Density functional tight binding approach utilized to study X-ray-induced transitions in solid materials
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
35091574
PubMed Central
PMC8799736
DOI
10.1038/s41598-022-04775-1
PII: 10.1038/s41598-022-04775-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Intense X-ray pulses from free-electron lasers can trigger ultrafast electronic, structural and magnetic transitions in solid materials, within a material volume which can be precisely shaped through adjustment of X-ray beam parameters. This opens unique prospects for material processing with X rays. However, any fundamental and applicational studies are in need of computational tools, able to predict material response to X-ray radiation. Here we present a dedicated computational approach developed to study X-ray induced transitions in a broad range of solid materials, including those of high chemical complexity. The latter becomes possible due to the implementation of the versatile density functional tight binding code DFTB+ to follow band structure evolution in irradiated materials. The outstanding performance of the implementation is demonstrated with a comparative study of XUV induced graphitization in diamond.
Beijing Computational Science Research Center Beijing 100193 China
European XFEL 22869 Schenefeld Germany
Institute of Nuclear Physics Polish Academy of Sciences Radzikowskiego 152 31 342 Kraków Poland
Institute of Physics of the Czech Academy of Sciences Na Slovance 2 182 21 Prague Czech Republic
Shenzhen JL Computational Science and Applied Research Institute Shenzhen 518110 China
Zobrazit více v PubMed
Schoenlein R, et al. Recent advances in ultrafast x-ray sources. Philos. Trans. R. Soc. A. 2019;377:20180384. PubMed
Ueda K, et al. Roadmap on photonic, electronic and atomic collision physics: I. Light-matter interaction. J. Phys. B. 2019;52:171001.
Barty A, et al. Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nat. Photonics. 2012;6:35. PubMed PMC
Seibert MM, et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature. 2011;470:78–81. PubMed PMC
Chapman HN, et al. Femtosecond X-ray protein nanocrystallography. Nature. 2011;470:73–77. PubMed PMC
Nass K, et al. Structural dynamics in proteins induced by and probed with x-ray free-electron laser pulses. Nat. Commun. 2020;11:1–9. PubMed PMC
Rouxel JR, Kowalewski M, Bennett K, Mukamel S. X-ray sum frequency diffraction for direct imaging of ultrafast electron dynamics. Phys. Rev. Lett. 2018;120:243902. PubMed
Fukuzawa H, et al. Deep inner-shell multiphoton ionization by intense x-ray free-electron laser pulses. Phys. Rev. Lett. 2013;110:173005. PubMed
Maroju PK, et al. Attosecond pulse shaping using a seeded free-electron laser. Nature. 2020;578:386–391. PubMed
Tavella F, et al. Soft x-ray induced femtosecond solid-to-solid phase transition. High Energy Density Phys. 2017;24:22–27.
Fäustlin R, et al. Observation of ultrafast non-equilibrium collective dynamics in a warm dense hydrogen plasma. Phys. Rev. Lett. 2010;104:125002. PubMed
Vinko SM, et al. Creation and diagnosis of a solid-density plasma with an x-ray free-electron laser. Nature. 2012;482:59–62. PubMed
Zastrau U, et al. Equilibration dynamics and conductivity of warm dense hydrogen. Phys. Rev. E. 2014;90:013104. PubMed
Lévy A, et al. The creation of large-volume, gradient-free warm dense matter with an x-ray free-electron laser. Phys. Plasmas. 2015;22:030703.
Tachibana T, et al. Nanoplasma formation by high intensity hard x-rays. Sci. Rep. 2015;5:10977. PubMed PMC
Inoue I, et al. Observation of femtosecond X-ray interactions with matter using an X-ray-X-ray pump-probe scheme. Proc. Natl. Acad. Sci. 2016;113(6):1492–1497. PubMed PMC
Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys. Rev. 1964;136:B864–B871.
Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965;140:A1133–A1138.
Zijlstra ES, Kalitsov A, Zier T, Garcia ME. Squeezed thermal phonons precurse nonthermal melting of silicon as a function of fluence. Phys. Rev. X. 2013;3:011005.
Zijlstra ES, Kalitsov A, Zier T, Garcia ME. Fractional diffusion in silicon. Adv. Mater. 2013;25:5605–5608. PubMed
Xu CH, Wang CZ, Chan CT, Ho KM. A transferable tight-binding potential for carbon. J. Phys. Condens. Matter. 1992;4:6047–6054.
Jeschke, H. Theory for Optically Created Nonequilibrium in Covalent Solids. Ph.D. thesis, Freie Universität Berlin (2000).
Seifert G, Porezag D, Frauenheim T. Calculations of molecules, clusters, and solids with a simplified lcao-dft-lda scheme. Int. J. Quantum Chem. 1996;58:185–192.
Porezag D, Frauenheim T, Köhler T, Seifert G, Kaschner R. Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. Phys. Rev. B. 1995;51:12947–12957. PubMed
Elstner M, et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B. 1998;58:7260–7268.
Hourahine B, et al. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys. 2020;152:124101. PubMed
Chen M, Lopata K. First-principles simulations of X-ray transient absorption for probing attosecond electron dynamics. J. Chem. Theory Comput. 2020;16:4470. PubMed PMC
Medvedev N, Jeschke H, Ziaja B. Nonthermal phase transitions in semiconductors induced by a femtosecond extreme ultraviolet laser pulse. New J. Phys. 2013;15:015016.
Medvedev N, Tkachenko V, Lipp V, Li Z, Ziaja B. Various damage mechanisms in carbon and silicon materials under femtosecond x-ray irradiation. 4Open. 2018;1:3.
Chapman DA, Gericke DO. Analysis of Thomson scattering from nonequilibrium plasmas. Phys. Rev. Lett. 2011;107:165004. PubMed
Medvedev N, Tkachenko V, Ziaja B. Modeling of nonthermal solid-to-solid phase transition in diamond irradiated with femtosecond x-ray FEL pulse. Contrib. Plasma Phys. 2015;55:12.
Medvedev N, Jeschke H, Ziaja B. Nonthermal graphitization of diamond induced by a femtosecond x-ray laser pulse. Phys. Rev. B. 2013;88:224304.
Medvedev N, Li Z, Ziaja B. Thermal and nonthermal melting of silicon under femtosecond x-ray irradiation. Phys. Rev. B. 2015;91:054113.
Tkachenko V, Medvedev N, Li Z, Piekarz P, Ziaja B. Transient optical properties of semiconductors under femtosecond x-ray irradiation. Phys. Rev. B. 2016;93:144101.
Dinh T-H, et al. Controlled strong excitation of silicon as a step towards processing materials at sub-nanometer precision. Commun. Phys. 2019;2:1–9.
Medvedev N, Ziaja B. Multistep transition of diamond to warm dense matter state revealed by femtosecond x-ray diffraction. Sci. Rep. 2018;8:1–10. PubMed PMC
Jeschke H, Garcia M, Bennemann K. Theory for the ultrafast ablation of graphite films. Phys. Rev. Lett. 2001;87:015003–015007. PubMed
Ziaja B, Medvedev N, Tkachenko V, Maltezopoulos T, Wurth W. Time-resolved observation of band-gap shrinking and electron-lattice thermalization within X-ray excited gallium arsenide. Sci. Rep. 2015;5:18068. PubMed PMC
Avogadro: an open-source molecular builder and visualization tool. version 1.2.0. https://avogadro.cc/.
Hanwell MD, et al. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012;4:1–17. PubMed PMC
Medvedev N, Li Z, Tkachenko V, Ziaja B. Electron-ion coupling in semiconductors beyond Fermi’s golden rule. Phys. Rev. B. 2017;95:014309.
Tkachenko V, Medvedev N, Ziaja B. Transient changes of optical properties in semiconductors in response to femtosecond laser pulses. Appl. Sci. 2016;6:238.
Sternberg, M. G. The atomic structure of diamond surfaces and interfaces. Ph.D. thesis, Paderborn, Univ., Diss. (2001).
Wagner F, Laloyaux T, Scheffler M. Errors in Hellmann-Feynman forces due to occupation-number broadening and how they can be corrected. Phys. Rev. B. 1998;57:2102–2107.
Luschtinetz R, et al. Adsorption of phosphonic and ethylphosphonic acid on aluminum oxide surfaces. Surf. Sci. 2008;602:1347–1359.
Frenzel, J., Oliveira, A., Jardillier, N., T.Heine & Seifert, G. Semi-relativistic, self-consistent charge Slater-Koster tables for density-functional based tight-binding for materials science simulations. Report (2004–2009).
Luschtinetz R, Frenzel J, Milek T, Seifert G. Adsorption of phosphonic acid at the tio2 anatase (101) and rutile (110) surfaces. J. Phys. Chem. C. 2009;113:5730–5740.