Proline-specific aminopeptidase P prevents replication-associated genome instability

. 2022 Jan ; 18 (1) : e1010025. [epub] 20220126

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35081133

Grantová podpora
MC_U120097113 Medical Research Council - United Kingdom
Cancer Research UK - United Kingdom
Biotechnology and Biological Sciences Research Council - United Kingdom

Odkazy

PubMed 35081133
PubMed Central PMC8820600
DOI 10.1371/journal.pgen.1010025
PII: PGENETICS-D-21-01257
Knihovny.cz E-zdroje

Genotoxic stress during DNA replication constitutes a serious threat to genome integrity and causes human diseases. Defects at different steps of DNA metabolism are known to induce replication stress, but the contribution of other aspects of cellular metabolism is less understood. We show that aminopeptidase P (APP1), a metalloprotease involved in the catabolism of peptides containing proline residues near their N-terminus, prevents replication-associated genome instability. Functional analysis of C. elegans mutants lacking APP-1 demonstrates that germ cells display replication defects including reduced proliferation, cell cycle arrest, and accumulation of mitotic DSBs. Despite these defects, app-1 mutants are competent in repairing DSBs induced by gamma irradiation, as well as SPO-11-dependent DSBs that initiate meiotic recombination. Moreover, in the absence of SPO-11, spontaneous DSBs arising in app-1 mutants are repaired as inter-homologue crossover events during meiosis, confirming that APP-1 is not required for homologous recombination. Thus, APP-1 prevents replication stress without having an apparent role in DSB repair. Depletion of APP1 (XPNPEP1) also causes DSB accumulation in mitotically-proliferating human cells, suggesting that APP1's role in genome stability is evolutionarily conserved. Our findings uncover an unexpected role for APP1 in genome stability, suggesting functional connections between aminopeptidase-mediated protein catabolism and DNA replication.

Zobrazit více v PubMed

Tubbs A, Nussenzweig A. Endogenous DNA Damage as a Source of Genomic Instability in Cancer. Cell. 2017;168(4):644–56. doi: 10.1016/j.cell.2017.01.002 . PubMed DOI PMC

Mehta A, Haber JE. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol. 2014;6(9):a016428. Epub 2014/08/12. doi: 10.1101/cshperspect.a016428 ; PubMed Central PMCID: PMC4142968. PubMed DOI PMC

Aguilera A, Garcia-Muse T. Causes of genome instability. Annu Rev Genet. 2013;47:1–32. doi: 10.1146/annurev-genet-111212-133232 . PubMed DOI

Bellelli R, Boulton SJ. Spotlight on the Replisome: Aetiology of DNA Replication-Associated Genetic Diseases. Trends Genet. 2021;37(4):317–36. Epub 2020/10/13. doi: 10.1016/j.tig.2020.09.008 . PubMed DOI

Hunter N. Meiotic Recombination: The Essence of Heredity. Cold Spring Harb Perspect Biol. 2015;7(12). doi: 10.1101/cshperspect.a016618 . PubMed DOI PMC

Adamo A, Collis SJ, Adelman CA, Silva N, Horejsi Z, Ward JD, et al.. Preventing nonhomologous end joining suppresses DNA repair defects of Fanconi anemia. Mol Cell. 2010;39(1):25–35. Epub 2010/07/06. doi: 10.1016/j.molcel.2010.06.026 . PubMed DOI

Varshavsky A. The N-end rule pathway and regulation by proteolysis. Protein Sci. 2011;20(8):1298–345. Epub 2011/06/03. doi: 10.1002/pro.666 ; PubMed Central PMCID: PMC3189519. PubMed DOI PMC

Fortin SM, Marshall SL, Jaeger EC, Greene PE, Brady LK, Isaac RE, et al.. The PAM-1 aminopeptidase regulates centrosome positioning to ensure anterior-posterior axis specification in one-cell C. elegans embryos. Dev Biol. 2010;344(2):992–1000. Epub 2010/07/06. doi: 10.1016/j.ydbio.2010.06.016 ; PubMed Central PMCID: PMC2914133. PubMed DOI PMC

Sanchez-Moran E, Jones GH, Franklin FC, Santos JL. A puromycin-sensitive aminopeptidase is essential for meiosis in Arabidopsis thaliana. Plant Cell. 2004;16(11):2895–909. Epub 2004/11/04. doi: 10.1105/tpc.104.024992 ; PubMed Central PMCID: PMC527187. PubMed DOI PMC

Saric T, Graef CI, Goldberg AL. Pathway for degradation of peptides generated by proteasomes: a key role for thimet oligopeptidase and other metallopeptidases. J Biol Chem. 2004;279(45):46723–32. doi: 10.1074/jbc.M406537200 . PubMed DOI

Cunningham DF O ’Connor B. Proline specific peptidases. Biochim Biophys Acta. 1997;1343(2):160–86. doi: 10.1016/s0167-4838(97)00134-9 . PubMed DOI

Laurent V, Brooks DR, Coates D, Isaac RE. Functional expression and characterization of the cytoplasmic aminopeptidase P of Caenorhabditis elegans. Eur J Biochem. 2001;268(20):5430–8. Epub 2001/10/19. doi: 10.1046/j.0014-2956.2001.02483.x . PubMed DOI

Cottrell GS, Turner AJ. Aminopeptidase P1. In: Rawlings ND, Salvesen GS, editors. Handbook of Proteolytic Enzymes. 3rd ed: Elsevier; 2012. p. 1525–8.

Simmons WH. Aminopeptidase P2. In Handbook of Proteolytic Enzymes, Rawlings ND, and Salvesen GS, eds (Elsevier; ). 2012:1528–32.

Vogtle FN, Wortelkamp S, Zahedi RP, Becker D, Leidhold C, Gevaert K, et al.. Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell. 2009;139(2):428–39. Epub 2009/10/20. doi: 10.1016/j.cell.2009.07.045 . PubMed DOI

Yoon SH, Bae YS, Mun MS, Park KY, Ye SK, Kim E, et al.. Developmental retardation, microcephaly, and peptiduria in mice without aminopeptidase P1. Biochem Biophys Res Commun. 2012;429(3–4):204–9. Epub 2012/11/08. doi: 10.1016/j.bbrc.2012.10.104 . PubMed DOI

Bae YS, Yoon SH, Han JY, Woo J, Cho YS, Kwon SK, et al.. Deficiency of aminopeptidase P1 causes behavioral hyperactivity, cognitive deficits, and hippocampal neurodegeneration. Genes Brain Behav. 2017. doi: 10.1111/gbb.12419 . PubMed DOI

Blundon MA, Schlesinger DR, Parthasarathy A, Smith SL, Kolev HM, Vinson DA, et al.. Proteomic analysis reveals APC-dependent post-translational modifications and identifies a novel regulator of beta-catenin. Development. 2016;143(14):2629–40. doi: 10.1242/dev.130567 ; PubMed Central PMCID: PMC4958330. PubMed DOI PMC

Saito TT, Youds JL, Boulton SJ, Colaiacovo MP. Caenorhabditis elegans HIM-18/SLX-4 interacts with SLX-1 and XPF-1 and maintains genomic integrity in the germline by processing recombination intermediates. PLoS Genet. 2009;5(11):e1000735. Epub 2009/11/26. doi: 10.1371/journal.pgen.1000735 ; PubMed Central PMCID: PMC2770170. PubMed DOI PMC

Petronczki M, Siomos MF, Nasmyth K. Un menage a quatre: the molecular biology of chromosome segregation in meiosis. Cell. 2003;112(4):423–40. Epub 2003/02/26. doi: 10.1016/s0092-8674(03)00083-7 . PubMed DOI

Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser M, Villeneuve AM. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell. 1998;94(3):387–98. Epub 1998/08/26. doi: 10.1016/s0092-8674(00)81481-6 . PubMed DOI

Keeney S, Giroux CN, Kleckner N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell. 1997;88(3):375–84. Epub 1997/02/07. doi: 10.1016/s0092-8674(00)81876-0 . PubMed DOI

Graham SC, Lilley PE, Lee M, Schaeffer PM, Kralicek AV, Dixon NE, et al.. Kinetic and crystallographic analysis of mutant Escherichia coli aminopeptidase P: insights into substrate recognition and the mechanism of catalysis. Biochemistry. 2006;45(3):964–75. doi: 10.1021/bi0518904 . PubMed DOI

Iyer S, La-Borde PJ, Payne KAP, Parsons MR, Turner AJ, Isaac RE, et al.. Crystal structure of X-prolyl aminopeptidase from Caenorhabditis elegans: A cytosolic enzyme with a di-nuclear active site. FEBS Open Bio. 2015;5(0):292–302. doi: 10.1016/j.fob.2015.03.013 PubMed DOI PMC

Hansen D, Schedl T. Stem cell proliferation versus meiotic fate decision in Caenorhabditis elegans. Adv Exp Med Biol. 2013;757:71–99. doi: 10.1007/978-1-4614-4015-4_4 ; PubMed Central PMCID: PMC3786863. PubMed DOI PMC

Rosu S, Cohen-Fix O. Live-imaging analysis of germ cell proliferation in the C. elegans adult supports a stochastic model for stem cell proliferation. Dev Biol. 2017;423(2):93–100. doi: 10.1016/j.ydbio.2017.02.008 ; PubMed Central PMCID: PMC5382985. PubMed DOI PMC

Gartner A, Milstein S, Ahmed S, Hodgkin J, Hengartner MO. A conserved checkpoint pathway mediates DNA damage—induced apoptosis and cell cycle arrest in C. elegans. Mol Cell. 2000;5(3):435–43. doi: 10.1016/s1097-2765(00)80438-4 . PubMed DOI

Rosu S, Libuda DE, Villeneuve AM. Robust crossover assurance and regulated interhomolog access maintain meiotic crossover number. Science. 2011;334(6060):1286–9. doi: 10.1126/science.1212424 ; PubMed Central PMCID: PMC3360972. PubMed DOI PMC

Singh A, Xu YJ. The Cell Killing Mechanisms of Hydroxyurea. Genes (Basel). 2016;7(11). Epub 2016/11/22. doi: 10.3390/genes7110099 ; PubMed Central PMCID: PMC5126785. PubMed DOI PMC

Garcia-Muse T, Boulton SJ. Distinct modes of ATR activation after replication stress and DNA double-strand breaks in Caenorhabditis elegans. Embo J. 2005;24(24):4345–55. Epub 2005/12/02. doi: 10.1038/sj.emboj.7600896 ; PubMed Central PMCID: PMC1356337. PubMed DOI PMC

Lee KC, Padget K, Curtis H, Cowell IG, Moiani D, Sondka Z, et al.. MRE11 facilitates the removal of human topoisomerase II complexes from genomic DNA. Biol Open. 2012;1(9):863–73. Epub 2012/12/06. doi: 10.1242/bio.20121834 ; PubMed Central PMCID: PMC3507232. PubMed DOI PMC

Lightfoot J, Testori S, Barroso C, Martinez-Perez E. Loading of meiotic cohesin by SCC-2 is required for early processing of DSBs and for the DNA damage checkpoint. Curr Biol. 2011;21(17):1421–30. Epub 2011/08/23. doi: 10.1016/j.cub.2011.07.007 . PubMed DOI

Pines A, Mullenders LH, van Attikum H, Luijsterburg MS. Touching base with PARPs: moonlighting in the repair of UV lesions and double-strand breaks. Trends Biochem Sci. 2013;38(6):321–30. Epub 2013/04/09. doi: 10.1016/j.tibs.2013.03.002 . PubMed DOI

Bryant HE, Petermann E, Schultz N, Jemth AS, Loseva O, Issaeva N, et al.. PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. Embo J. 2009;28(17):2601–15. doi: 10.1038/emboj.2009.206 ; PubMed Central PMCID: PMC2738702. PubMed DOI PMC

Ronson GE, Piberger AL, Higgs MR, Olsen AL, Stewart GS, McHugh PJ, et al.. PARP1 and PARP2 stabilise replication forks at base excision repair intermediates through Fbh1-dependent Rad51 regulation. Nat Commun. 2018;9(1):746. Epub 2018/02/23. doi: 10.1038/s41467-018-03159-2 ; PubMed Central PMCID: PMC5821833. PubMed DOI PMC

Chin GM, Villeneuve AM. C. elegans mre-11 is required for meiotic recombination and DNA repair but is dispensable for the meiotic G(2) DNA damage checkpoint. Genes & development. 2001;15(5):522–34. Epub 2001/03/10. doi: 10.1101/gad.864101 ; PubMed Central PMCID: PMC312651. PubMed DOI PMC

Yin Y, Smolikove S. Impaired resection of meiotic double-strand breaks channels repair to nonhomologous end joining in Caenorhabditis elegans. Mol Cell Biol. 2013;33(14):2732–47. Epub 2013/05/15. doi: 10.1128/MCB.00055-13 ; PubMed Central PMCID: PMC3700128. PubMed DOI PMC

Penkner A, Portik-Dobos Z, Tang L, Schnabel R, Novatchkova M, Jantsch V, et al.. A conserved function for a Caenorhabditis elegans Com1/Sae2/CtIP protein homolog in meiotic recombination. Embo J. 2007;26(24):5071–82. Epub 2007/11/17. doi: 10.1038/sj.emboj.7601916 ; PubMed Central PMCID: PMC2140103. PubMed DOI PMC

Colaiacovo MP, MacQueen AJ, Martinez-Perez E, McDonald K, Adamo A, La Volpe A, et al.. Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. Dev Cell. 2003;5(3):463–74. Epub 2003/09/12. doi: 10.1016/s1534-5807(03)00232-6 . PubMed DOI

Kelly KO, Dernburg AF, Stanfield GM, Villeneuve AM. Caenorhabditis elegans msh-5 is required for both normal and radiation-induced meiotic crossing over but not for completion of meiosis. Genetics. 2000;156(2):617–30. Epub 2000/10/03. doi: 10.1093/genetics/156.2.617 ; PubMed Central PMCID: PMC1461284. PubMed DOI PMC

Yokoo R, Zawadzki KA, Nabeshima K, Drake M, Arur S, Villeneuve AM. COSA-1 reveals robust homeostasis and separable licensing and reinforcement steps governing meiotic crossovers. Cell. 2012;149(1):75–87. Epub 2012/04/03. doi: 10.1016/j.cell.2012.01.052 ; PubMed Central PMCID: PMC3339199. PubMed DOI PMC

Janisiw E, Dello Stritto MR, Jantsch V, Silva N. BRCA1-BARD1 associate with the synaptonemal complex and pro-crossover factors and influence RAD-51 dynamics during Caenorhabditis elegans meiosis. PLoS Genet. 2018;14(11):e1007653. Epub 2018/11/02. doi: 10.1371/journal.pgen.1007653 ; PubMed Central PMCID: PMC6211622. PubMed DOI PMC

Woglar A, Villeneuve AM. Dynamic Architecture of DNA Repair Complexes and the Synaptonemal Complex at Sites of Meiotic Recombination. Cell. 2018;173(7):1678–91 e16. Epub 2018/05/15. doi: 10.1016/j.cell.2018.03.066 ; PubMed Central PMCID: PMC6003859. PubMed DOI PMC

Wilce MC, Bond CS, Dixon NE, Freeman HC, Guss JM, Lilley PE, et al.. Structure and mechanism of a proline-specific aminopeptidase from Escherichia coli. Proc Natl Acad Sci U S A. 1998;95(7):3472–7. Epub 1998/05/09. doi: 10.1073/pnas.95.7.3472 ; PubMed Central PMCID: PMC19860. PubMed DOI PMC

Li X, Lou Z, Zhou W, Ma M, Cao Y, Geng Y, et al.. Structure of human cytosolic X-prolyl aminopeptidase: a double Mn(II)-dependent dimeric enzyme with a novel three-domain subunit. J Biol Chem. 2008;283(33):22858–66. Epub 2008/06/03. doi: 10.1074/jbc.M710274200 . PubMed DOI

Yin Y, Smolikove S. Impaired resection of meiotic double-strand breaks channels repair to nonhomologous end joining in Caenorhabditis elegans. Mol Cell Biol. 2013;33(14):2732–47. Epub 2013/05/15. doi: 10.1128/MCB.00055-13 ; PubMed Central PMCID: PMC3700128. PubMed DOI PMC

Rinaldo C, Bazzicalupo P, Ederle S, Hilliard M, La Volpe A. Roles for Caenorhabditis elegans rad-51 in meiosis and in resistance to ionizing radiation during development. Genetics. 2002;160(2):471–9. Epub 2002/02/28. doi: 10.1093/genetics/160.2.471 ; PubMed Central PMCID: PMC1461995. PubMed DOI PMC

Penkner A, Portik-Dobos Z, Tang L, Schnabel R, Novatchkova M, Jantsch V, et al.. A conserved function for a Caenorhabditis elegans Com1/Sae2/CtIP protein homolog in meiotic recombination. Embo J. 2007;26(24):5071–82. Epub 2007/11/17. doi: 10.1038/sj.emboj.7601916 ; PubMed Central PMCID: PMC2140103. PubMed DOI PMC

Girard C, Roelens B, Zawadzki KA, Villeneuve AM. Interdependent and separable functions of Caenorhabditis elegans MRN-C complex members couple formation and repair of meiotic DSBs. Proc Natl Acad Sci U S A. 2018;115(19):E4443–E52. Epub 2018/04/25. doi: 10.1073/pnas.1719029115 ; PubMed Central PMCID: PMC5948970. PubMed DOI PMC

Stingele J, Bellelli R, Boulton SJ. Mechanisms of DNA-protein crosslink repair. Nat Rev Mol Cell Biol. 2017;18(9):563–73. Epub 2017/06/29. doi: 10.1038/nrm.2017.56 . PubMed DOI

Bhargava V, Goldstein CD, Russell L, Xu L, Ahmed M, Li W, et al.. GCNA Preserves Genome Integrity and Fertility Across Species. Dev Cell. 2020;52(1):38–52 e10. Epub 2019/12/17. doi: 10.1016/j.devcel.2019.11.007 ; PubMed Central PMCID: PMC6946843. PubMed DOI PMC

Stingele J, Bellelli R, Alte F, Hewitt G, Sarek G, Maslen SL, et al.. Mechanism and Regulation of DNA-Protein Crosslink Repair by the DNA-Dependent Metalloprotease SPRTN. Mol Cell. 2016;64(4):688–703. doi: 10.1016/j.molcel.2016.09.031 ; PubMed Central PMCID: PMC5128726. PubMed DOI PMC

Dello Stritto MR, Bauer B, Barraud P, Jantsch V. DNA topoisomerase 3 is required for efficient germ cell quality control. J Cell Biol. 2021;220(6). Epub 2021/04/03. doi: 10.1083/jcb.202012057 . PubMed DOI PMC

Aksnes H, Ree R, Arnesen T. Co-translational, Post-translational, and Non-catalytic Roles of N-Terminal Acetyltransferases. Mol Cell. 2019;73(6):1097–114. Epub 2019/03/18. doi: 10.1016/j.molcel.2019.02.007 ; PubMed Central PMCID: PMC6962057. PubMed DOI PMC

Goetze S, Qeli E, Mosimann C, Staes A, Gerrits B, Roschitzki B, et al.. Identification and functional characterization of N-terminally acetylated proteins in Drosophila melanogaster. PLoS Biol. 2009;7(11):e1000236. Epub 2009/11/04. doi: 10.1371/journal.pbio.1000236 ; PubMed Central PMCID: PMC2762599. PubMed DOI PMC

Gao J, Barroso C, Zhang P, Kim HM, Li S, Labrador L, et al.. N-terminal acetylation promotes synaptonemal complex assembly in C. elegans. Genes & development. 2016;30(21):2404–16. Epub 2016/11/25. doi: 10.1101/gad.277350.116 ; PubMed Central PMCID: PMC5131780. PubMed DOI PMC

Chen SJ, Wu X, Wadas B, Oh JH, Varshavsky A. An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes. Science. 2017;355(6323). Epub 2017/01/28. doi: 10.1126/science.aal3655 ; PubMed Central PMCID: PMC5457285. PubMed DOI PMC

Placentino M, de Jesus Domingues AM, Schreier J, Dietz S, Hellmann S, de Albuquerque BF, et al.. Intrinsically disordered protein PID-2 modulates Z granules and is required for heritable piRNA-induced silencing in the Caenorhabditis elegans embryo. Embo J. 2021;40(3):e105280. Epub 2020/11/25. doi: 10.15252/embj.2020105280 ; PubMed Central PMCID: PMC7849312. PubMed DOI PMC

Liang X, Dickman MB, Becker DF. Proline biosynthesis is required for endoplasmic reticulum stress tolerance in Saccharomyces cerevisiae. J Biol Chem. 2014;289(40):27794–806. Epub 2014/08/13. doi: 10.1074/jbc.M114.562827 ; PubMed Central PMCID: PMC4183814. PubMed DOI PMC

Somyajit K, Gupta R, Sedlackova H, Neelsen KJ, Ochs F, Rask MB, et al.. Redox-sensitive alteration of replisome architecture safeguards genome integrity. Science. 2017;358(6364):797–802. Epub 2017/11/11. doi: 10.1126/science.aao3172 . PubMed DOI

Frokjaer-Jensen C, Davis MW, Hopkins CE, Newman BJ, Thummel JM, Olesen SP, et al.. Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet. 2008;40(11):1375–83. Epub 2008/10/28. doi: 10.1038/ng.248 ; PubMed Central PMCID: PMC2749959. PubMed DOI PMC

Silva N, Ferrandiz N, Barroso C, Tognetti S, Lightfoot J, Telecan O, et al.. The fidelity of synaptonemal complex assembly is regulated by a signaling mechanism that controls early meiotic progression. Dev Cell. 2014;31(4):503–11. Epub 2014/12/03. doi: 10.1016/j.devcel.2014.10.001 . PubMed DOI

Chapman JR, Sossick AJ, Boulton SJ, Jackson SP. BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair. J Cell Sci. 2012;125(Pt 15):3529–34. Epub 2012/05/04. doi: 10.1242/jcs.105353 ; PubMed Central PMCID: PMC3445322. PubMed DOI PMC

Chapman JR, Barral P, Vannier JB, Borel V, Steger M, Tomas-Loba A, et al.. RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol Cell. 2013;49(5):858–71. Epub 2013/01/22. doi: 10.1016/j.molcel.2013.01.002 ; PubMed Central PMCID: PMC3594748. PubMed DOI PMC

Adelman CA, Lolo RL, Birkbak NJ, Murina O, Matsuzaki K, Horejsi Z, et al.. HELQ promotes RAD51 paralogue-dependent repair to avert germ cell loss and tumorigenesis. Nature. 2013;502(7471):381–4. Epub 2013/09/06. doi: 10.1038/nature12565 ; PubMed Central PMCID: PMC3836231. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...