Superionic states formation in group III oxides irradiated with ultrafast lasers

. 2022 Apr 05 ; 12 (1) : 5659. [epub] 20220405

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35383247
Odkazy

PubMed 35383247
PubMed Central PMC8983778
DOI 10.1038/s41598-022-09681-0
PII: 10.1038/s41598-022-09681-0
Knihovny.cz E-zdroje

After ultrafast laser irradiation, a target enters a poorly explored regime where physics of a solid state overlaps with plasma physics and chemistry, creating an unusual synergy-a warm dense matter state (WDM). We study theoretically the WDM kinetics and chemistry in a number of group III-metal oxides with highly excited electronic system. We employ density functional theory to investigate a possibility of nonthermal transition of the materials into a superionic state under these conditions. Atomic and electronic properties of the materials are analyzed during the transitions to acquire insights into physical mechanisms guiding such transformations.

Zobrazit více v PubMed

Medvedev N, Tkachenko V, Lipp V, Li Z, Ziaja B. Various damage mechanisms in carbon and silicon materials under femtosecond X-ray irradiation. 4Open. 2018;1:3. doi: 10.1051/fopen/2018003. DOI

Rethfeld B, Ivanov DS, Garcia ME, Anisimov SI. Modelling ultrafast laser ablation. J. Phys. D. Appl. Phys. 2017;50:193001. doi: 10.1088/1361-6463/50/19/193001. DOI

Mo MZ, et al. Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction. Science (80-). 2018;360:1451–1455. doi: 10.1126/science.aar2058. PubMed DOI

Voronkov RA, Medvedev N, Volkov AE. Dependence of nonthermal metallization kinetics on bond ionicity of compounds. Sci. Rep. 2020;10:1–7. doi: 10.1038/s41598-020-70005-1. PubMed DOI PMC

Giret Y, Daraszewicz SL, Duffy DM, Shluger AL, Tanimura K. Nonthermal solid-to-solid phase transitions in tungsten. Phys. Rev. B. 2014;90:94103. doi: 10.1103/PhysRevB.90.094103. DOI

Rousse A, et al. Non-thermal melting in semiconductors measured at femtosecond resolution. Nature. 2001;410:65–68. doi: 10.1038/35065045. PubMed DOI

Siders CW. Detection of nonthermal melting by ultrafast X-ray diffraction. Science (80-). 1999;286:1340–1342. doi: 10.1126/science.286.5443.1340. PubMed DOI

Medvedev N. Nonthermal phase transitions in irradiated oxides. J. Phys. Condens. Matter. 2020;32:435401. doi: 10.1088/1361-648X/aba389. PubMed DOI

Sokolowski-Tinten K, Bialkowski J, von der Linde D. Ultrafast laser-induced order-disorder transitions in semiconductors. Phys. Rev. B. 1995;51:14186–14198. doi: 10.1103/PhysRevB.51.14186. PubMed DOI

Stampfli P, Bennemann K. Dynamical theory of the laser-induced lattice instability of silicon. Phys. Rev. B. 1992;46:10686–10692. doi: 10.1103/PhysRevB.46.10686. PubMed DOI

Graziani, F., Desjarlais, M. P., Redmer, R. & Trickey, S. B. Frontiers and Challenges in Warm Dense Matter. (Springer, 2014). 10.1007/978-3-319-04912-0.

Voronkov RA, Medvedev N, Volkov AE. Superionic state in alumina produced by nonthermal melting. Phys. Status Solidi Rapid Res. Lett. 2020;14:1900641. doi: 10.1002/pssr.201900641. DOI

Hull S. Superionics: Crystal structures and conduction processes. Rep. Prog. Phys. 2004;67:1233–1314. doi: 10.1088/0034-4885/67/7/R05. DOI

He X, Zhu Y, Mo Y. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 2017;8:15893. doi: 10.1038/ncomms15893. PubMed DOI PMC

Millot M, et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature. 2019;569:251–255. doi: 10.1038/s41586-019-1114-6. PubMed DOI

Cavazzoni C, et al. Superionic and metallic states of water and ammonia at giant planet conditions. Science. 1999;283:44–46. doi: 10.1126/science.283.5398.44. PubMed DOI

Rossbach J, Schneider JR, Wurth W. 10 years of pioneering X-ray science at the Free-Electron Laser FLASH at DESY. Phys. Rep. 2019;808:1. doi: 10.1016/j.physrep.2019.02.002. DOI

Bostedt C, et al. Linac coherent light source: The first five years. Rev. Mod. Phys. 2016;88:015007. doi: 10.1103/RevModPhys.88.015007. DOI

Pile D. X-rays: First light from SACLA. Nat. Photonics. 2011;5:456–457. doi: 10.1038/nphoton.2011.178. DOI

Giannozzi P, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 2009;21:395502. doi: 10.1088/0953-8984/21/39/395502. PubMed DOI

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Karasiev VV, Sjostrom T, Dufty J, Trickey SB. Accurate homogeneous electron gas exchange-correlation free energy for local spin-density calculations. Phys. Rev. Lett. 2014;112:1–5. doi: 10.1103/PhysRevLett.112.076403. PubMed DOI

Groth S, et al. Ab initio exchange-correlation free energy of the uniform electron gas at warm dense matter conditions. Phys. Rev. Lett. 2017;119:135001. doi: 10.1103/PhysRevLett.119.135001. PubMed DOI

Faleev SV, van Schilfgaarde M, Kotani T, Léonard F, Desjarlais MP. Finite-temperature quasiparticle self-consistent GW approximation. Phys. Rev. B. 2006;74:33101. doi: 10.1103/PhysRevB.74.033101. DOI

Furness JW, Kaplan AD, Ning J, Perdew JP, Sun J. Accurate and numerically efficient r2SCAN meta-generalized gradient approximation. J. Phys. Chem. Lett. 2020;11:8208–8215. doi: 10.1021/acs.jpclett.0c02405. PubMed DOI

Medvedev N. Femtosecond X-ray induced electron kinetics in dielectrics: Application for FEL-pulse-duration monitor. Appl. Phys. B. 2015;118:417–429. doi: 10.1007/s00340-015-6005-4. DOI

Zastrau U, et al. XUV spectroscopic characterization of warm dense aluminum plasmas generated by the free-electron-laser FLASH. Laser Part. Beams. 2012;30:45–56. doi: 10.1017/S026303461100067X. DOI

Parrinello M, Rahman A. Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett. 1980;45:1196–1199. doi: 10.1103/PhysRevLett.45.1196. DOI

Jain A, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013;1:11002. doi: 10.1063/1.4812323. DOI

France-Lanord A, Grossman JC. Correlations from ion pairing and the Nernst–Einstein equation. Phys. Rev. Lett. 2019;122:136001. doi: 10.1103/PhysRevLett.122.136001. PubMed DOI

Bu, X. & Feng, P. Superionic conductivity. (2020). 10.1036/1097-8542.801340.

Range K-J, Zabel M. ε-In2S3, eine Hochdruckmodifikation mit Korundstruktur/ε-In2S3, a high pressure modification with corundum type structure. Zeitschrift für Naturforsch. B. 1978;33:463–464. doi: 10.1515/znb-1978-0423. DOI

Roy R, Hill VG, Osborn EF. Polymorphism of Ga2O3 and the system Ga2O3–H2O. J. Am. Chem. Soc. 1952;74:719–722. doi: 10.1021/ja01123a039. DOI

Guo Z, et al. Anisotropic thermal conductivity in single crystal β-gallium oxide. Appl. Phys. Lett. 2015;106:111909. doi: 10.1063/1.4916078. DOI

Wang X, et al. Role of thermal equilibrium dynamics in atomic motion during nonthermal laser-induced melting. Phys. Rev. Lett. 2020;124:105701. doi: 10.1103/PhysRevLett.124.105701. PubMed DOI

Landolt, H. et al. Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology. Group 3, Vol. 17, Group 3, Vol. 17. (Springer, 1982).

Küpers M, et al. Controlled crystal growth of Indium Selenide, In2Se3, and the crystal structures of α-In2Se3. Inorg. Chem. 2018;57:11775–11781. doi: 10.1021/acs.inorgchem.8b01950. PubMed DOI

Paglia G, Rohl AL, Buckley CE, Gale JD. Determination of the structure of γ-alumina from interatomic potential and first-principles calculations: The requirement of significant numbers of nonspinel positions to achieve an accurate structural model. Phys. Rev. B. 2005;71:224115. doi: 10.1103/PhysRevB.71.224115. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Damage Mechanisms in Polyalkenes Irradiated with Ultrashort XUV/X-Ray Laser Pulses

. 2024 Sep 19 ; 128 (37) : 9036-9042. [epub] 20240906

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...