Superionic states formation in group III oxides irradiated with ultrafast lasers
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
35383247
PubMed Central
PMC8983778
DOI
10.1038/s41598-022-09681-0
PII: 10.1038/s41598-022-09681-0
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
After ultrafast laser irradiation, a target enters a poorly explored regime where physics of a solid state overlaps with plasma physics and chemistry, creating an unusual synergy-a warm dense matter state (WDM). We study theoretically the WDM kinetics and chemistry in a number of group III-metal oxides with highly excited electronic system. We employ density functional theory to investigate a possibility of nonthermal transition of the materials into a superionic state under these conditions. Atomic and electronic properties of the materials are analyzed during the transitions to acquire insights into physical mechanisms guiding such transformations.
Institute of Physics Czech Academy of Sciences Na Slovance 2 182 21 Prague 8 Czech Republic
Institute of Plasma Physics Czech Academy of Sciences Za Slovankou 3 182 00 Prague 8 Czech Republic
Zobrazit více v PubMed
Medvedev N, Tkachenko V, Lipp V, Li Z, Ziaja B. Various damage mechanisms in carbon and silicon materials under femtosecond X-ray irradiation. 4Open. 2018;1:3. doi: 10.1051/fopen/2018003. DOI
Rethfeld B, Ivanov DS, Garcia ME, Anisimov SI. Modelling ultrafast laser ablation. J. Phys. D. Appl. Phys. 2017;50:193001. doi: 10.1088/1361-6463/50/19/193001. DOI
Mo MZ, et al. Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction. Science (80-). 2018;360:1451–1455. doi: 10.1126/science.aar2058. PubMed DOI
Voronkov RA, Medvedev N, Volkov AE. Dependence of nonthermal metallization kinetics on bond ionicity of compounds. Sci. Rep. 2020;10:1–7. doi: 10.1038/s41598-020-70005-1. PubMed DOI PMC
Giret Y, Daraszewicz SL, Duffy DM, Shluger AL, Tanimura K. Nonthermal solid-to-solid phase transitions in tungsten. Phys. Rev. B. 2014;90:94103. doi: 10.1103/PhysRevB.90.094103. DOI
Rousse A, et al. Non-thermal melting in semiconductors measured at femtosecond resolution. Nature. 2001;410:65–68. doi: 10.1038/35065045. PubMed DOI
Siders CW. Detection of nonthermal melting by ultrafast X-ray diffraction. Science (80-). 1999;286:1340–1342. doi: 10.1126/science.286.5443.1340. PubMed DOI
Medvedev N. Nonthermal phase transitions in irradiated oxides. J. Phys. Condens. Matter. 2020;32:435401. doi: 10.1088/1361-648X/aba389. PubMed DOI
Sokolowski-Tinten K, Bialkowski J, von der Linde D. Ultrafast laser-induced order-disorder transitions in semiconductors. Phys. Rev. B. 1995;51:14186–14198. doi: 10.1103/PhysRevB.51.14186. PubMed DOI
Stampfli P, Bennemann K. Dynamical theory of the laser-induced lattice instability of silicon. Phys. Rev. B. 1992;46:10686–10692. doi: 10.1103/PhysRevB.46.10686. PubMed DOI
Graziani, F., Desjarlais, M. P., Redmer, R. & Trickey, S. B. Frontiers and Challenges in Warm Dense Matter. (Springer, 2014). 10.1007/978-3-319-04912-0.
Voronkov RA, Medvedev N, Volkov AE. Superionic state in alumina produced by nonthermal melting. Phys. Status Solidi Rapid Res. Lett. 2020;14:1900641. doi: 10.1002/pssr.201900641. DOI
Hull S. Superionics: Crystal structures and conduction processes. Rep. Prog. Phys. 2004;67:1233–1314. doi: 10.1088/0034-4885/67/7/R05. DOI
He X, Zhu Y, Mo Y. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 2017;8:15893. doi: 10.1038/ncomms15893. PubMed DOI PMC
Millot M, et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature. 2019;569:251–255. doi: 10.1038/s41586-019-1114-6. PubMed DOI
Cavazzoni C, et al. Superionic and metallic states of water and ammonia at giant planet conditions. Science. 1999;283:44–46. doi: 10.1126/science.283.5398.44. PubMed DOI
Rossbach J, Schneider JR, Wurth W. 10 years of pioneering X-ray science at the Free-Electron Laser FLASH at DESY. Phys. Rep. 2019;808:1. doi: 10.1016/j.physrep.2019.02.002. DOI
Bostedt C, et al. Linac coherent light source: The first five years. Rev. Mod. Phys. 2016;88:015007. doi: 10.1103/RevModPhys.88.015007. DOI
Pile D. X-rays: First light from SACLA. Nat. Photonics. 2011;5:456–457. doi: 10.1038/nphoton.2011.178. DOI
Giannozzi P, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 2009;21:395502. doi: 10.1088/0953-8984/21/39/395502. PubMed DOI
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Karasiev VV, Sjostrom T, Dufty J, Trickey SB. Accurate homogeneous electron gas exchange-correlation free energy for local spin-density calculations. Phys. Rev. Lett. 2014;112:1–5. doi: 10.1103/PhysRevLett.112.076403. PubMed DOI
Groth S, et al. Ab initio exchange-correlation free energy of the uniform electron gas at warm dense matter conditions. Phys. Rev. Lett. 2017;119:135001. doi: 10.1103/PhysRevLett.119.135001. PubMed DOI
Faleev SV, van Schilfgaarde M, Kotani T, Léonard F, Desjarlais MP. Finite-temperature quasiparticle self-consistent GW approximation. Phys. Rev. B. 2006;74:33101. doi: 10.1103/PhysRevB.74.033101. DOI
Furness JW, Kaplan AD, Ning J, Perdew JP, Sun J. Accurate and numerically efficient r2SCAN meta-generalized gradient approximation. J. Phys. Chem. Lett. 2020;11:8208–8215. doi: 10.1021/acs.jpclett.0c02405. PubMed DOI
Medvedev N. Femtosecond X-ray induced electron kinetics in dielectrics: Application for FEL-pulse-duration monitor. Appl. Phys. B. 2015;118:417–429. doi: 10.1007/s00340-015-6005-4. DOI
Zastrau U, et al. XUV spectroscopic characterization of warm dense aluminum plasmas generated by the free-electron-laser FLASH. Laser Part. Beams. 2012;30:45–56. doi: 10.1017/S026303461100067X. DOI
Parrinello M, Rahman A. Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett. 1980;45:1196–1199. doi: 10.1103/PhysRevLett.45.1196. DOI
Jain A, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013;1:11002. doi: 10.1063/1.4812323. DOI
France-Lanord A, Grossman JC. Correlations from ion pairing and the Nernst–Einstein equation. Phys. Rev. Lett. 2019;122:136001. doi: 10.1103/PhysRevLett.122.136001. PubMed DOI
Bu, X. & Feng, P. Superionic conductivity. (2020). 10.1036/1097-8542.801340.
Range K-J, Zabel M. ε-In2S3, eine Hochdruckmodifikation mit Korundstruktur/ε-In2S3, a high pressure modification with corundum type structure. Zeitschrift für Naturforsch. B. 1978;33:463–464. doi: 10.1515/znb-1978-0423. DOI
Roy R, Hill VG, Osborn EF. Polymorphism of Ga2O3 and the system Ga2O3–H2O. J. Am. Chem. Soc. 1952;74:719–722. doi: 10.1021/ja01123a039. DOI
Guo Z, et al. Anisotropic thermal conductivity in single crystal β-gallium oxide. Appl. Phys. Lett. 2015;106:111909. doi: 10.1063/1.4916078. DOI
Wang X, et al. Role of thermal equilibrium dynamics in atomic motion during nonthermal laser-induced melting. Phys. Rev. Lett. 2020;124:105701. doi: 10.1103/PhysRevLett.124.105701. PubMed DOI
Landolt, H. et al. Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology. Group 3, Vol. 17, Group 3, Vol. 17. (Springer, 1982).
Küpers M, et al. Controlled crystal growth of Indium Selenide, In2Se3, and the crystal structures of α-In2Se3. Inorg. Chem. 2018;57:11775–11781. doi: 10.1021/acs.inorgchem.8b01950. PubMed DOI
Paglia G, Rohl AL, Buckley CE, Gale JD. Determination of the structure of γ-alumina from interatomic potential and first-principles calculations: The requirement of significant numbers of nonspinel positions to achieve an accurate structural model. Phys. Rev. B. 2005;71:224115. doi: 10.1103/PhysRevB.71.224115. DOI
Damage Mechanisms in Polyalkenes Irradiated with Ultrashort XUV/X-Ray Laser Pulses