therapy. William Andrew Publishing; Norwich, NY, USA: 2019. Multifunctional Nanocrystals for Cancer Therapy: A Potential Nanocarrier; pp. 91–116.

Mchedlov-Petrossyan N.O., Klochkov V.K., Andrievsky G.V. Colloidal dispersions of fullerene C60 in water: Some properties and regularities of coagulation by electrolytes. J. Chem. Soc. Faraday Trans. 1997;93:4343–4346. doi: 10.1039/a705494g. DOI

Kepinska M., Kizek R., Milnerowicz H. Metallothionein and superoxide dismutase—Antioxidative protein status in fullerene-doxorubicin delivery to MCF-7 human breast cancer cells. Int. J. Mol. Sci. 2018;19:3253. doi: 10.3390/ijms19103253. PubMed DOI PMC

Ilghami R., Barzegari A., Mashayekhi M.R., Letourneur D., Crepin M., Pavon-Djavid G. The conundrum of dietary antioxidants in cancer chemotherapy. Nutr. Rev. 2020;78:65–76. doi: 10.1093/nutrit/nuz027. PubMed DOI

Gajewski E., Gaur S., Akman S.A., Matsumoto L., Balgooy J.N.A., Doroshow J.H. Oxidative DNA Base Damage in MCF-10A Breast Epithelial Cells at Clinically Achievable Concentrations of Doxorubicin. Biochem. Pharmacol. 2007;73:1947. doi: 10.1016/j.bcp.2007.03.022. PubMed DOI PMC

Aminipour Z., Khorshid M., Keshvari H., Bonakdar S., Wagner P., Van der Bruggen B. Passive permeability assay of doxorubicin through model cell membranes under cancerous and normal membrane potential conditions. Eur. J. Pharm. Biopharm. 2020;146:133–142. doi: 10.1016/j.ejpb.2019.10.011. PubMed DOI

Grebinyk A., Prylutska S., Chepurna O., Grebinyk S., Prylutskyy Y., Ritter U., Ohulchanskyy T.Y., Matyshevska O., Dandekar T., Frohme M. Synergy of Chemo- and Photodynamic Therapies with C60 Fullerene-Doxorubicin Nanocomplex. Nanomaterials. 2019;9:1540. doi: 10.3390/nano9111540. PubMed DOI PMC

Jing L., Li L., Zhao J., Sun Z., Peng S. Zinc-induced metallothionein overexpression prevents doxorubicin toxicity in cardiomyocytes by regulating the peroxiredoxins. Xenobiotica. 2016;46:715–725. doi: 10.3109/00498254.2015.1110760. PubMed DOI

Merlos Rodrigo M.A., Jimenez Jimemez A.M., Haddad Y., Bodoor K., Adam P., Krizkova S., Heger Z., Adam V. Metallothionein isoforms as double agents-Their roles in carcinogenesis, cancer progression and chemoresistance. Drug Resist Updat. 2020;52:100691. doi: 10.1016/j.drup.2020.100691. PubMed DOI

Srdjenovic B., Milic-Torres V., Grujic N., Stankov K., Djordjevic A., Vasovic V. Antioxidant properties of fullerenol C60(OH)24 in rat kidneys, testes, and lungs treated with doxorubicin. Toxicol. Mech. Methods. 2010;20:298–305. doi: 10.3109/15376516.2010.485622. PubMed DOI

Yeh Y.C., Lai H.C., Ting C.T., Lee W.L., Wang L.C., Wang K.Y., Lai H.C., Liu T.J. Protection by doxycycline against doxorubicin-induced oxidative stress and apoptosis in mouse testes. Biochem. Pharmacol. 2007;74:969–980. doi: 10.1016/j.bcp.2007.06.031. PubMed DOI

Ali S.S., Hardt J.I., Quick K.L., Sook Kim-Han J., Erlanger B.F., Huang T.T., Epstein C.J., Dugan L.L. A biologically effective fullerene (C 60) derivative with superoxide dismutase mimetic properties. Free Radic. Biol. Med. 2004;37:1191–1202. doi: 10.1016/j.freeradbiomed.2004.07.002. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...