An innovative electrically conductive biopolymer based on poly(β-cyclodextrin) towards recognition of ascorbic acid in real sample: Utilization of biocompatible advanced materials in biomedical analysis
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35060667
DOI
10.1002/jmr.2953
Knihovny.cz E-zdroje
- Klíčová slova
- advanced biopolymer, biocompatible materials, electrochemical oxidation, electropolymerization, sensor technology, β-cyclodextrin,
- MeSH
- beta-cyklodextriny MeSH
- biokompatibilní materiály MeSH
- biopolymery MeSH
- elektrochemické techniky * metody MeSH
- kyselina askorbová * MeSH
- lidé MeSH
- propylenglykoly MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- beta-cyklodextriny MeSH
- biokompatibilní materiály MeSH
- biopolymery MeSH
- kyselina askorbová * MeSH
- poly(beta-cyclodextrin) MeSH Prohlížeč
- propylenglykoly MeSH
In this study, a sensitive platform was designed for the electrocatalytical oxidation and recognition of ascorbic acid (AA) based on poly(β-cyclodextrin) modified glassy carbon electrode (p(β-CD-GCE). Electropolymerization of β-CD on the surface of GCE was performed on the potential range of -1 to 1.5 V. So, a novel biopolymer was prepared on the surface of GCE towards sensitive recognition of AA in human plasma samples. The developed platform has good sensitivity and accuracy for electrooxidation and detection of AA with lower limit of quantification (LLOQ) of 1 nM and linear range of 1 nM to 100 mM. Moreover, the designed electrochemical sensor was employed for the analysis of AA on human plasma samples with high sensitivity. Based on advantages of p(β-CD) prepared by electropolymerization procedure (green, fast, homogeny, and efficient eletrocatalytical behaviour), this conductive biopolymer showed excellent analytical behaviour towards electrooxidation of AA. It is expected that the prepared polymeric interface is able to use in the analysis of biological species in clinical samples.
Drug Applied Research Center Tabriz University of Medical Sciences Tabriz Iran
Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
Nutrition Research Center Tabriz University of Medical Sciences Tabriz Iran
Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
Zobrazit více v PubMed
Pisoschi AM, Pop A, Serban AI, Fafaneata C. Electrochemical methods for ascorbic acid determination. Electrochim Acta. 2014;121:443-460.
Cathcart R. A unique function for ascorbate. Med Hypotheses. 1991;35(1):32-37.
Erdurak-Kiliç C, Uslu B, Dogan B, Ozgen U, Ozkan S, Coskun M. Anodic voltammetric behavior of ascorbic acid and its selective determination in pharmaceutical dosage forms and some Rosa species of Turkey. J Anal Chem. 2006;61(11):1113-1120.
Padayatty SJ, Katz A, Wang Y, et al. Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr. 2003;22(1):18-35.
Sies H, Stahl W, Sundquist AR. Antioxidant functions of vitamins. Ann N Y Acad Sci. 1992;669(1):7-20.
Du J, Cullen JJ, Buettner GR. Ascorbic acid: chemistry, biology and the treatment of cancer. Biochim Biophys Acta (BBA)-Rev Cancer. 2012;1826(2):443-457.
Stone I. The natural history of ascorbic acid in the evolution of the mammals and primates and its significance for present-day man. Orthomol Psychiatry. 1972;1(2-3):82-89.
Valpuesta V, Botella MA. Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci. 2004;9(12):573-577.
Iwase H. Use of nucleic acids in the mobile phase for the determination of ascorbic acid in foods by high-performance liquid chromatography with electrochemical detection. J Chromatogr A. 2000;881(1-2):327-330.
Rizzolo A, Brambilla A, Valsecchi S, Eccher-Zerbini P. Evaluation of sampling and extraction procedures for the analysis of ascorbic acid from pear fruit tissue. Food Chem. 2002;77(2):257-262.
Rodrıguez-Comesana M, Garcıa-Falcón M, Simal-Gándara J. Control of nutritional labels in beverages with added vitamins: screening of β-carotene and ascorbic acid contents. Food Chem. 2002;79(2):141-144.
Iwase H, Ono I. Determination of ascorbic acid in food by column liquid chromatography with electrochemical detection using eluent for pre-run sample stabilization. J Chromatogr A. 1998;806(2):361-364.
Kall MA, Andersen C. Improved method for simultaneous determination of ascorbic acid and dehydroascorbic acid, isoascorbic acid and dehydroisoascorbic acid in food and biological samples. J Chromatogr B Biomed Sci Appl. 1999;730(1):101-111.
Oliveira E, Watson D. Chromatographic techniques for the determination of putative dietary anticancer compounds in biological fluids. J Chromatogr B Biomed Sci Appl. 2001;764(1-2):3-25.
Vermeir S, Hertog M, Schenk A, Beullens K, Nicolai B, Lammertyn J. Evaluation and optimization of high-throughput enzymatic assays for fast l-ascorbic acid quantification in fruit and vegetables. Anal Chim Acta. 2008;618(1):94-101.
Arya S, Mahajan M, Jain P. Non-spectrophotometric methods for the determination of vitamin C. Anal Chim Acta. 2000;417(1):1-14.
Borowski J, Szajdek A, Borowska EJ, Ciska E, Zieliński H. Content of selected bioactive components and antioxidant properties of broccoli (Brassica oleracea L.). Eur Food Res Technol. 2008;226(3):459-465.
Gau J-J, Lan EH, Dunn B, Ho C-M, Woo JC. A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers. Biosens Bioelectron. 2001;16(9-12):745-755.
Liao JC, Mastali M, Gau V, et al. Use of electrochemical DNA biosensors for rapid molecular identification of Uropathogens in clinical urine specimens. J Clin Microbiol. 2006;44(2):561-570.
Xiao Y, Qu X, Plaxco KW, Heeger AJ. Label-free electrochemical detection of DNA in blood serum via target-induced resolution of an electrode-bound DNA pseudoknot. J Am Chem Soc. 2007;129(39):11896-11897.
Askim JR, Mahmoudi M, Suslick KS. Optical sensor arrays for chemical sensing: the optoelectronic nose. Chem Soc Rev. 2013;42(22):8649-8682.
Guth U, Vonau W, Zosel J. Recent developments in electrochemical sensor application and technology-a review. Measur Sci Technol. 2009;20(4):042002.
Vashist SK, Vashist P. Recent advances in quartz crystal microbalance-based sensors. J Sens. 2011;11:24-29.
Farshchi F, Saadati A, Kholafazad-Kordasht H, Sanati AL, Seidi F, Hasanzadeh M. Trifluralin recognition using touch-based fingertip: Application of wearable glove-based sensor toward environmental pollution and human health control. J Molecular Recog. 2021;34(11):e2927.
Farshchi F, Saadati A, Hasanzadeh M, et al. Architecture of a multi-channel and easy-to-make microfluidic paper-based colorimetric device (μPCD) towards selective and sensitive recognition of uric acid by AuNPs: an innovative portable tool for the rapid and low-cost identification of clinically relevant biomolecules. RSC Adv. 2021;11(44):27298-27308. doi:10.1016/j.chemosphere.2021.132928
Abdollahiyan P, Heidari H, Hassanzadeh S, Hasanzadeh M, Seidi F, Pashazadeh-Panahi P, et al. Providing multicolor plasmonic patterns with graphene quantum dots functionalized d-penicillamine for visual recognition of V(V), Cu (II), and Fe(III): Colorimetric fingerprints of GQDs-DPA for discriminating ions in human urine samples. J Molecular Recog. 2021;34(12):e2936.
Kholafazad-kordasht H, Mirzaie A, Seidi F, Hasanzadeh M, et al. Low fouling and ultra-sensitive electrochemical screening of ractopamine using mixed self-assembly of PEG and aptamer immobilized on the interface of poly (dopamine)/GCE: A new apta-platform towards point of care (POC) analysis. Microchemi J. 2021;171:106853.
Saadati A, Farshchi F, Hasanzadeh M, Seidi F, et al. A microfluidic paper-based colorimetric device for the visual detection of uric acid in human urine samples. Anal Methods. 2021;13(35):3909-3921.
Uang YM, Chou TC. Criteria for designing a polypyrrole glucose biosensor by galvanostatic electropolymerization. Electroanalysis. 2002;14(22):1564-1570.
Ingole S, Navale Y, Jadhav Y, Salunkhe A, Patil V. High-performance potentiostatic electro-polymerized polypyrrole (PPy) electrode for electrochemical performance. Techno-Societal 2018. Germany: Springer; 2020:323-328.
Bidan G. In: Cosnier S, Karyakin A, eds. Electropolymerized films of π-conjugated polymers. A tool for surface functionalization: A brief historical evolution and recent trends. Electropolymerization: Concepts, Materials and Applications; Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2010:1-26.
Crini G. Studies on adsorption of dyes on beta-cyclodextrin polymer. Bioresour Technol. 2003;90(2):193-198.
Yilmaz E, Ramström O, Möller P, Sanchez D, Mosbach K. A facile method for preparing molecularly imprinted polymer spheres using spherical silica templates. J Mater Chem. 2002;12(5):1577-1581.
Yang L, Liu D, Huang J, You T. Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode. Sens Actuators B. 2014;193:166-172.
Zhang W, Chai Y, Yuan R, Chen S, Han J, Yuan D. Facile synthesis of graphene hybrid tube-like structure for simultaneous detection of ascorbic acid, dopamine, uric acid and tryptophan. Anal Chim Acta. 2012;756:7-12.
Li H, Wang Y, Ye D, et al. An electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan based on MWNTs bridged mesocellular graphene foam nanocomposite. Talanta. 2014;127:255-261.
Aneesh PK, Nambiar SR, Rao TP, Ajayaghosh A. Electrochemically synthesized partially reduced graphene oxide modified glassy carbon electrode for individual and simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Anal Methods. 2014;6(14):5322-5330.
Zhu Q, Bao J, Huo D, et al. 3DGH-fc based electrochemical sensor for the simultaneous determination of ascorbic acid, dopamine and uric acid. J Electroanal Chem. 2017;799:459-467.
Han D, Han T, Shan C, Ivaska A, Niu L. Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan-Graphene modified electrode. Electroanalysis. 2010;22(17-18):2001-2008.
Sheng Z-H, Zheng X-Q, Xu J-Y, Bao W-J, Wang F-B, Xia X-H. Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron. 2012;34(1):125-131.
Kissinger P, Heineman WR. Laboratory Techniques in Electroanalytical Chemistry, Revised and Expanded. Laboratory Techniques in Electroanalytical Chemistry. Taylor & Francis: CRC Press; 1996.
Bard AJ, Faulkner LR. Fundamentals and Applications. Electrochemical Methods. 2001;2(482):580-632.