Dependence of nonthermal metallization kinetics on bond ionicity of compounds
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
32753683
PubMed Central
PMC7403420
DOI
10.1038/s41598-020-70005-1
PII: 10.1038/s41598-020-70005-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
It is known that covalently bonded materials undergo nonthermal structure transformations upon ultrafast excitation of an electronic system, whereas metals exhibit phonon hardening in the bulk. Here we study how ionic bonds react to electronic excitation. Density-functional molecular dynamics predicts that ionic crystals may melt nonthermally, however, into an electronically insulating state, in contrast to covalent materials. We demonstrate that the band gap behavior during nonthermal transitions depends on a bonding type: it is harder to collapse the band gap in more ionic compounds, which is illustrated by transformations in Y2O3 vs. NaCl, LiF and KBr.
Institute of Physics Czech Academy of Sciences Na Slovance 2 182 21 Prague 8 Czech Republic
Institute of Plasma Physics Czech Academy of Sciences Za Slovankou 3 182 00 Prague 8 Czech Republic
Joint Institute for Nuclear Research Joliot Curie 6 141980 Dubna Moscow Region Russia
National Research Centre 'Kurchatov Institute' Kurchatov Sq 1 123182 Moscow Russia
National University of Science and Technology MISiS Leninskij pr 4 119049 Moscow Russia
Zobrazit více v PubMed
Medvedev N, Volkov AE, Ziaja B. Electronic and atomic kinetics in solids irradiated with free-electron lasers or swift-heavy ions. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2015;365:437–446. doi: 10.1016/j.nimb.2015.08.063. DOI
Zastrau U, et al. XUV spectroscopic characterization of warm dense aluminum plasmas generated by the free-electron-laser FLASH. Laser Part. Beams. 2012;30:45–56. doi: 10.1017/S026303461100067X. DOI
Stampfli P, Bennemann KH. Theory for the instability of the diamond structure of Si, Ge, and C induced by a dense electron-hole plasma. Phys. Rev. B. 1990;42:7163–7173. doi: 10.1103/PhysRevB.42.7163. PubMed DOI
Rousse A, et al. Non-thermal melting in semiconductors measured at femtosecond resolution. Nature. 2001;410:65–68. doi: 10.1038/35065045. PubMed DOI
Medvedev N, Tkachenko V, Lipp V, Li Z, Ziaja B. Various damage mechanisms in carbon and silicon materials under femtosecond X-ray irradiation. Open. 2018;1:3.
Sokolowski-Tinten K, Bialkowski J, Boing M, Cavalleri A, von der Linde D. Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation. Phys. Rev. B. 1998;58:R11805–R11808. doi: 10.1103/PhysRevB.58.R11805. DOI
Zijlstra E, Walkenhorst J, Garcia M. Anharmonic noninertial lattice dynamics during ultrafast nonthermal melting of InSb. Phys. Rev. Lett. 2008;101:135701. doi: 10.1103/PhysRevLett.101.135701. PubMed DOI
Siders CW. Detection of nonthermal melting by ultrafast X-ray diffraction. Science (80-) 1999;286:1340–1342. doi: 10.1126/science.286.5443.1340. PubMed DOI
Recoules V, Clérouin J, Zérah G, Anglade PM, Mazevet S. Effect of intense laser irradiation on the lattice stability of semiconductors and metals. Phys. Rev. Lett. 2006;96:055503. doi: 10.1103/PhysRevLett.96.055503. PubMed DOI
Daraszewicz SL, et al. Structural dynamics of laser-irradiated gold nanofilms. Phys. Rev. B. 2013;88:184101. doi: 10.1103/PhysRevB.88.184101. DOI
Stegailov VV. Stability of LiF crystal in the warm dense matter state. Contrib. Plasma Phys. 2010;50:31–34. doi: 10.1002/ctpp.201010008. DOI
Phillips JC. Ionicity of the chemical bond in crystals. Rev. Mod. Phys. 1970;42:317–356. doi: 10.1103/RevModPhys.42.317. DOI
Tkachenko V, Medvedev N, Ziaja B. Transient changes of optical properties in semiconductors in response to femtosecond laser pulses. Appl. Sci. 2016;6:238. doi: 10.3390/app6090238. DOI
Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI
Giannozzi P, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 2009;21:395502. doi: 10.1088/0953-8984/21/39/395502. PubMed DOI
Medvedev N. Femtosecond X-ray induced electron kinetics in dielectrics: application for FEL-pulse-duration monitor. Appl. Phys. B. 2015;118:417–429. doi: 10.1007/s00340-015-6005-4. DOI
Medvedev N, Tkachenko V, Ziaja B. Modeling of nonthermal solid-to-solid phase transition in diamond irradiated with femtosecond X-ray FEL pulse. Contrib. Plasma Phys. 2015;55:12–34. doi: 10.1002/ctpp.201400026. DOI
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Faleev SV, van Schilfgaarde M, Kotani T, Léonard F, Desjarlais MP. Finite-temperature quasiparticle self-consistent GW approximation. Phys. Rev. B. 2006;74:033101. doi: 10.1103/PhysRevB.74.033101. DOI
Molteni C, Colombo L, Miglio L. Tight-binding molecular dynamics in liquid III–V compounds. II. Simulations for GaAs and GaSb. J. Phys. Condens. Matter. 1994;6:5255–5271. doi: 10.1088/0953-8984/6/28/004. PubMed DOI
Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI
Medvedev N, Ziaja B. Multistep transition of diamond to warm dense matter state revealed by femtosecond X-ray diffraction. Sci. Rep. 2018;8:2. doi: 10.1038/s41598-018-23632-8. PubMed DOI PMC
Medvedev N, Fang Z, Xia C, Li Z. Thermal and nonthermal melting of III–V compound semiconductors. Phys. Rev. B. 2019;99:144101. doi: 10.1103/PhysRevB.99.144101. DOI
Zalden P, et al. Femtosecond X-ray diffraction reveals a liquid–liquid phase transition in phase-change materials. Science (80-) 2019;364:1062–1067. doi: 10.1126/science.aaw1773. PubMed DOI
Medvedev N, Li Z, Ziaja B. Thermal and nonthermal melting of silicon under femtosecond X-ray irradiation. Phys. Rev. B. 2015;91:054113. doi: 10.1103/PhysRevB.91.054113. DOI
Voronkov RA, Medvedev N, Volkov AE. Superionic state in alumina produced by nonthermal melting. Phys. status solidi Rapid Res. Lett. 2020;14:1900641. doi: 10.1002/pssr.201900641. DOI