Damage Mechanisms in Polyalkenes Irradiated with Ultrashort XUV/X-Ray Laser Pulses
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39239777
PubMed Central
PMC11421090
DOI
10.1021/acs.jpcb.4c04126
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Although polymers are widely used in laser-irradiation research, their microscopic response to high-intensity ultrafast XUV and X-ray irradiation is still largely unknown. Here, we comparatively study a homologous series of alkenes. The XTANT-3 hybrid simulation toolkit is used to determine their damage kinetics and irradiation threshold doses. The code simultaneously models the nonequilibrium electron kinetics, the energy transfer between electrons and atoms via nonadiabatic electron-ion (electron-phonon) coupling, nonthermal modification of the interatomic potential due to electronic excitation, and the ensuing atomic response and damage formation. It is shown that the lowest damage threshold is associated with local defect creation, such as dehydrogenation, various group detachments from the backbone, or polymer strand cross-linking. At higher doses, the disintegration of the molecules leads to a transient metallic liquid state: a nonequilibrium superionic state outside of the material phase diagram. We identify nonthermal effects as the leading mechanism of damage, whereas the thermal (nonadiabatic electron-ion coupling) channel influences the kinetics only slightly in the case of femtosecond-pulse irradiation. Despite the notably different properties of the studied alkene polymers, the ultrafast-X-ray damage threshold doses are found to be very close to ∼0.05 eV/atom in all three materials: polyethylene, polypropylene, and polybutylene.
Institute of Physics Czech Academy of Sciences Na Slovance 1999 2 Prague 8 182 00 Czech Republic
Institute of Plasma Physics Czech Academy of Sciences Za Slovankou 3 Prague 8 182 00 Czech Republic
Zobrazit více v PubMed
Guttridge C.; Shannon A.; O’Sullivan A.; O’Sullivan K. J.; O’Sullivan L. W. Biocompatible 3D Printing Resins for Medical Applications: A Review of Marketed Intended Use, Biocompatibility Certification, and Post-Processing Guidance. Ann. 3D Print. Med. 2022, 5, 100044.10.1016/j.stlm.2021.100044. DOI
Halliwell S. M.Polymers in Building and Construction; Rapra Technology Limited: Shawbury, 2000.
Agueda J. R. H. S.; Chen Q.; Maalihan R. D.; Ren J.; da Silva Í. G. M.; Dugos N. P.; Caldona E. B.; Advincula R. C. 3D Printing of Biomedically Relevant Polymer Materials and Biocompatibility. MRS Commun. 2021, 11 (2), 197–212. 10.1557/S43579-021-00038-8. PubMed DOI PMC
Burian T.; Chalupský J.; Hájková V.; Toufarová M.; Vorlíček V.; Hau-Riege S.; Krzywinski J.; Bozek J. D.; Bostedt C.; Graf A. T.; et al. Subthreshold Erosion of an Organic Polymer Induced by Multiple Shots of an X-Ray Free-Electron Laser. Phys. Rev. Appl. 2020, 14 (3), 034057.10.1103/PhysRevApplied.14.034057. DOI
Gutowski T.; Jiang S.; Cooper D.; Corman G.; Hausmann M.; Manson J.-A.; Schudeleit T.; Wegener K.; Sabelle M.; Ramos-Grez J.; et al. Note on the Rate and Energy Efficiency Limits for Additive Manufacturing. J. Ind. Ecol. 2017, 21 (S1), S69–S79. 10.1111/jiec.12664. DOI
Georgiou S.; Koubenakis A. Laser-Induced Material Ejection from Model Molecular Solids and Liquids: Mechanisms, Implications, and Applications. Chem. Rev. 2003, 103 (2), 349–393. 10.1021/cr010429o. PubMed DOI
Tavlet M.; Schonbacher H.. Radiation Resistance of Insulators and Structural Materials; CERN-TIS, 1990, 743–748..
Naikwadi A. T.; Sharma B. K.; Bhatt K. D.; Mahanwar P. A. Gamma Radiation Processed Polymeric Materials for High Performance Applications: A Review. Front. Chem. 2022, 10, 138.10.3389/fchem.2022.837111. PubMed DOI PMC
More C. V.; Alsayed Z.; Badawi M. S.; Thabet A. A.; Pawar P. P. Polymeric Composite Materials for Radiation Shielding: A Review. Environ. Chem. Lett. 2021, 19 (3), 2057–2090. 10.1007/s10311-021-01189-9. PubMed DOI PMC
Moore N. W.; Sanchez J. J.; Hobbs M. L.; Lane J. M. D.; Long K. N. Model for Photothermal Ionization and Molecular Recombination during Pulsed Ablation of Polyethylene. J. Appl. Phys. 2020, 128 (12), 125902.10.1063/5.0017566. DOI
Maerzke K. A.; Coe J. D.; Ticknor C.; Leiding J. A.; Gammel J. T.; Welch C. F. Equations of State for Polyethylene and Its Shock-Driven Decomposition Products. J. Appl. Phys. 2019, 126 (4), 045902.10.1063/1.5099371. DOI
Medvedev N.; Babaev P.; Chalupský J.; Juha L.; Volkov A. E. An Interplay of Various Damage Channels in Polyethylene Exposed to Ultra-Short XUV/x-Ray Pulse. Phys. Chem. Chem. Phys. 2021, 23 (30), 16193–16205. 10.1039/D1CP02199K. PubMed DOI
Patterson B. D. Crystallography Using an X-Ray Free-Electron Laser. Crystallogr. Rev. 2014, 20 (4), 242–294. 10.1080/0889311X.2014.939649. DOI
Helml W.; Grguraš I.; Juranić P.; Düsterer S.; Mazza T.; Maier A.; Hartmann N.; Ilchen M.; Hartmann G.; Patthey L.; et al. Ultrashort Free-Electron Laser X-Ray Pulses. Appl. Sci. 2017, 7 (12), 915.10.3390/app7090915. DOI
Rossbach J.; Schneider J. R.; Wurth W. 10 Years of Pioneering X-Ray Science at the Free-Electron Laser FLASH at DESY. Phys. Rep. 2019, 808, 1.10.1016/j.physrep.2019.02.002. DOI
Saldin E. L.; Schneidmiller E. A.; Yurkov M. V.. The Physics of Free Electron Lasers; Advanced Texts in Physics; Springer: Berlin Heidelberg: Berlin, Heidelberg, 2000. 10.1007/978-3-662-04066-9. DOI
Chalupský J.; Krzywinski J.; Juha L.; Hájková V.; Cihelka J.; Burian T.; Vyšín L.; Gaudin J.; Gleeson A.; Jurek M.; et al. Spot Size Characterization of Focused Non-Gaussian X-Ray Laser Beams. Opt. Express 2010, 18 (26), 27836.10.1364/OE.18.027836. PubMed DOI
Chalupský J.; Juha L.; Kuba J.; Cihelka J.; Hájková V.; Koptyaev S.; Krása J.; Velyhan A.; Bergh M.; Caleman C.; et al. Characteristics of Focused Soft X-Ray Free-Electron Laser Beam Determined by Ablation of Organic Molecular Solids. Opt. Express 2007, 15 (10), 6036.10.1364/OE.15.006036. PubMed DOI
Chalupský J.; Juha L.; Hájková V.; Cihelka J.; Vyšín L.; Gautier J.; Hajdu J.; Hau-Riege S. P.; Jurek M.; Krzywinski J.; et al. Non-Thermal Desorption/Ablation of Molecular Solids Induced by Ultra-Short Soft x-Ray Pulses. Opt. Express 2009, 17 (1), 208.10.1364/OE.17.000208. PubMed DOI
Toufarová M.; Hájková V.; Chalupský J.; Burian T.; Vacík J.; Vorlíček V.; Vyšín L.; Gaudin J.; Medvedev N.; Ziaja B.; et al. Contrasting Behavior of Covalent and Molecular Carbon Allotropes Exposed to Extreme Ultraviolet and Soft X-Ray Free-Electron Laser Radiation. Phys. Rev. B 2017, 96 (21), 214101.10.1103/PhysRevB.96.214101. DOI
Ageev E.; Mizobata K.; Nakajima T.; Zen H.; Kii T.; Ohgaki H. Time-Resolved Detection of Structural Change in Polyethylene Films Using Mid-Infrared Laser Pulses. Appl. Phys. Lett. 2015, 107 (4), 041904.10.1063/1.4927666. DOI
Medvedev N.; Volkov A. E.; Ziaja B. Electronic and Atomic Kinetics in Solids Irradiated with Free-Electron Lasers or Swift-Heavy Ions. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. With Mater. Atoms 2015, 365, 437–446. 10.1016/j.nimb.2015.08.063. DOI
Apostolova T.; Artacho E.; Cleri F.; Cotelo M.; Crespillo M. L.; Da Pieve F.; Dimitriou V.; Djurabekova F.; Duffy D. M.; García G., et al.; Tools for Investigating Electronic Excitation: experiment and Multi-Scale Modelling. Apostolova T.; Kohanoff J.; Medvedev N.; Oliva E.; Rivera A. Eds.; Universidad Politécnica de Madrid. Instituto de Fusión Nuclear Guillermo Velarde: Madrid; 2021, 10.20868/UPM.book.69109. DOI
Siders C. W.; Cavalleri A.; Sokolowski-Tinten K.; Tóth C.; Guo T.; Kammler M.; von Hoegen M. H.; Wilson K. R.; von der Linde D.; Barty C. P. J. Detection of Nonthermal Melting by Ultrafast X-Ray Diffraction. Science 1999, 286 (5443), 1340–1342. 10.1126/science.286.5443.1340. PubMed DOI
Silvestrelli P. L.; Alavi A.; Parrinello M. Electrical-Conductivity Calculation in Ab Initio Simulations of Metals: Application to Liquid Sodium. Phys. Rev. B 1997, 55 (23), 15515–15522. 10.1103/PhysRevB.55.15515. DOI
Jeschke H. O.; Garcia M. E.; Bennemann K. H. Theory for Laser-Induced Ultrafast Phase Transitions in Carbon. Appl. Phys. A: mater. Sci. Process 1999, 69, S49–S53. 10.1007/s003399900340. DOI
Medvedev N.XTANT-3; Zenodo: 2024, https://zenodo.org/records/1280530710.5281/zenodo.8392569. DOI
Medvedev N.; Tkachenko V.; Lipp V.; Li Z.; Ziaja B. Various Damage Mechanisms in Carbon and Silicon Materials under Femtosecond X-Ray Irradiation. 4open 2018, 1, 3.10.1051/fopen/2018003. DOI
Hau-Riege S. P.High-Intensity X-Rays - Interaction with Matter: Processes in Plasmas, Clusters, Molecules and Solids; Willey-VCH Verlag: Weinheim, Germany, 2011.
Medvedev N.; Rethfeld B. Transient Dynamics of the Electronic Subsystem of Semiconductors Irradiated with an Ultrashort Vacuum Ultraviolet Laser Pulse. New J. Phys. 2010, 12 (7), 073037.10.1088/1367-2630/12/7/073037. DOI
Cullen D. E.EPICS2017: electron Photon Interaction Cross Sections: w-Nds.Iaea.Org/Epics/. Vienna. 2018. https://www-nds.iaea.org/publications/iaea-nds/iaea-nds-224%7B%5C_%7DRev1%7B%5C_%7D2018.pdf.
Kim Y.-K.; Rudd M. Binary-Encounter-Dipole Model for Electron-Impact Ionization. Phys. Rev. A 1994, 50 (5), 3954–3967. 10.1103/PhysRevA.50.3954. PubMed DOI
Medvedev N.; Jeschke H. O.; Ziaja B. Nonthermal Phase Transitions in Semiconductors Induced by a Femtosecond Extreme Ultraviolet Laser Pulse. New J. Phys. 2013, 15 (1), 015016.10.1088/1367-2630/15/1/015016. DOI
Medvedev N.; Milov I. Electron-Phonon Coupling in Metals at High Electronic Temperatures. Phys. Rev. B 2020, 102 (6), 064302.10.1103/PhysRevB.102.064302. DOI
Koskinen P.; Mäkinen V. Density-Functional Tight-Binding for Beginners. Comput. Mater. Sci. 2009, 47 (1), 237–253. 10.1016/j.commatsci.2009.07.013. DOI
Spiegelman F.; Tarrat N.; Cuny J.; Dontot L.; Posenitskiy E.; Martí C.; Simon A.; Rapacioli M. Density-Functional Tight-Binding: Basic Concepts and Applications to Molecules and Clusters. Adv. Phys.: x 2020, 5 (1), 1710252.10.1080/23746149.2019.1710252. PubMed DOI PMC
Frenzel J.; Oliveira A. F.; Jardillier N.; Heine T.; Seifert G.. Semi-Relativistic, Self-Consistent Charge Slater-Koster Tables for Density-Functional Based Tight-Binding (DFTB) for Materials Science Simulations. Dresden. 2009. http://www.dftb.org/parameters/download/matsci/matsci-0-3-cc/.
Rousse A.; Rischel C.; Fourmaux S.; Uschmann I.; Sebban S.; Grillon G.; Balcou P.; Förster E.; Geindre J. P.; Audebert P.; et al. Non-Thermal Melting in Semiconductors Measured at Femtosecond Resolution. Nature 2001, 410 (6824), 65–68. 10.1038/35065045. PubMed DOI
Martyna G. J.; Tuckerman M. E. Symplectic Reversible Integrators: Predictor–Corrector Methods. J. Chem. Phys. 1995, 102 (20), 8071.10.1063/1.469006. DOI
Medvedev N.; Chalupský J.; Juha L. Microscopic Kinetics in Poly(Methyl Methacrylate) Exposed to a Single Ultra-Short XUV/X-Ray Laser Pulse. Molecules 2021, 26 (21), 6701.10.3390/molecules26216701. PubMed DOI PMC
Medvedev N.; Voronkov R.; Volkov A. E. Metallic Water: Transient State under Ultrafast Electronic Excitation. J. Chem. Phys. 2023, 158 (7), 074501.10.1063/5.0139802. PubMed DOI
Medvedev N.XTANT-3: X-Ray-Induced Thermal And Nonthermal Transitions in Matter: Theory, Numerical Details, User Manual. http://arxiv.org/abs/2307.03953. 2023.
Stukowski A. Visualization and Analysis of Atomistic Simulation Data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18 (1), 015012.10.1088/0965-0393/18/1/015012. DOI
Berendsen H. J. C.; Postma J. P. M.; van Gunsteren W. F.; DiNola A.; Haak J. R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81 (8), 3684–3690. 10.1063/1.448118. DOI
Medvedev N.; Volkov A. E. Nonthermal Acceleration of Atoms as a Mechanism of Fast Lattice Heating in Ion Tracks. J. Appl. Phys. 2022, 131 (22), 225903.10.1063/5.0095724. DOI
Voronkov R. A.; Medvedev N.; Volkov A. E. Superionic States Formation in Group III Oxides Irradiated with Ultrafast Lasers. Sci. Rep. 2022, 12 (1), 5659.10.1038/s41598-022-09681-0. PubMed DOI PMC
Medvedev N.; Jeschke H. O.; Ziaja B. Nonthermal Graphitization of Diamond Induced by a Femtosecond X-Ray Laser Pulse. Phys. Rev. B 2013, 88 (22), 224304.10.1103/PhysRevB.88.224304. DOI
Henke B. L.; Gullikson E. M.; Davis J. C. X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50–30,000 EV, Z = 1–92. At. Data Nucl. Data Tables 1993, 54 (2), 181–342. 10.1006/adnd.1993.1013. DOI