Thermodynamic properties of CrMnFeCoNi high entropy alloy at elevated electronic temperatures
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2023068
The Czech Ministry of Education, Youth, and Sports
PubMed
41136656
PubMed Central
PMC12552531
DOI
10.1038/s41598-025-21367-x
PII: 10.1038/s41598-025-21367-x
Knihovny.cz E-zdroje
- Klíčová slova
- Cantor alloy, CrMnFeCoNi high-entropy alloy, Electron heat capacity, Electron heat conductivity, Electron-phonon coupling, Nonthermal melting,
- Publikační typ
- časopisecké články MeSH
The Cantor alloy (equiatomic CrMnFeCoNi) is a high-entropy alloy with unique physical properties and radiation resistance. To model its response to intense laser pulses, the parameters of the electronic ensemble are required. In this work, the electronic heat capacity, thermal conductivity, and electron-phonon coupling strength at elevated electronic temperatures are evaluated using a combined approach that incorporates tight-binding molecular dynamics and the Boltzmann equation. The damage threshold fluence is estimated for a wide range of photon energies, from XUV to hard X-rays. It is found that at the electronic temperatures ~ 24,000 K (absorbed dose ~ 6 eV/atom), the Cantor alloy experiences nonthermal melting due to modification of the interatomic potential induced by electronic excitation, even without the increase of the atomic temperature. This effect must be included in reliable models of CrMnFeCoNi ablation under ultrafast laser irradiation.
Institute of Physics Czech Academy of Sciences Na Slovance 1999 2 Prague 8 182 00 Czech Republic
Institute of Plasma Physics Czech Academy of Sciences Za Slovankou 3 Prague 8 182 00 Czech Republic
Zobrazit více v PubMed
George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. DOI
Ye, Y. F., Wang, Q., Lu, J., Liu, C. T. & Yang, Y. High-entropy alloy: challenges and prospects. DOI
Tang, Y. & Li, D. Y. Dynamic response of high-entropy alloys to ballistic impact. PubMed DOI PMC
González, S. et al. Wear resistant CoCrFeMnNi0.8V high entropy alloy with multi length-scale hierarchical microstructure. DOI
Zhang, Z., Armstrong, D. E. J. & Grant, P. S. The effects of irradiation on crmnfeconi high-entropy alloy and its derivatives. DOI
Cao, X. Fabrication and characterisation of crmnfeconi high entropy alloy electrocatalyst for oxygen evolution reaction. DOI
Bahramyan, M. et al. Design of novel high entropy alloys based on the end-of-life recycling rate and element lifetime for cryogenic applications. DOI
Do, H. S. & Lee, B. J. Origin of radiation resistance in multi-principal element alloys. PubMed DOI PMC
Tekin, H. O. et al. Phase Stability, structural properties, Electronegativity, mechanical properties, and neutron and Gamma-Ray Attenuation properties of cantor high entropy alloys for advanced nuclear applications.
Redka, D. et al. Control of ultrafast laser ablation efficiency by stress confinement due to strong electron localization in high-entropy alloys. DOI
Nikishev, N. & Medvedev, N. Damage mechanisms in polyalkenes irradiated with ultrashort XUV/X-Ray laser pulses. PubMed DOI PMC
Medvedev, N., Voronkov, R. & Volkov, A. E. Metallic water: transient state under ultrafast electronic excitation. PubMed DOI
Wang, J. et al. Laser machining fundamentals: micro, nano, atomic and close-to-atomic scales. DOI
Rasheed, B. G. & Ibrahem, M. A. Laser micro/nano machining of silicon. PubMed DOI
Shugaev, M. V. et al. Fundamentals of ultrafast laser-material interaction. DOI
Rethfeld, B., Ivanov, D. S., Garcia, M. E. & Anisimov, S. I. Modelling ultrafast laser ablation. DOI
Siders, C. W. et al. Detection of nonthermal melting by ultrafast X-ray diffraction. PubMed DOI
Rousse, A. et al. Non-thermal melting in semiconductors measured at femtosecond resolution. PubMed DOI
Medvedev, N. & Milov, I. Nonthermal phase transitions in metals. PubMed DOI PMC
Medvedev, N. XTANT-3 [Computer Software] (2023). Available from 10.5281/zenodo.8392569.
Medvedev, N. et al. Frontiers, challenges, and solutions in modeling of swift heavy ion effects in materials. DOI
Cullen, D. E.
Medvedev, N., Akhmetov, F., Rymzhanov, R. A., Voronkov, R. & Volkov, A. E. Modeling time-resolved kinetics in solids induced by extreme electronic excitation. DOI
Medvedev, N. Electronic nonequilibrium effect in ultrafast-laser-irradiated solids. DOI
Koskinen, P. & Mäkinen, V. Density-functional tight-binding for beginners. DOI
Jeschke, H. O., Garcia, M. E. & Bennemann, K. H. Microscopic analysis of the laser-induced femtosecond graphitization of diamond. DOI
Medvedev, N., Tkachenko, V., Lipp, V., Li, Z. & Ziaja, B. Various damage mechanisms in carbon and silicon materials under femtosecond x-ray irradiation. DOI
Cui, M., Reuter, K. & Margraf, J. T. Obtaining robust density functional Tight-Binding parameters for solids across the periodic table. PubMed DOI
Jeschke, H. O., Garcia, M. E. & Bennemann, K. H. Theory for laser-induced ultrafast phase transitions in carbon. DOI
Medvedev, N., Milov, I. & Ziaja, B. Structural stability and electron-phonon coupling in two‐dimensional carbon allotropes at high electronic and atomic temperatures. DOI
Medvedev, N., Akhmetov, F. & Milov, I. Electronic heat conductivity in a two-temperature state. DOI
Medvedev, N. & Milov, I. Electron-phonon coupling in metals at high electronic temperatures. PubMed DOI PMC
Martyna, G. J. & Tuckerman, M. E. Symplectic reversible integrators: Predictor-corrector methods. DOI
Medvedev, N. & Volkov, A. E. Multitemperature atomic ensemble: nonequilibrium evolution after ultrafast electronic excitation. PubMed DOI
Gianelle, M. A., Clapp, C., Kundu, A. & Chan, H. M. Solid state processing of the cantor derived alloy CoCrFeMnNi by oxide reduction. DOI
Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. DOI
Redka, D. et al. Interplay between disorder and electronic correlations in compositionally complex alloys. PubMed DOI PMC
Medvedev, N. Electron-phonon coupling in semiconductors at high electronic temperatures. DOI
Berger, A. et al. Thermophysical properties of equiatomic CrMnFeCoNi, CrFeCoNi, CrCoNi, and CrFeNi high- and medium-entropy alloys. DOI
Medvedev, N.
Laurent-Brocq, M. et al. Insights into the phase diagram of the crmnfeconi high entropy alloy. DOI
Medvedev, N. & Volkov, A. E. Nonthermal acceleration of atoms as a mechanism of fast lattice heating in ion tracks. DOI
Sokolowski-Tinten, K., Bialkowski, J., Boing, M. & Cavalleri, A. Von der Linde, D. Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation. DOI
Medvedev, N., Li, Z. & Ziaja, B. Thermal and nonthermal melting of silicon under femtosecond x-ray irradiation. DOI
Inoue, I. et al. Interplay of thermal and nonthermal effects in x-ray-induced ultrafast melting. DOI
Medvedev, N., Kopecky, M., Chalupsky, J. & Juha, L. Femtosecond x-ray diffraction can discern nonthermal from thermal melting.
Redka, D. et al. Sub-picosecond single-pulse laser ablation of the crmnfeconi high entropy alloy and comparison to stainless steel AISI 304. DOI
Medvedev, N. & Rethfeld, B. Transient dynamics of the electronic subsystem of semiconductors irradiated with an ultrashort vacuum ultraviolet laser pulse. DOI
Medvedev, N. Electron-phonon coupling and related parameters calculated with XTANT-3. (2023). https://github.com/N-Medvedev/XTANT-3_coupling_data.