Dependence of nonthermal metallization kinetics on bond ionicity of compounds

. 2020 Aug 04 ; 10 (1) : 13070. [epub] 20200804

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32753683
Odkazy

PubMed 32753683
PubMed Central PMC7403420
DOI 10.1038/s41598-020-70005-1
PII: 10.1038/s41598-020-70005-1
Knihovny.cz E-zdroje

It is known that covalently bonded materials undergo nonthermal structure transformations upon ultrafast excitation of an electronic system, whereas metals exhibit phonon hardening in the bulk. Here we study how ionic bonds react to electronic excitation. Density-functional molecular dynamics predicts that ionic crystals may melt nonthermally, however, into an electronically insulating state, in contrast to covalent materials. We demonstrate that the band gap behavior during nonthermal transitions depends on a bonding type: it is harder to collapse the band gap in more ionic compounds, which is illustrated by transformations in Y2O3 vs. NaCl, LiF and KBr.

Zobrazit více v PubMed

Medvedev N, Volkov AE, Ziaja B. Electronic and atomic kinetics in solids irradiated with free-electron lasers or swift-heavy ions. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2015;365:437–446. doi: 10.1016/j.nimb.2015.08.063. DOI

Zastrau U, et al. XUV spectroscopic characterization of warm dense aluminum plasmas generated by the free-electron-laser FLASH. Laser Part. Beams. 2012;30:45–56. doi: 10.1017/S026303461100067X. DOI

Stampfli P, Bennemann KH. Theory for the instability of the diamond structure of Si, Ge, and C induced by a dense electron-hole plasma. Phys. Rev. B. 1990;42:7163–7173. doi: 10.1103/PhysRevB.42.7163. PubMed DOI

Rousse A, et al. Non-thermal melting in semiconductors measured at femtosecond resolution. Nature. 2001;410:65–68. doi: 10.1038/35065045. PubMed DOI

Medvedev N, Tkachenko V, Lipp V, Li Z, Ziaja B. Various damage mechanisms in carbon and silicon materials under femtosecond X-ray irradiation. Open. 2018;1:3.

Sokolowski-Tinten K, Bialkowski J, Boing M, Cavalleri A, von der Linde D. Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation. Phys. Rev. B. 1998;58:R11805–R11808. doi: 10.1103/PhysRevB.58.R11805. DOI

Zijlstra E, Walkenhorst J, Garcia M. Anharmonic noninertial lattice dynamics during ultrafast nonthermal melting of InSb. Phys. Rev. Lett. 2008;101:135701. doi: 10.1103/PhysRevLett.101.135701. PubMed DOI

Siders CW. Detection of nonthermal melting by ultrafast X-ray diffraction. Science (80-) 1999;286:1340–1342. doi: 10.1126/science.286.5443.1340. PubMed DOI

Recoules V, Clérouin J, Zérah G, Anglade PM, Mazevet S. Effect of intense laser irradiation on the lattice stability of semiconductors and metals. Phys. Rev. Lett. 2006;96:055503. doi: 10.1103/PhysRevLett.96.055503. PubMed DOI

Daraszewicz SL, et al. Structural dynamics of laser-irradiated gold nanofilms. Phys. Rev. B. 2013;88:184101. doi: 10.1103/PhysRevB.88.184101. DOI

Stegailov VV. Stability of LiF crystal in the warm dense matter state. Contrib. Plasma Phys. 2010;50:31–34. doi: 10.1002/ctpp.201010008. DOI

Phillips JC. Ionicity of the chemical bond in crystals. Rev. Mod. Phys. 1970;42:317–356. doi: 10.1103/RevModPhys.42.317. DOI

Tkachenko V, Medvedev N, Ziaja B. Transient changes of optical properties in semiconductors in response to femtosecond laser pulses. Appl. Sci. 2016;6:238. doi: 10.3390/app6090238. DOI

Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI

Giannozzi P, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 2009;21:395502. doi: 10.1088/0953-8984/21/39/395502. PubMed DOI

Medvedev N. Femtosecond X-ray induced electron kinetics in dielectrics: application for FEL-pulse-duration monitor. Appl. Phys. B. 2015;118:417–429. doi: 10.1007/s00340-015-6005-4. DOI

Medvedev N, Tkachenko V, Ziaja B. Modeling of nonthermal solid-to-solid phase transition in diamond irradiated with femtosecond X-ray FEL pulse. Contrib. Plasma Phys. 2015;55:12–34. doi: 10.1002/ctpp.201400026. DOI

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Faleev SV, van Schilfgaarde M, Kotani T, Léonard F, Desjarlais MP. Finite-temperature quasiparticle self-consistent GW approximation. Phys. Rev. B. 2006;74:033101. doi: 10.1103/PhysRevB.74.033101. DOI

Molteni C, Colombo L, Miglio L. Tight-binding molecular dynamics in liquid III–V compounds. II. Simulations for GaAs and GaSb. J. Phys. Condens. Matter. 1994;6:5255–5271. doi: 10.1088/0953-8984/6/28/004. PubMed DOI

Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI

Medvedev N, Ziaja B. Multistep transition of diamond to warm dense matter state revealed by femtosecond X-ray diffraction. Sci. Rep. 2018;8:2. doi: 10.1038/s41598-018-23632-8. PubMed DOI PMC

Medvedev N, Fang Z, Xia C, Li Z. Thermal and nonthermal melting of III–V compound semiconductors. Phys. Rev. B. 2019;99:144101. doi: 10.1103/PhysRevB.99.144101. DOI

Zalden P, et al. Femtosecond X-ray diffraction reveals a liquid–liquid phase transition in phase-change materials. Science (80-) 2019;364:1062–1067. doi: 10.1126/science.aaw1773. PubMed DOI

Medvedev N, Li Z, Ziaja B. Thermal and nonthermal melting of silicon under femtosecond X-ray irradiation. Phys. Rev. B. 2015;91:054113. doi: 10.1103/PhysRevB.91.054113. DOI

Voronkov RA, Medvedev N, Volkov AE. Superionic state in alumina produced by nonthermal melting. Phys. status solidi Rapid Res. Lett. 2020;14:1900641. doi: 10.1002/pssr.201900641. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Superionic states formation in group III oxides irradiated with ultrafast lasers

. 2022 Apr 05 ; 12 (1) : 5659. [epub] 20220405

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...