Chemical and Structural Analysis of Newly Prepared Co-W-Al Alloy by Aluminothermic Reaction
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35057375
PubMed Central
PMC8779428
DOI
10.3390/ma15020658
PII: ma15020658
Knihovny.cz E-zdroje
- Klíčová slova
- Co-W-Al alloy, EDS analysis, aluminothermic reaction, carbides, chemical composition, scanning electron microscopy, structural analysis,
- Publikační typ
- časopisecké články MeSH
This article is devoted to the characterization of a new Co-W-Al alloy prepared by an aluminothermic reaction. This alloy is used for the subsequent preparation of a special composite nanopowder and for the surface coating of aluminum, magnesium, or iron alloys. Due to the very high temperature (2000 °C-3000 °C) required for the reaction, thermite was added to the mixture. Pulverized coal was also added in order to obtain the appropriate metal carbides (Co, W, Ti), which increase hardness, resistance to abrasion, and the corrosion of the coating and have good high temperature properties. The phase composition of the alloy prepared by the aluminothermic reaction showed mainly cobalt, tungsten, and aluminum, as well as small amounts of iron, titanium, and calcium. No carbon was identified using this method. The microstructure of this alloy is characterized by a cobalt matrix with smaller regular and irregular carbide particles doped by aluminum.
Zobrazit více v PubMed
Zhang H., Feng P., Akhtar F. Aluminium matrix tungsten aluminide and tungsten reinforced composites by solid-state diffusion mechanism. Sci. Rep. 2017;7:12391. doi: 10.1038/s41598-017-12302-w. PubMed DOI PMC
Shao G.Q., Xiong Z., Wang T., Shi X.L., Duan X.L. Consolidation and Properties of Tungsten Carbide Target with Low Cobalt Content by Hot-Press Sintering. Key Eng. Mater. 2007;351:98–102. doi: 10.4028/www.scientific.net/KEM.351.98. DOI
Holt J.B., Munir Z.A. Combustion synthesis of titanium carbide: Theory and experiment. J. Mater. Sci. 1986;21:251–259. doi: 10.1007/BF01144729. DOI
Reader J. Spectral data for fusion energy: From W to W. Phys. Scr. 2009;T134:014023. doi: 10.1088/0031-8949/2009/T134/014023. DOI
Kallio M., Ruuskanen P., Maki J., Pöyliö E., Lähteenmäki S. Use of the Aluminothermic Reaction in the Treatment of Steel Industry By-Products. J. Mater. Synth. Process. 2000;8:87–92. doi: 10.1023/A:1026569903155. DOI
De Souza K.M., de Lemos M.J.S. Detailed Numerical Modeling and Simulation of Fe2O3—Al Thermite Reaction. Propellants Explos. Pyrotech. 2021;46:806–824. doi: 10.1002/prep.202000290. DOI
Maleki A., Hosseini N., Niroumand B. A review on aluminothermic reaction of Al/ZnO system. Ceram. Int. 2018;44:10–23. doi: 10.1016/j.ceramint.2017.09.168. DOI
Huang Z.J., Yang B., Cui H., Duan X.J., Zhang J.S. Microstructure of designed Al matrix composites reinforced by combining in situ alloying elements and Al2O3(p) J. Mater. Sci. Lett. 2001;20:1749–1751. doi: 10.1023/A:1012414628555. DOI
Meir Y., Jerby E. Underwater microwave ignition of hydrophobic thermite powder enabled by the bubble-marble effect. Appl. Phys. Lett. 2015;107:054101. doi: 10.1063/1.4928110. DOI
Koch E.-C., Knapp S. Thermites—Versatile Materials. Propellants Explos. Pyrotech. 2019;44:7. doi: 10.1002/prep.201980131. DOI
Peng H., Wang D., Geng L., Yao C., Mao J. Evaluation of the microstructure of in-situ reaction processed Al3Ti-Al2O3-Al composite. Scr. Mater. 1997;37:199–204. doi: 10.1016/S1359-6462(97)00073-0. DOI
Kamali A.R., Fahim J. Mechanically activated aluminothermic reduction of titanium dioxide. Int. J. Self-Propagating High-Temp. Synth. 2009;18:7–10. doi: 10.3103/S1061386209010026. DOI
Liu A., Xie K., Li L., Shi Z., Hu X., Xu J., Gao B., Wang Z. Preparation of Al-Ti master alloys by aluminothermic reduction of TiO2 in cryolite melts at 960 °C. In: Jiang T., Hwang J.-Y., Alvear F.G.R.F., Yücel O., Mao X., Sohn H.Y., Ma N., Mackey P.J., Battle T.P., editors. 6th International Symposium on High-Temperature Metallurgical Processing. Springer International Publishing; Cham, Switzerland: 2016. pp. 239–246. DOI
Maeda M., Yahata T., Mitugi K., Ikeda T. Aluminothermic Reduction of Titanium Oxide. Mater. Trans. JIM. 1993;34:599–603. doi: 10.2320/matertrans1989.34.599. DOI
Woo K., Huo H. Effect of high energy ball milling on displacement reaction and sintering of Al-Mg/SiO2 composite powders. Met. Mater. Int. 2006;12:45–50. doi: 10.1007/BF03027522. DOI
Grishin Y.M., Kozlov N.P., Skryabin A.S., Vadchenko S.G., Sachkova N.V., Sytschev A.E. Thermit-type SiO2-Al reaction in arc discharge. Int. J. Self-Propagating High-Temp. Synth. 2011;20:181–184. doi: 10.3103/S1061386211030022. DOI
Dietl J., Holm C. New Aspects in Aluminothermic Reduction of SiO2. In: Goetzberger A., Palz W., Willeke G., editors. Seventh E.C. Photovoltaic Solar Energy Conference, Proceedings of the International Conference, Sevilla, Spain, 27–31 October 1986. Springer; Dordrecht, The Netherlands: 1987. pp. 726–730. DOI
Lin N., Han Y., Zhou J., Zhang K., Xu T., Zhu Y., Qian Y. A low temperature molten salt process for aluminothermic reduction of silicon oxides to crystalline Si for Li-ion batteries. Energy Environ. Sci. 2015;8:3187–3191. doi: 10.1039/C5EE02487K. DOI
Chen G., Sun G.-X. Study on in situ reaction-processed Al–Zn/α-Al2O3(p) composites. Mater. Sci. Eng. A. 1998;244:291–295. doi: 10.1016/S0921-5093(97)00544-3. DOI
Yu P., Deng C.-J., Ma N.-G., Ng D.H. A new method of producing uniformly distributed alumina particles in Al-based metal matrix composite. Mater. Lett. 2004;58:679–682. doi: 10.1016/j.matlet.2003.06.001. DOI
Durai T., Das K., Das S. Synthesis and characterization of Al matrix composites reinforced by in situ alumina particulates. Mater. Sci. Eng. A. 2007;445–446:100–105. doi: 10.1016/j.msea.2006.09.018. DOI
Shin J., Jeon J., Bae D. Microstructure refining of aluminum alloys using aluminothermic reaction with ZnO nanoparticles. Mater. Lett. 2015;151:96–99. doi: 10.1016/j.matlet.2015.03.050. DOI
Ochoa R., Flores A., Torres J. Effect of magnesium on the aluminothermic reduction rate of zinc oxide obtained from spent alkaline battery anodes for the preparation of Al–Zn–Mg alloys. Int. J. Miner. Met. Mater. 2016;23:458–465. doi: 10.1007/s12613-016-1256-6. DOI
Hedayati A., Golestan Z., Ranjbar K., Borhani G.H. Effect of ball milling on formation of ZnAl2O4 by reduction reaction of ZnO and Al powder mixture. Powder Met. Met. Ceram. 2011;50:268–274. doi: 10.1007/s11106-011-9328-7. DOI
Wenzel B.M., Zimmer T.H., Fernandez C.S., Marcilio N.R., Godinho M. Aluminothermic reduction of Cr2O3 contained in the ash of thermally treated leather waste. Braz. J. Chem. Eng. 2013;30:141–154. doi: 10.1590/S0104-66322013000100016. DOI
Yoshitaka K., Yang J., Liu Z., Kuwabara M. Mechanism of Aluminothermic Reduction of Chromium Oxide. J. High Temp. Soc. 2008;34:20–25. doi: 10.7791/jhts.34.20. DOI
Gibot P., Comet M., Eichhorn A., Schnell F., Muller O., Ciszek F., Boehrer Y., Spitzer D. Highly Insensitive/Reactive Thermite Prepared from Cr2O3 Nanoparticles. Propellants, Explos. Pyrotech. 2011;36:80–87. doi: 10.1002/prep.201190003. DOI
Maity P., Chakraborty P., Panigrahi S. Al-Al2O3 in situ particle composites by reaction of CuO particles in molten pure Al. Mater. Lett. 1997;30:147–151. doi: 10.1016/S0167-577X(96)00188-7. DOI
Kim D.K., Bae J.H., Kang M.K., Kim H.J. Analysis on thermite reactions of CuO nanowires and nanopowders coated with Al. Curr. Appl. Phys. 2011;11:1067–1070. doi: 10.1016/j.cap.2011.01.043. DOI
Wang J., Hu A., Persic J., Wen J.Z., Zhou Y.N. Thermal stability and reaction properties of passivated Al/CuO nano-thermite. J. Phys. Chem. Solids. 2011;72:620–625. doi: 10.1016/j.jpcs.2011.02.006. DOI
Moore J.J., Feng H. Combustion synthesis of advanced materials: Part I—Reaction parameters. Prog. Mater. Sci. 1995;39:243–273. doi: 10.1016/0079-6425(94)00011-5. DOI
Manojlovic V., Kamberovic Ž., Gavrilovski M., Sokic M., Korac M. Combustion of Metallurgical Wastes Using Secondary Aluminum Foils. Combust. Sci. Technol. 2017;189:1072–1089. doi: 10.1080/00102202.2016.1274310. DOI
Benaldjia A., Guellati O., Bounour W., Guerioune M., Ali-Rachedi M., Amara A., Drici A., Vrel D. Titanium carbide by the SHS process ignited with aluminothermic reaction. Int. J. Self-Propagating High-Temp. Synth. 2008;17:54–57. doi: 10.3103/S1061386208010068. DOI
Venugopalan R., Sathiyamoorthy D. Investigation through factorial design on novel method of preparing vanadium carbide using carbon during aluminothermic reduction. J. Mater. Process. Technol. 2006;176:133–139. doi: 10.1016/j.jmatprotec.2006.03.118. DOI
Biswas A., Nair K., Bose D. Preparation of single-phase Cr7C3 by aluminothermic reduction. J. Alloys Compd. 1993;198:181–185. doi: 10.1016/0925-8388(93)90163-H. DOI
Xu Y., Yang Z., Han Z., Liu G., Li J. Fabrication of Ni/WC composite with two distinct layers through centrifugal infiltration combined with a thermite reaction. Ceram. Int. 2014;40:1037–1043. doi: 10.1016/j.ceramint.2013.06.101. DOI
Bauer R., Jägle E.A., Baumann W., Mittemeijer E.J. Kinetics of the allotropic hcp–fcc phase transformation in cobalt. Philos. Mag. 2011;91:437–457. doi: 10.1080/14786435.2010.525541. DOI
Šulhánek P., Drienovský M., Černičková I., Ďuriška L., Skaudžius R., Gerhátová Ž., Palcut M. Oxidation of Al-Co Alloys at High Temperatures. Materials. 2020;13:3152. doi: 10.3390/ma13143152. PubMed DOI PMC
Liu X., Wang C., Ohnuma I., Kainuma R., Ishida K. Phase equilibria and phase transformation of the body-centered cubic phase in the Cu-rich portion of the Cu–Ti–Al system. J. Mater. Res. 2008;23:2674–2684. doi: 10.1557/JMR.2008.0334. DOI
McAlister A.J. The Al-Co (Aluminum-Cobalt) system. Bull. Alloy. Phase Diagrams. 1989;10:646–650. doi: 10.1007/BF02877635. DOI
Okamoto H. Supplemental Literature Review of Binary Phase Diagrams: Ag-Yb, Al-Co, Al-I, Co-Cr, Cs-Te, In-Sr, Mg-Tl, Mn-Pd, Mo-O, Mo-Re, Ni-Os, and V-Zr. J. Phase Equilibria Diffus. 2016;37:726–737. doi: 10.1007/s11669-016-0487-6. DOI
Okamoto H. Co-W (Cobalt-Tungsten) J. Phase Equilibria Diffus. 2008;29:119. doi: 10.1007/s11669-007-9229-0. DOI
Guillermet A.F. Thermodynamic properties of the Co-W-C system. Met. Mater. Trans. A. 1989;20:935–956. doi: 10.1007/BF02651660. DOI
Priputen P., Palcut M., Babinec M., Mišík J., Černičková I., Janovec J. Correlation Between Microstructure and Corrosion Behavior of Near-Equilibrium Al-Co Alloys in Various Environments. J. Mater. Eng. Perform. 2017;26:3970–3976. doi: 10.1007/s11665-017-2844-y. DOI
Yan H.-Y., Vorontsov V., Dye D. Alloying effects in polycrystalline γ′ strengthened Co–Al–W base alloys. Intermetallics. 2014;48:44–53. doi: 10.1016/j.intermet.2013.10.022. DOI
Lass E.A., Williams M.E., Campbell C.E., Moon K.-W., Kattner U.R. γ′ Phase Stability and Phase Equilibrium in Ternary Co-Al-W at 900 °C. J. Phase Equilibria Diffus. 2014;35:711–723. doi: 10.1007/s11669-014-0346-2. DOI
Xue F., Wang M., Feng Q. Superalloys. John Wiley & Sons; Hoboken, NJ, USA: 2012. Alloying Effects on Heat-Treated Microstructure in Co-Al-W-Base Superalloys at 1300 °C and 900 °C; pp. 813–821. DOI
Nithin B., Samanta A., Makineni S.K., Alam T., Pandey P., Singh A.K., Banerjee R., Chattopadhyay K. Effect of Cr addition on γ–γ′ cobalt-based Co–Mo–Al–Ta class of superalloys: A combined experimental and computational study. J. Mater. Sci. 2017;52:11036–11047. doi: 10.1007/s10853-017-1159-6. DOI
Liu X., Pan Y., Chen Y., Han J., Yang S., Ruan J., Wang C., Yang Y., Li Y. Effects of Nb and W Additions on the Micro-structures and Mechanical Properties of Novel γ/γ’ Co-V-Ti-Based Superalloys. Metals. 2018;8:563. doi: 10.3390/met8070563. DOI
Kobayashi S., Tsukamoto Y., Takasugi T., Chinen H., Omori T., Ishida K., Zaefferer S. Determination of phase equilibria in the Co-rich Co–Al–W ternary system with a diffusion-couple technique. Intermetallics. 2009;17:1085–1089. doi: 10.1016/j.intermet.2009.05.009. DOI
Bocchini P.J., Sudbrack C.K., Noebe R.D., Dunand D.C., Seidman D.N. Effects of titanium substitutions for aluminum and tungsten in Co-10Ni-9Al-9W (at%) superalloys. Mater. Sci. Eng. A. 2017;705:122–132. doi: 10.1016/j.msea.2017.08.034. DOI
Ismail F., Vorontsov V., Lindley T., Hardy M., Dye D., Shollock B. Alloying effects on oxidation mechanisms in polycrystalline Co–Ni base superalloys. Corros. Sci. 2017;116:44–52. doi: 10.1016/j.corsci.2016.12.009. DOI
Knotek O., Lugscheider E., Tschech F. The formation of tungsten carbide in cobalt-base wear-resistant coating alloys. Thin Solid Films. 1976;39:263–268. doi: 10.1016/0040-6090(76)90644-1. DOI
Gui W., Zhang H., Yang M., Jin T., Sun X., Zheng Q. The investigation of carbides evolution in a cobalt-base superalloy at elevated temperature. J. Alloys Compd. 2017;695:1271–1278. doi: 10.1016/j.jallcom.2016.10.256. DOI
du Merac M.R. Transparent ceramics: Materials, processing, properties and applications. In: Pomeroy M., editor. Encyclopedia of Materials: Technical Ceramics and Glasses. Elsevier; Oxford, UK: 2021. pp. 399–423. DOI
Tanzi M.C., Fare S., Candiani G. Foundations of Biomaterials Engineering. Elsevier Science; Amsterdam, The Netherlands: 2019.
Berthod P. High temperature properties of several chromium-containing Co-based alloys reinforced by different types of MC carbides (M=Ta, Nb, Hf and/or Zr) J. Alloys Compd. 2009;481:746–754. doi: 10.1016/j.jallcom.2009.03.091. DOI