• This record comes from PubMed

Is the vertex a good control stimulation site? Theta burst stimulation in healthy controls

. 2022 Mar ; 129 (3) : 319-329. [epub] 20220125

Language English Country Austria Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 35076779
DOI 10.1007/s00702-022-02466-9
PII: 10.1007/s00702-022-02466-9
Knihovny.cz E-resources

The vertex has been used as a suitable control stimulation site in repetitive transcranial magnetic stimulation studies. The objectives of this study are (1) to assess cognitive performance (CP) after theta burst stimulation (TBS); (2) to evaluate whether clinically relevant cortical areas might be reached by vertex stimulation and how that might influence CP. Twenty young healthy subjects performed a cognitive task prior to and immediately after intermittent TBS (iTBS) and continuous TBS (cTBS) of two active cortical stimulation sites and the vertex. We used the Wilcoxon signed-rank test to compare the pre- and post-stimulation reaction times (RTs) and a mixed ANOVA analysis to evaluate the effect of the stimulation on changes in RTs. A three-dimensional finite-element model (FEM) was used to calculate the vertex TBS-induced electrical field (E-field) in the adjacent regions of interest (ROIs). Correlation analyses were performed between E-fields in the ROIs and cognitive outcomes. We found a significant effect only of the stimulation time factor (F (1,12) = 65.37, p < 0.001) on RT shortening, with no superiority of the active site stimulation compared to the vertex stimulation. In 73.5% of vertex TBS sessions, a significant E-field was induced in at least one ROI. We found a negative association between the magnitude of the iTBS-induced E-fields and RT changes (R = - 0.54, p = 0.04). TBS protocols may lead to changes in CP when applied over the craniometrically targeted vertex. We therefore suggest not using a conventional approach as a vertex targeting method.

See more in PubMed

Ai H, Xin Y, Luo Y et al (2019) Volume of motor area predicts motor impulsivity. Eur J Neurosci 49:1470–1476. https://doi.org/10.1111/ejn.14339 PubMed DOI

Anderkova L, Eliasova I, Marecek R et al (2015) Distinct pattern of gray matter atrophy in mild Alzheimer’s disease impacts on cognitive outcomes of noninvasive brain stimulation. J Alzheimers Dis 48:251–260. https://doi.org/10.3233/JAD-150067 PubMed DOI

Anderkova L, Pizem D, Klobusiakova P et al (2018) Theta burst stimulation enhances connectivity of the dorsal attention network in young healthy subjects: an exploratory study. Neural Plast 2018:1–6. https://doi.org/10.1155/2018/3106918 DOI

Arai N, Lu M-K, Ugawa Y, Ziemann U (2012) Effective connectivity between human supplementary motor area and primary motor cortex: a paired-coil TMS study. Exp Brain Res 220:79–87. https://doi.org/10.1007/s00221-012-3117-5 PubMed DOI

Arana AB, Borckardt JJ, Ricci R et al (2008) Focal electrical stimulation as a sham control for repetitive transcranial magnetic stimulation: does it truly mimic the cutaneous sensation and pain of active prefrontal repetitive transcranial magnetic stimulation? Brain Stimulat 1:44–51. https://doi.org/10.1016/j.brs.2007.08.006 DOI

Bergmann TO, Karabanov A, Hartwigsen G et al (2016) Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives. Neuroimage 140:4–19. https://doi.org/10.1016/j.neuroimage.2016.02.012 PubMed DOI

Biabani M, Fornito A, Mutanen T et al (2019) Sensory contamination in TMS-EEG recordings: can we isolate TMS-evoked neural activity? Brain Stimul 12:473. https://doi.org/10.1016/j.brs.2018.12.543 DOI

Busan P, Del Ben G, Russo LR et al (2019) Stuttering as a matter of delay in neural activation: a combined TMS/EEG study. Clin Neurophysiol 130:61–76. https://doi.org/10.1016/j.clinph.2018.10.005 PubMed DOI

Carlsen AN, Eagles JS, MacKinnon CD (2015) Transcranial direct current stimulation over the supplementary motor area modulates the preparatory activation level in the human motor system. Behav Brain Res 279:68–75. https://doi.org/10.1016/j.bbr.2014.11.009 PubMed DOI

Casali AG, Casarotto S, Rosanova M et al (2010) General indices to characterize the electrical response of the cerebral cortex to TMS. Neuroimage 49:1459–1468. https://doi.org/10.1016/j.neuroimage.2009.09.026 PubMed DOI

Casula EP, Pellicciari MC, Ponzo V et al (2016) Cerebellar theta burst stimulation modulates the neural activity of interconnected parietal and motor areas. Sci Rep 6:36191. https://doi.org/10.1038/srep36191 PubMed DOI PMC

Casula EP, Maiella M, Pellicciari MC et al (2020) Novel TMS-EEG indexes to investigate interhemispheric dynamics in humans. Clin Neurophysiol off J Int Fed Clin Neurophysiol 131:70–77. https://doi.org/10.1016/j.clinph.2019.09.013 DOI

Chikazoe J, Konishi S, Asari T et al (2007) Activation of right inferior frontal gyrus during response inhibition across response modalities. J Cogn Neurosci 19:69–80. https://doi.org/10.1162/jocn.2007.19.1.69 PubMed DOI

Chung GH, Han YM, Jeong SH, Jack CR (2005) Functional heterogeneity of the supplementary motor area. Am J Neuroradiol 26:1819–1823 PubMed PMC

Chung SW, Lewis BP, Rogasch NC et al (2017) Demonstration of short-term plasticity in the dorsolateral prefrontal cortex with theta burst stimulation: a TMS-EEG study. Clin Neurophysiol 128:1117–1126. https://doi.org/10.1016/j.clinph.2017.04.005 PubMed DOI

Collins T, Jacquet PO (2018) TMS over posterior parietal cortex disrupts trans-saccadic visual stability. Brain Stimul 11:390–399. https://doi.org/10.1016/j.brs.2017.11.019 PubMed DOI

Cona G, Marino G, Semenza C (2017) TMS of supplementary motor area (SMA) facilitates mental rotation performance: evidence for sequence processing in SMA. Neuroimage 146:770–777. https://doi.org/10.1016/j.neuroimage.2016.10.032 PubMed DOI

Conde V, Tomasevic L, Akopian I et al (2019) The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies. Neuroimage 185:300–312. https://doi.org/10.1016/j.neuroimage.2018.10.052 PubMed DOI

Cooper ACG, Humphreys GW, Hulleman J et al (2004) Transcranial magnetic stimulation to right parietal cortex modifies the attentional blink. Exp Brain Res 155:24–29. https://doi.org/10.1007/s00221-003-1697-9 PubMed DOI

Di Lazzaro V, Profice P, Pilato F et al (2010) The effects of motor cortex rTMS on corticospinal descending activity. Clin Neurophysiol 121:464–473. https://doi.org/10.1016/j.clinph.2009.11.007 PubMed DOI

Di Lazzaro V, Bella R, Benussi A et al (2021) Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin Neurophysiol 132:2568–2607. https://doi.org/10.1016/j.clinph.2021.05.035 PubMed DOI

Di Lorenzo F, Bonnì S, Picazio S et al (2020) Effects of cerebellar theta burst stimulation on contralateral motor cortex excitability in patients with Alzheimer’s disease. Brain Topogr 33:613–617. https://doi.org/10.1007/s10548-020-00781-6 PubMed DOI

Diamond DM, Dunwiddie TV, Rose GM (1988) Characteristics of hippocampal primed burst potentiation in vitro and in the awake rat. J Neurosci 8:4079–4088. https://doi.org/10.1523/JNEUROSCI.08-11-04079.1988 PubMed DOI PMC

Donato R, Pavan A, Nucci M, Campana G (2020) The neural mechanisms underlying directional and apparent circular motion assessed with repetitive transcranial magnetic stimulation (rTMS). Neuropsychologia 149:107656. https://doi.org/10.1016/j.neuropsychologia.2020.107656 PubMed DOI

Du X, Rowland LM, Summerfelt A et al (2018) TMS evoked N100 reflects local GABA and glutamate balance. Brain Stimul 11:1071–1079. https://doi.org/10.1016/j.brs.2018.05.002 PubMed DOI PMC

Duecker F, Sack AT (2015) Rethinking the role of sham TMS. Front Psychol. https://doi.org/10.3389/fpsyg.2015.00210 PubMed DOI PMC

Eggers C, Günther M, Rothwell J et al (2015) Theta burst stimulation over the supplementary motor area in Parkinson’s disease. J Neurol 262:357–364. https://doi.org/10.1007/s00415-014-7572-8 PubMed DOI

Ferrari C, Schiavi S, Cattaneo Z (2018) TMS over the superior temporal sulcus affects expressivity evaluation of portraits. Cogn Affect Behav Neurosci 18:1188–1197. https://doi.org/10.3758/s13415-018-0630-4 PubMed DOI

Ferrari C, Ciricugno A, Urgesi C, Cattaneo Z (2019) Cerebellar contribution to emotional body language perception: a TMS study. Soc Cogn Affect Neurosci. https://doi.org/10.1093/scan/nsz074 PubMed DOI PMC

Fritz CO, Morris PE, Richler JJ (2012) Effect size estimates: current use, calculations, and interpretation. J Exp Psychol Gen 141(1):2–18. https://doi.org/10.1037/a0024338 PubMed DOI

Fu C, Aisikaer A, Chen Z et al (2021) Antiepileptic efficacy and network connectivity modulation of repetitive transcranial magnetic stimulation by vertex suppression. Front Hum Neurosci 15:667619. https://doi.org/10.3389/fnhum.2021.667619 PubMed DOI PMC

Gamboa OL, Antal A, Laczo B et al (2011) Impact of repetitive theta burst stimulation on motor cortex excitability. Brain Stimul 4:145–151. https://doi.org/10.1016/j.brs.2010.09.008 PubMed DOI

Gatti D, Van Vugt F, Vecchi T (2020) A causal role for the cerebellum in semantic integration: a transcranial magnetic stimulation study. Sci Rep 10:18139. https://doi.org/10.1038/s41598-020-75287-z PubMed DOI PMC

Gatti D, Vecchi T, Mazzoni G (2021) Cerebellum and semantic memory: a TMS study using the DRM paradigm. Cortex 135:78–91. https://doi.org/10.1016/j.cortex.2020.11.017 PubMed DOI

Gordon PC, Desideri D, Belardinelli P et al (2018) Comparison of cortical EEG responses to realistic sham versus real TMS of human motor cortex. Brain Stimul 11:1322–1330. https://doi.org/10.1016/j.brs.2018.08.003 PubMed DOI

Gosseries O, Sarasso S, Casarotto S et al (2015) On the cerebral origin of EEG responses to TMS: insights from severe cortical lesions. Brain Stimul 8:142–149. https://doi.org/10.1016/j.brs.2014.10.008 PubMed DOI

Grefkes C, Eickhoff SB, Nowak DA et al (2008) Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM. Neuroimage 41:1382–1394. https://doi.org/10.1016/j.neuroimage.2008.03.048 PubMed DOI

Hamada M, Ugawa Y, Tsuji S (2009) High-frequency rTMS over the supplementary motor area improves bradykinesia in Parkinson’s disease: subanalysis of double-blind sham-controlled study. J Neurol Sci 287:143–146. https://doi.org/10.1016/j.jns.2009.08.007 PubMed DOI

Hampshire A, Chamberlain SR, Monti MM et al (2010) The role of the right inferior frontal gyrus: inhibition and attentional control. Neuroimage 50:1313–1319. https://doi.org/10.1016/j.neuroimage.2009.12.109 PubMed DOI

Hirjak D, Wolf RC, Stieltjes B et al (2014) Cortical signature of neurological soft signs in recent onset schizophrenia. Brain Topogr 27:296–306. https://doi.org/10.1007/s10548-013-0292-z PubMed DOI

Huang Y-Z, Edwards MJ, Rounis E et al (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206. https://doi.org/10.1016/j.neuron.2004.12.033 PubMed DOI

Iezzi E, Suppa A, Conte A et al (2011) Short-term and long-term plasticity interaction in human primary motor cortex. Eur J Neurosci 33:1908–1915. https://doi.org/10.1111/j.1460-9568.2011.07674.x PubMed DOI

Ilmoniemi RJ, Virtanen J, Ruohonen J et al (1997) Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. NeuroReport 8:3537–3540 PubMed DOI

Jacobson L, Javitt DC, Lavidor M (2011) Activation of inhibition: diminishing impulsive behavior by direct current stimulation over the inferior frontal gyrus. J Cogn Neurosci 23:3380–3387. https://doi.org/10.1162/jocn_a_00020 PubMed DOI

Ji G-J, Yu F, Liao W, Wang K (2017) Dynamic aftereffects in supplementary motor network following inhibitory transcranial magnetic stimulation protocols. Neuroimage 149:285–294. https://doi.org/10.1016/j.neuroimage.2017.01.035 PubMed DOI

Jiang B, He D, Guo Z et al (2019) Efficacy and placebo response of repetitive transcranial magnetic stimulation for primary insomnia. Sleep Med 63:9–13. https://doi.org/10.1016/j.sleep.2019.05.008 PubMed DOI

Jung J, Bungert A, Bowtell R, Jackson SR (2016) Vertex stimulation as a control site for transcranial magnetic stimulation: a concurrent TMS/fMRI study. Brain Stimul 9:58–64. https://doi.org/10.1016/j.brs.2015.09.008 PubMed DOI PMC

Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34:1600–1611. https://doi.org/10.1016/j.neuroimage.2006.09.024 PubMed DOI

Koch G (2020) Cortico-cortical connectivity: the road from basic neurophysiological interactions to therapeutic applications. Exp Brain Res 238:1677–1684. https://doi.org/10.1007/s00221-020-05844-5 PubMed DOI

Koch G, Bonnì S, Casula EP et al (2019) Effect of cerebellar stimulation on gait and balance recovery in patients with hemiparetic stroke: a randomized clinical trial. JAMA Neurol 76:170–178. https://doi.org/10.1001/jamaneurol.2018.3639 PubMed DOI

Koch G, Esposito R, Motta C et al (2020) Improving visuo-motor learning with cerebellar theta burst stimulation: behavioral and neurophysiological evidence. Neuroimage 208:116424. https://doi.org/10.1016/j.neuroimage.2019.116424 PubMed DOI

Komssi S, Savolainen P, Heiskala J, Kähkönen S (2007) Excitation threshold of the motor cortex estimated with transcranial magnetic stimulation electroencephalography. NeuroReport 18:13–16. https://doi.org/10.1097/WNR.0b013e328011b89a PubMed DOI

Konakanchi D (2020) Focality of the induced E-field is a contributing factor in the choice of tms parameters: evidence from a 3D computational model of the human brain. Brain Sci 10:1010. https://doi.org/10.3390/brainsci10121010 DOI PMC

Laakso I, Murakami T, Hirata A, Ugawa Y (2018) Where and what TMS activates: experiments and modeling. Brain Stimul 11:166–174. https://doi.org/10.1016/j.brs.2017.09.011 PubMed DOI

Lee EG, Rastogi P, Hadimani RL et al (2018) Impact of non-brain anatomy and coil orientation on inter- and intra-subject variability in TMS at midline. Clin Neurophysiol 129:1873–1883. https://doi.org/10.1016/j.clinph.2018.04.749 PubMed DOI PMC

Lefaucheur J-P, Aleman A, Baeken C et al (2020) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014–2018). Clin Neurophysiol 131:474–528. https://doi.org/10.1016/j.clinph.2019.11.002 PubMed DOI

Loo CK, Taylor JL, Gandevia SC et al (2000) Transcranial magnetic stimulation (TMS) in controlled treatment studies: are some “sham” forms active? Biol Psychiatry 47:325–331. https://doi.org/10.1016/S0006-3223(99)00285-1 PubMed DOI

Macar F, Coull J, Vidal F (2006) The supplementary motor area in motor and perceptual time processing: fMRI studies. Cogn Process 7:89–94. https://doi.org/10.1007/s10339-005-0025-7 PubMed DOI

Matsunaga K, Maruyama A, Fujiwara T et al (2005) Increased corticospinal excitability after 5Hz rTMS over the human supplementary motor area. J Physiol 562:295–306. https://doi.org/10.1113/jphysiol.2004.070755 PubMed DOI

Meister R, Jansen A, Härter M et al (2017) Placebo and nocebo reactions in randomized trials of pharmacological treatments for persistent depressive disorder. A meta-regression analysis. J Affect Disord 215:288–298. https://doi.org/10.1016/j.jad.2017.03.024 PubMed DOI

Morris TP, Davila-Pérez P, Jannati A et al (2019) Aftereffects of intermittent theta-burst stimulation in adjacent, non-target muscles. Neuroscience 418:157–165. https://doi.org/10.1016/j.neuroscience.2019.08.043 PubMed DOI

Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9:856–869. https://doi.org/10.1038/nrn2478 PubMed DOI

Narayana S, Laird AR, Tandon N et al (2012) Electrophysiological and functional connectivity of the human supplementary motor area. Neuroimage 62:250–265. https://doi.org/10.1016/j.neuroimage.2012.04.060 PubMed DOI

Nemcova Elfmarkova N, Gajdos M, Rektorova I et al (2017) Neural evidence for defective top-down control of visual processing in Parkinson’s and Alzheimer’s disease. Neuropsychologia 106:236–244. https://doi.org/10.1016/j.neuropsychologia.2017.09.034 PubMed DOI

Okamoto M, Dan I (2005) Automated cortical projection of head-surface locations for transcranial functional brain mapping. Neuroimage 26:18–28. https://doi.org/10.1016/j.neuroimage.2005.01.018 PubMed DOI

Okamoto M, Dan H, Sakamoto K et al (2004) Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. Neuroimage 21:99–111. https://doi.org/10.1016/j.neuroimage.2003.08.026 PubMed DOI

Pellicciari MC, Bonnì S, Ponzo V et al (2018) Dynamic reorganization of TMS-evoked activity in subcortical stroke patients. Neuroimage 175:365–378. https://doi.org/10.1016/j.neuroimage.2018.04.011 PubMed DOI

Péran P, Démonet J-F, Cherubini A et al (2010) Mental representations of action: the neural correlates of the verbal and motor components. Brain Res 1328:89–103. https://doi.org/10.1016/j.brainres.2010.02.082 PubMed DOI

Quartarone A, Bagnato S, Rizzo V et al (2005) Distinct changes in cortical and spinal excitability following high-frequency repetitive TMS to the human motor cortex. Exp Brain Res 161:114–124. https://doi.org/10.1007/s00221-004-2052-5 PubMed DOI

Raux M, Xie H, Similowski T, Koski L (2010) Facilitatory conditioning of the supplementary motor area in humans enhances the corticophrenic responsiveness to transcranial magnetic stimulation. J Appl Physiol Bethesda Md 1985 108:39–46. https://doi.org/10.1152/japplphysiol.91454.2008 DOI

Razza LB, Moffa AH, Moreno ML et al (2018) A systematic review and meta-analysis on placebo response to repetitive transcranial magnetic stimulation for depression trials. Prog Neuropsychopharmacol Biol Psychiatry 81:105–113. https://doi.org/10.1016/j.pnpbp.2017.10.016 PubMed DOI

Respino M, Jaywant A, Kuceyeski A et al (2019) The impact of white matter hyperintensities on the structural connectome in late-life depression: Relationship to executive functions. NeuroImage Clin 23:101852. https://doi.org/10.1016/j.nicl.2019.101852 PubMed DOI PMC

Rocchi L, Di Santo A, Brown K et al (2021) Disentangling EEG responses to TMS due to cortical and peripheral activations. Brain Stimul 14:4–18. https://doi.org/10.1016/j.brs.2020.10.011 PubMed DOI

Romei V, Driver J, Schyns PG, Thut G (2011) Rhythmic TMS over parietal cortex links distinct brain frequencies to global versus local visual processing. Curr Biol CB 21:334–337. https://doi.org/10.1016/j.cub.2011.01.035 PubMed DOI

Rosanova M, Casali A, Bellina V et al (2009) Natural frequencies of human corticothalamic circuits. J Neurosci 29:7679–7685. https://doi.org/10.1523/JNEUROSCI.0445-09.2009 PubMed DOI PMC

Ross GJS (1983) Review of applications, basics and computing of exploratory data analysis., by P. F. Vellenian & D. C. Hoaglin. J R Stat Soc Ser C (applied Statistics) 32(3):320–321. https://doi.org/10.2307/2347963 DOI

Rossi S, Ferro M, Cincotta M et al (2007) A real electro-magnetic placebo (REMP) device for sham transcranial magnetic stimulation (TMS). Clin Neurophysiol 118:709–716. https://doi.org/10.1016/j.clinph.2006.11.005 PubMed DOI

Russo S, Sarasso S, Puglisi GE et al (2021) TAAC—TMS adaptable auditory control: a universal tool to mask TMS click

Salo KS-T, Vaalto SMI, Mutanen TP et al (2018) Individual activation patterns after the stimulation of different motor areas: a transcranial magnetic stimulation-electroencephalography study. Brain Connect 8:420–428. https://doi.org/10.1089/brain.2018.0593 PubMed DOI

Saturnino GB, Puonti O, Nielsen JD et al (2019) SimNIBS 2.1: a comprehensive pipeline for individualized electric field modelling for transcranial brain stimulation. In: Makarov S, Horner M, Noetscher G (eds) Brain and human body modeling: computational human modeling at EMBC 2018. Springer, Cham. https://doi.org/10.1007/978-3-030-21293-3_1

Shirota Y, Hanajima R, Ohminami S et al (2019) Supplementary motor area plays a causal role in automatic inhibition of motor responses. Brain Stimul 12:1020–1026. https://doi.org/10.1016/j.brs.2019.03.002 PubMed DOI

Sjöberg RL, Stålnacke M, Andersson M, Eriksson J (2019) The supplementary motor area syndrome and cognitive control. Neuropsychologia 129:141–145. https://doi.org/10.1016/j.neuropsychologia.2019.03.013 PubMed DOI

Srovnalova H, Marecek R, Rektorova I (2011) The role of the inferior frontal gyri in cognitive processing of patients with Parkinson’s disease: a pilot rTMS study. Mov Disord off J Mov Disord Soc 26:1545–1548. https://doi.org/10.1002/mds.23663 DOI

Suppa A, Huang Y-Z, Funke K et al (2016) Ten years of theta burst stimulation in humans: established knowledge, unknowns and prospects. Brain Stimul 9:323–335. https://doi.org/10.1016/j.brs.2016.01.006 PubMed DOI

ter Braack EM, de Vos CC, van Putten MJAM (2015) Masking the auditory evoked potential in TMS–EEG: a comparison of various methods. Brain Topogr 28:520–528. https://doi.org/10.1007/s10548-013-0312-z PubMed DOI

Thickbroom GW, Byrnes ML, Sacco P et al (2000) The role of the supplementary motor area in externally timed movement: the influence of predictability of movement timing. Brain Res 874:233–241. https://doi.org/10.1016/s0006-8993(00)02588-9 PubMed DOI

Thielscher A, Kammer T (2002) Linking physics with physiology in TMS: a sphere field model to determine the cortical stimulation site in TMS. Neuroimage 17(3):1117–1130. https://doi.org/10.1006/nimg.2002.1282 PubMed DOI

Thielscher A, Wichmann FA (2009) Determining the cortical target of transcranial magnetic stimulation. Neuroimage 47:1319–1330. https://doi.org/10.1016/j.neuroimage.2009.04.021 PubMed DOI

Thielscher A, Opitz A, Windhoff M (2011) Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. Neuroimage 54:234–243. https://doi.org/10.1016/j.neuroimage.2010.07.061 PubMed DOI

Thielscher A, Antunes A, Saturnino GB (2015) Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS? Annu Int Conf IEEE Eng Med Biol Soc 2015:222–225. https://doi.org/10.1109/EMBC.2015.7318340 PubMed DOI

Thut G, Miniussi C (2009) New insights into rhythmic brain activity from TMS–EEG studies. Trends Cogn Sci 13:182–189. https://doi.org/10.1016/j.tics.2009.01.004 PubMed DOI

Tik M, Hoffmann A, Sladky R et al (2017) Towards understanding rTMS mechanism of action: stimulation of the DLPFC causes network-specific increase in functional connectivity. Neuroimage 162:289–296. https://doi.org/10.1016/j.neuroimage.2017.09.022 PubMed DOI

Tremblay S, Rogasch NC, Premoli I et al (2019) Clinical utility and prospective of TMS–EEG. Clin Neurophysiol 130:802–844. https://doi.org/10.1016/j.clinph.2019.01.001 PubMed DOI

Tse C-Y, Yip L-Y, Lui TK-Y et al (2018) Establishing the functional connectivity of the frontotemporal network in pre-attentive change detection with transcranial magnetic stimulation and event-related optical signal. Neuroimage 179:403–413. https://doi.org/10.1016/j.neuroimage.2018.06.053 PubMed DOI

Verwey WB, Lammens R, van Honk J (2002) On the role of the SMA in the discrete sequence production task: a TMS study. Neuropsychologia 40:1268–1276. https://doi.org/10.1016/S0028-3932(01)00221-4 PubMed DOI

Wu SW, Maloney T, Gilbert DL et al (2014) Functional MRI-navigated repetitive transcranial magnetic stimulation over supplementary motor area in chronic tic disorders. Brain Stimulat 7:212–218. https://doi.org/10.1016/j.brs.2013.10.005 DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...