• This record comes from PubMed

Multistep transition of diamond to warm dense matter state revealed by femtosecond X-ray diffraction

. 2018 Mar 27 ; 8 (1) : 5284. [epub] 20180327

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic

Document type Journal Article

Links

PubMed 29588526
PubMed Central PMC5869726
DOI 10.1038/s41598-018-23632-8
PII: 10.1038/s41598-018-23632-8
Knihovny.cz E-resources

Diamond bulk irradiated with a free-electron laser pulse of 6100 eV photon energy, 5 fs duration, at the ~19-25 eV/atom absorbed doses, is studied theoretically on its way to warm dense matter state. Simulations with our hybrid code XTANT show disordering on sub-100 fs timescale, with the diffraction peak (220) vanishing faster than the peak (111). The warm dense matter formation proceeds as a nonthermal damage of diamond with the band gap collapse triggering atomic disordering. Short-living graphite-like state is identified during a few femtoseconds between the disappearance of (220) peak and the disappearance of (111) peak. The results obtained are compared with the data from the recent experiment at SACLA, showing qualitative agreement. Challenges remaining for the accurate modeling of the transition of solids to warm dense matter state and proposals for supplementary measurements are discussed in detail.

See more in PubMed

Murillo MS, Weisheit JC. Dense plasmas, screened interactions, and atomic ionization. Physical Reports. 1998;302:1. doi: 10.1016/S0370-1573(98)00017-9. DOI

Zwanzig, R. Nonequilibrium statistical mechanics, https://global.oup.com/academic/product/nonequilibrium-statistical-mechanics-9780195140187?cc=de{&}lang=en{&} (Oxford University Press, 2001).

Birdsall, C. K. & Langdon, A. B. Plasma physics via computer simulation (Institute of Physics Pub, 2005).

Parr, R. G. Density Functional Theory of Atoms and Molecules. In Horizons of Quantum Chemistry, 5–15, 10.1007/978-94-009-9027-2_2 (Springer Netherlands, Dordrecht, 1980).

Marques, M. A., Maitra, N. T., Nogueira, F. M., Gross, E. & Rubio, A. (eds) Fundamentals of Time-Dependent Density Functional Theory, vol. 837 of Lecture Notes in Physics, 10.1007/978-3-642-23518-4 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2012).

Graziani F, Desjarlais MP, Redmer R, Trickey SB. Frontiers and Challenges in Warm Dense Matter. New York: Springer-Verlag New York Inc; 2014.

Redmer, R. et al. Giant planets as laboratory for high energy density physics. In 2008 IEEE 35th International Conference on Plasma Science, 1–1, http://ieeexplore.ieee.org/document/4590589/ (IEEE, 2008).

Valenza RA, Seidler GT. Warm dense crystallography. Physical Review B - Condensed Matter and Materials Physics. 2016;93:1–7. doi: 10.1103/PhysRevB.93.115135. DOI

Fletcher LB, et al. Ultrabright X-ray laser scattering for dynamic warm dense matter physics. Nature Photonics. 2015;9:274–279. doi: 10.1038/nphoton.2015.41. DOI

Ackermann W, et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nature Photonics. 2007;1:336–342. doi: 10.1038/nphoton.2007.76. DOI

Bostedt C, et al. Linac Coherent Light Source: The first five years. Reviews of Modern Physics. 2016;88:015007. doi: 10.1103/RevModPhys.88.015007. DOI

Pile D. X-rays: First light from SACLA. Nature Photonics. 2011;5:456–457. doi: 10.1038/nphoton.2011.178. DOI

Ganter, R. et al. (eds) SwissFEL Conceptual Design Report, v19 edn., www.psi.ch/swissfel (PSI Bericht, Villigen, 2011).

Altarelli, M. The European X-ray free-electron laser facility in Hamburg. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms269, 2845–2849, http://linkinghub.elsevier.com/retrieve/pii/S0168583X11003855 (2011).

Lorazo P, Lewis L, Meunier M. Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation. Physical Review B. 2006;73:134108. doi: 10.1103/PhysRevB.73.134108. DOI

Zastrau, U. et al. XUV spectroscopic characterization of warm dense aluminum plasmas generated by the free-electron-laser FLASH. Laser and Particle Beams30, 45–56, http://www.journals.cambridge.org/abstract_S026303461100067X (2012).

Medvedev N, Tkachenko V, Ziaja B. Modeling of Nonthermal Solid-to-Solid Phase Transition in Diamond Irradiated with Femtosecond x-ray FEL Pulse. Contributions to Plasma Physics. 2015;55:12–34. doi: 10.1002/ctpp.201400026. DOI

Ziaja, B., Wabnitz, H., Weckert, E. & Möller, T. Femtosecond non-equilibrium dynamics of clusters irradiated with short intense VUV pulses. New Journal of Physics10, 043003, http://stacks.iop.org/1367-2630/10/i=4/a=043003 (2008).

Inoue, I. et al. Observation of femtosecond X-ray interactions with matter using an X-ray-X-ray pump-probe scheme. Proceedings of the National Academy of Sciences of the United States of America113, 1492–7, http://www.ncbi.nlm.nih.gov/pubmed/26811449 (2016). PubMed PMC

Henke B, Gullikson E, Davis J. X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50–30,000 eV, Z = 1–92. Atomic Data and Nuclear Data Tables. 1993;54:181–342. doi: 10.1006/adnd.1993.1013. DOI

Dharma-wardana, M. Current Issues in Finite-T Density-Functional Theory and Warm-Correlated Matter†. Computation4, 16, http://www.mdpi.com/2079-3197/4/2/16%0A (2016).

Siders, C. W. Detection of Nonthermal Melting by Ultrafast X-ray Diffraction. Science286, 1340–1342, http://www.sciencemag.org/content/286/5443/1340.abstract (1999). PubMed

Sundaram SK, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nature materials. 2002;1:217–24. doi: 10.1038/nmat767. PubMed DOI

Medvedev, N., Jeschke, H. O. & Ziaja, B. Nonthermal phase transitions in semiconductors induced by a femtosecond extreme ultraviolet laser pulse. New Journal of Physics15, 015016, http://stacks.iop.org/1367-2630/15/i=1/a=015016 (2013).

Medvedev N, Li Z, Tkachenko V, Ziaja B. Electron-ion coupling in semiconductors beyond Fermi’s golden rule. Physical Review B. 2017;95:014309. doi: 10.1103/PhysRevB.95.014309. DOI

Medvedev N, Jeschke HO, Ziaja B. Nonthermal graphitization of diamond induced by a femtosecond x-ray laser pulse. Physical Review B. 2013;88:224304. doi: 10.1103/PhysRevB.88.224304. DOI

Gaudin J, et al. Photon energy dependence of graphitization threshold for diamond irradiated with an intense XUV FEL pulse. Physical Review B. 2013;88:060101(R). doi: 10.1103/PhysRevB.88.060101. DOI

Tavella, F. et al. Soft x-ray induced femtosecond solid-to-solid phase transition. High Energy Density Physics24, 22–27, http://www.sciencedirect.com/science/article/pii/S1574181817300617 (2017).

Hardaker, W., Schoeni, N., Chapuis, G., Casademont, N. & Sisto, M. Available at http://escher.epfl.ch/reciprOgraph/.

Jeschke H, Garcia M, Bennemann K. Theory for the Ultrafast Ablation of Graphite Films. Physical Review Letters. 2001;87:015003. doi: 10.1103/PhysRevLett.87.015003. PubMed DOI

Medvedev, N. X-ray-induced electron cascades in dielectrics modeled with XCASCADE code: Effect of impact ionization cross sections. In Proceedings of SPIE - The International Society for Optical Engineering, vol. 9511 (2015).

Son S-K, Thiele R, Jurek Z, Ziaja B, Santra R. Quantum mechanical calculation of ionization-potential lowering in dense plasmas. Phys. Rev. X. 2014;4:031004.

Xu, C. H., Wang, C. Z., Chan, C. T. & Ho, K. M. A transferable tight-binding potential for carbon. Journal of Physics: Condensed Matter4, 6047–6054, http://stacks.iop.org/0953-8984/4/i=28/a=006 (1992).

Vinko SM, et al. Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser. Nature. 2012;482:59–62. doi: 10.1038/nature10746. PubMed DOI

Vinko S, Ciricosta O, Wark J. Density functional theory calculations of continuum lowering in strongly coupled plasmas. Nature Communications. 2014;5:3533. doi: 10.1038/ncomms4533. PubMed DOI

Ziaja, B. et al. Photoelectron spectroscopy method to reveal ionization potential lowering in nanoplasmas. Journal of Physics B: Atomic, Molecular and Optical Physics46, 164009, http://stacks.iop.org/0953-4075/46/i=16/a=164009 (2013).

Ernstorfer, R. et al. The formation of warm dense matter: experimental evidence for electronic bond hardening in gold. Science (New York, N.Y.) 323, 1033–7, http://www.ncbi.nlm.nih.gov/pubmed/19164708 (2009). PubMed

Ziaja, B., Medvedev, N., Tkachenko, V., Maltezopoulos, T. & Wurth, W. Time-resolved observation of band-gap shrinking and electron-lattice thermalization within X-ray excited gallium arsenide. Scientific Reports5, 18068, http://www.nature.com/srep/2015/151211/srep18068/full/srep18068.html (2015). PubMed PMC

Baczewski A, Shulenburger L, Desjarlais M, Hansen S. & Magyar, R. X-ray Thomson Scattering in Warm Dense Matter without the Chihara Decomposition. Physical Review Letters. 2016;116:115004. doi: 10.1103/PhysRevLett.116.115004. PubMed DOI

Hao Y, Inhester L, Hanasaki K, Son S-K, Santra R. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity. Structural Dynamics. 2015;2:041707. doi: 10.1063/1.4919794. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...