Density functional tight binding approach utilized to study X-ray-induced transitions in solid materials

. 2022 Jan 28 ; 12 (1) : 1551. [epub] 20220128

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35091574
Odkazy

PubMed 35091574
PubMed Central PMC8799736
DOI 10.1038/s41598-022-04775-1
PII: 10.1038/s41598-022-04775-1
Knihovny.cz E-zdroje

Intense X-ray pulses from free-electron lasers can trigger ultrafast electronic, structural and magnetic transitions in solid materials, within a material volume which can be precisely shaped through adjustment of X-ray beam parameters. This opens unique prospects for material processing with X rays. However, any fundamental and applicational studies are in need of computational tools, able to predict material response to X-ray radiation. Here we present a dedicated computational approach developed to study X-ray induced transitions in a broad range of solid materials, including those of high chemical complexity. The latter becomes possible due to the implementation of the versatile density functional tight binding code DFTB+ to follow band structure evolution in irradiated materials. The outstanding performance of the implementation is demonstrated with a comparative study of XUV induced graphitization in diamond.

Zobrazit více v PubMed

Schoenlein R, et al. Recent advances in ultrafast x-ray sources. Philos. Trans. R. Soc. A. 2019;377:20180384. PubMed

Ueda K, et al. Roadmap on photonic, electronic and atomic collision physics: I. Light-matter interaction. J. Phys. B. 2019;52:171001.

Barty A, et al. Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nat. Photonics. 2012;6:35. PubMed PMC

Seibert MM, et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature. 2011;470:78–81. PubMed PMC

Chapman HN, et al. Femtosecond X-ray protein nanocrystallography. Nature. 2011;470:73–77. PubMed PMC

Nass K, et al. Structural dynamics in proteins induced by and probed with x-ray free-electron laser pulses. Nat. Commun. 2020;11:1–9. PubMed PMC

Rouxel JR, Kowalewski M, Bennett K, Mukamel S. X-ray sum frequency diffraction for direct imaging of ultrafast electron dynamics. Phys. Rev. Lett. 2018;120:243902. PubMed

Fukuzawa H, et al. Deep inner-shell multiphoton ionization by intense x-ray free-electron laser pulses. Phys. Rev. Lett. 2013;110:173005. PubMed

Maroju PK, et al. Attosecond pulse shaping using a seeded free-electron laser. Nature. 2020;578:386–391. PubMed

Tavella F, et al. Soft x-ray induced femtosecond solid-to-solid phase transition. High Energy Density Phys. 2017;24:22–27.

Fäustlin R, et al. Observation of ultrafast non-equilibrium collective dynamics in a warm dense hydrogen plasma. Phys. Rev. Lett. 2010;104:125002. PubMed

Vinko SM, et al. Creation and diagnosis of a solid-density plasma with an x-ray free-electron laser. Nature. 2012;482:59–62. PubMed

Zastrau U, et al. Equilibration dynamics and conductivity of warm dense hydrogen. Phys. Rev. E. 2014;90:013104. PubMed

Lévy A, et al. The creation of large-volume, gradient-free warm dense matter with an x-ray free-electron laser. Phys. Plasmas. 2015;22:030703.

Tachibana T, et al. Nanoplasma formation by high intensity hard x-rays. Sci. Rep. 2015;5:10977. PubMed PMC

Inoue I, et al. Observation of femtosecond X-ray interactions with matter using an X-ray-X-ray pump-probe scheme. Proc. Natl. Acad. Sci. 2016;113(6):1492–1497. PubMed PMC

Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys. Rev. 1964;136:B864–B871.

Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965;140:A1133–A1138.

Zijlstra ES, Kalitsov A, Zier T, Garcia ME. Squeezed thermal phonons precurse nonthermal melting of silicon as a function of fluence. Phys. Rev. X. 2013;3:011005.

Zijlstra ES, Kalitsov A, Zier T, Garcia ME. Fractional diffusion in silicon. Adv. Mater. 2013;25:5605–5608. PubMed

Xu CH, Wang CZ, Chan CT, Ho KM. A transferable tight-binding potential for carbon. J. Phys. Condens. Matter. 1992;4:6047–6054.

Jeschke, H. Theory for Optically Created Nonequilibrium in Covalent Solids. Ph.D. thesis, Freie Universität Berlin (2000).

Seifert G, Porezag D, Frauenheim T. Calculations of molecules, clusters, and solids with a simplified lcao-dft-lda scheme. Int. J. Quantum Chem. 1996;58:185–192.

Porezag D, Frauenheim T, Köhler T, Seifert G, Kaschner R. Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. Phys. Rev. B. 1995;51:12947–12957. PubMed

Elstner M, et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B. 1998;58:7260–7268.

Hourahine B, et al. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys. 2020;152:124101. PubMed

Chen M, Lopata K. First-principles simulations of X-ray transient absorption for probing attosecond electron dynamics. J. Chem. Theory Comput. 2020;16:4470. PubMed PMC

Medvedev N, Jeschke H, Ziaja B. Nonthermal phase transitions in semiconductors induced by a femtosecond extreme ultraviolet laser pulse. New J. Phys. 2013;15:015016.

Medvedev N, Tkachenko V, Lipp V, Li Z, Ziaja B. Various damage mechanisms in carbon and silicon materials under femtosecond x-ray irradiation. 4Open. 2018;1:3.

Chapman DA, Gericke DO. Analysis of Thomson scattering from nonequilibrium plasmas. Phys. Rev. Lett. 2011;107:165004. PubMed

Medvedev N, Tkachenko V, Ziaja B. Modeling of nonthermal solid-to-solid phase transition in diamond irradiated with femtosecond x-ray FEL pulse. Contrib. Plasma Phys. 2015;55:12.

Medvedev N, Jeschke H, Ziaja B. Nonthermal graphitization of diamond induced by a femtosecond x-ray laser pulse. Phys. Rev. B. 2013;88:224304.

Medvedev N, Li Z, Ziaja B. Thermal and nonthermal melting of silicon under femtosecond x-ray irradiation. Phys. Rev. B. 2015;91:054113.

Tkachenko V, Medvedev N, Li Z, Piekarz P, Ziaja B. Transient optical properties of semiconductors under femtosecond x-ray irradiation. Phys. Rev. B. 2016;93:144101.

Dinh T-H, et al. Controlled strong excitation of silicon as a step towards processing materials at sub-nanometer precision. Commun. Phys. 2019;2:1–9.

Medvedev N, Ziaja B. Multistep transition of diamond to warm dense matter state revealed by femtosecond x-ray diffraction. Sci. Rep. 2018;8:1–10. PubMed PMC

Jeschke H, Garcia M, Bennemann K. Theory for the ultrafast ablation of graphite films. Phys. Rev. Lett. 2001;87:015003–015007. PubMed

Ziaja B, Medvedev N, Tkachenko V, Maltezopoulos T, Wurth W. Time-resolved observation of band-gap shrinking and electron-lattice thermalization within X-ray excited gallium arsenide. Sci. Rep. 2015;5:18068. PubMed PMC

Avogadro: an open-source molecular builder and visualization tool. version 1.2.0. https://avogadro.cc/.

Hanwell MD, et al. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012;4:1–17. PubMed PMC

Medvedev N, Li Z, Tkachenko V, Ziaja B. Electron-ion coupling in semiconductors beyond Fermi’s golden rule. Phys. Rev. B. 2017;95:014309.

Tkachenko V, Medvedev N, Ziaja B. Transient changes of optical properties in semiconductors in response to femtosecond laser pulses. Appl. Sci. 2016;6:238.

Sternberg, M. G. The atomic structure of diamond surfaces and interfaces. Ph.D. thesis, Paderborn, Univ., Diss. (2001).

Wagner F, Laloyaux T, Scheffler M. Errors in Hellmann-Feynman forces due to occupation-number broadening and how they can be corrected. Phys. Rev. B. 1998;57:2102–2107.

Luschtinetz R, et al. Adsorption of phosphonic and ethylphosphonic acid on aluminum oxide surfaces. Surf. Sci. 2008;602:1347–1359.

Frenzel, J., Oliveira, A., Jardillier, N., T.Heine & Seifert, G. Semi-relativistic, self-consistent charge Slater-Koster tables for density-functional based tight-binding for materials science simulations. Report (2004–2009).

Luschtinetz R, Frenzel J, Milek T, Seifert G. Adsorption of phosphonic acid at the tio2 anatase (101) and rutile (110) surfaces. J. Phys. Chem. C. 2009;113:5730–5740.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...