Polymeric Nanocarriers of a Monosubstituted Tetraphenylporphyrin Sensitizer Intended for Photodynamic Therapy and Tumor Imaging
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41322635
PubMed Central
PMC12658679
DOI
10.1021/acsomega.5c07910
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
To effectively combat advanced cancers, next-generation nanomedicines should combine both therapeutic and diagnostic functions. In this study, we developed stimulus-responsive theranostics systems based on micellar nanostructures that deliver derivatives of tetraphenylporphyrins (TPP) bound via tumor microenvironment-sensitive hydrazone bonds. These nanomedicines are engineered using a micelle-forming polymer-TPP conjugate, enabling the pH-sensitive activation of both photodynamic therapy (PDT) and fluorescence. Two pH-sensitive and one stable polymer-TPP conjugates were synthesized and characterized by size exclusion chromatography and TPP release rates. Micelle stability was evaluated using UV/vis spectroscopy, while fluorescence and singlet oxygen production were measured to determine their theranostics potential. Femtosecond transient absorption and time-correlated single photon counting techniques were employed for the photophysical evaluation of micellar systems. Compared to polymer conjugates where TPP is linked through nondegradable amide bonds, the pH-sensitive systems exhibit superior physicochemical properties. These micellar conjugates are highly stable, allowing prolonged circulation in the body while remaining in an "off" state, where fluorescence and singlet oxygen production are minimized. Overall, the hydrazone-linked conjugates display favorable properties that make them strong candidates for future anticancer theranostic applications.
Zobrazit více v PubMed
Penetra M., Arnaut L. G., Gomes-da-Silva L. C.. Trial watch: an update of clinical advances in photodynamic therapy and its immunoadjuvant properties for cancer treatment. Oncoimmunology. 2023;12:2226535. doi: 10.1080/2162402X.2023.2226535. PubMed DOI PMC
Allison R. R., Bansal S.. Photodynamic therapy for peripheral lung cancer. Photodiagnosis Photodyn. Ther. 2022;38:102825. doi: 10.1016/j.pdpdt.2022.102825. PubMed DOI
Kato H., Furukawa K., Sato M., Okunaka T., Kusunoki Y., Kawahara M., Fukuoka M., Miyazawa T., Yana T., Matsui K.. et al. Phase II clinical study of photodynamic therapy using mono-l-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung. Lung Cancer. 2003;42:103–111. doi: 10.1016/S0169-5002(03)00242-3. PubMed DOI
Wang K., Yu B., Pathak J. L.. An update in clinical utilization of photodynamic therapy for lung cancer. J. Cancer. 2021;12:1154–1160. doi: 10.7150/jca.51537. PubMed DOI PMC
van Doeveren T. E. M., Karakullukçu M. B., van Veen R. L. P., Lopez-Yurda M., Schreuder W. H., Tan I. B.. Adjuvant photodynamic therapy in head and neck cancer after tumor-positive resection margins. Laryngoscope. 2018;128:657–663. doi: 10.1002/lary.26792. PubMed DOI
Ramsay D., Stevenson H., Jerjes W.. From Basic Mechanisms to Clinical Research: Photodynamic Therapy Applications in Head and Neck Malignancies and Vascular Anomalies. J. Clin. Med. 2021;10:4404. doi: 10.3390/jcm10194404. PubMed DOI PMC
Biel, M. A. Photodynamic Therapy of Head and Neck Cancers. In Photodynamic Therapy: Methods and Protocols; Gomer, C. J. , Ed.; Humana Press: Totowa, NJ, 2010; pp 281–293 ISBN 978–1-60761–697–9. 10.1007/978-1-60761-697-9_18. PubMed DOI
Moore C. M., Nathan T. R., Lees W. R., Mosse C. A., Freeman A., Emberton M., Bown S. G.. Photodynamic therapy using meso tetra hydroxy phenyl chlorin (mTHPC) in early prostate cancer. Laser Surg. Med. 2006;38:356–363. doi: 10.1002/lsm.20275. PubMed DOI
Nathan T. R., Whitelaw D. E., Chang S. C., Lees W. R., Ripley P. M., Payne H., Jones L., Parkinson M. C., Emberton M., Gillams A. R.. et al. Photodynamic Therapy for Prostate Cancer Recurrence After Radiotherapy: A Phase I Study. J. Urol. 2002;168:1427–1432. doi: 10.1016/S0022-5347(05)64466-7. PubMed DOI
Moore C. M., Pendse D., Emberton M.. Photodynamic therapy for prostate cancera review of current status and future promise. Nat. Clin. Pract. Urol. 2009;6:18–30. doi: 10.1038/ncpuro1274. PubMed DOI
Azzouzi A.-R., Vincendeau S., Barret E., Cicco A., Kleinclauss F., van der Poel H. G., Stief C. G., Rassweiler J., Salomon G., Solsona E.. et al. Padeliporfin vascular-targeted photodynamic therapy versus active surveillance in men with low-risk prostate cancer (CLIN1001 PCM301): an open-label, phase 3, randomised controlled trial. Lancet Oncol. 2017;18:181–191. doi: 10.1016/S1470-2045(16)30661-1. PubMed DOI
Morton C. A., Dominicus R., Radny P., Dirschka T., Hauschild A., Reinhold U., Aschoff R., Ulrich M., Keohane S., Ekanayake-Bohlig S.. et al. A randomized, multinational, noninferiority, phase III trial to evaluate the safety and efficacy of BF-200 aminolaevulinic acid gel vs. methyl aminolaevulinate cream in the treatment of nonaggressive basal cell carcinoma with photodynamic therapy. Br. J. Dermatol. 2018;179:309–319. doi: 10.1111/bjd.16441. PubMed DOI
De Rosa F. S., Bentley M. V. L. B.. Photodynamic Therapy of Skin Cancers: Sensitizers, Clinical Studies and Future Directives. Pharm. Res. 2000;17:1447–1455. doi: 10.1023/A:1007612905378. PubMed DOI
Kochneva E. V., Filonenko E. V., Vakulovskaya E. G., Scherbakova E. G., Seliverstov O. V., Markichev N. A., Reshetnickov A.. V Photosensitizer Radachlorin®: Skin cancer PDT phase II clinical trials. Photodiagnosis Photodyn. Ther. 2010;7:258–267. doi: 10.1016/j.pdpdt.2010.07.006. PubMed DOI
Arnaut, L. G. Design of porphyrin-based photosensitizers for photodynamic therapy. In Inorganic Photochemistry; van Eldik, R. , Stochel, G. , Eds.; Academic Press, 2011; Vol. 63, pp 187–233. 10.1016/B978-0-12-385904-4.00006-8.Advances in Inorganic Chemistry DOI
Lang K., Mosinger J., Wagnerová D. M.. Photophysical properties of porphyrinoid sensitizers non-covalently bound to host molecules; models for photodynamic therapy. Coord. Chem. Rev. 2004;248:321–350. doi: 10.1016/j.ccr.2004.02.004. DOI
Lan M., Zhao S., Liu W., Lee C.-S., Zhang W., Wang P.. Photosensitizers for Photodynamic Therapy. Adv. Healthc Mater. 2019;8:1900132. doi: 10.1002/adhm.201900132. PubMed DOI
Zhang Y., Lovell J. F.. Porphyrins as Theranostic Agents from Prehistoric to Modern Times. Theranostics. 2012;2:905–915. doi: 10.7150/thno.4908. PubMed DOI PMC
Janas K., Boniewska-Bernacka E., Dyrda G., Słota R.. Porphyrin and phthalocyanine photosensitizers designed for targeted photodynamic therapy of colorectal cancer. Bioorg. Med. Chem. 2021;30:115926. doi: 10.1016/j.bmc.2020.115926. PubMed DOI
Correia J. H., Rodrigues J. A., Pimenta S., Dong T., Yang Z.. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics. 2021;13:1332. doi: 10.3390/pharmaceutics13091332. PubMed DOI PMC
Donohoe C., Senge M. O., Arnaut L. G., Gomes-da-Silva L. C.. Cell death in photodynamic therapy: From oxidative stress to anti-tumor immunity. Biochim. Biophys. Acta Rev. Cancer. 2019;1872:188308. doi: 10.1016/j.bbcan.2019.07.003. PubMed DOI
Calixto G. M. F., Bernegossi J., De Freitas L. M., Fontana C. R., Chorilli M.. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review. Molecules. 2016;21:342. doi: 10.3390/molecules21030342. PubMed DOI PMC
Xu D., Duan Q., Yu H., Dong W.. Photodynamic therapy based on porphyrin-based metal–organic frameworks. J. Mater. Chem. B. 2023;11:5976–5989. doi: 10.1039/D2TB02789E. PubMed DOI
Moreira L., Vieira dos Santos F., Lyon J., Maftoum Costa M., Pacheco Soares C., Soares da Silva N.. Photodynamic Therapy: Porphyrins and Phthalocyanines as Photosensitizers. Aust. J. Chem. 2008;61:741–754. doi: 10.1071/CH08145. DOI
Park J., Lee Y.-K., Park I.-K., Hwang S. R.. Current Limitations and Recent Progress in Nanomedicine for Clinically Available Photodynamic Therapy. Biomedicines. 2021;9:85. doi: 10.3390/biomedicines9010085. PubMed DOI PMC
Baskin J., Yu H.-Z., Zewail A.. Ultrafast Dynamics of Porphyrins in the Condensed Phase: I. Free Base Tetraphenylporphyrin†. J. Phys. Chem. A. 2002;106:9837. doi: 10.1021/jp020398g. PubMed DOI
Gouterman, M. 1 - Optical Spectra and Electronic Structure of Porphyrins and Related Rings. In Physical Chemistry, Part A; Elsevier Inc, 1978; pp 1–165 ISBN 0323143903.
Gouterman M., Khalil G.-E.. Porphyrin free base phosphorescence. J. Mol. Spectrosc. 1974;53:88–100. doi: 10.1016/0022-2852(74)90263-X. DOI
Taniguchi M., Lindsey J. S., Bocian D. F., Holten D.. Comprehensive review of photophysical parameters (ε, Φf, τs) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP) – Critical benchmark molecules in photochemistry and photosynthesis. J. Photochem. Photobiol., C. 2021;46:100401. doi: 10.1016/j.jphotochemrev.2020.100401. DOI
Debele T. A., Peng S., Tsai H. C.. Drug Carrier for Photodynamic Cancer Therapy. Int. J. Mol. Sci. 2015;16:22094. doi: 10.3390/ijms160922094. PubMed DOI PMC
Konan Y. N., Gurny R., Allémann E.. State of the art in the delivery of photosensitizers for photodynamic therapy. J. Photochem. Photobiol., B. 2002;66:89–106. doi: 10.1016/S1011-1344(01)00267-6. PubMed DOI
Iyer A. K., Khaled G., Fang J., Maeda H.. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today. 2006;11:812–818. doi: 10.1016/j.drudis.2006.07.005. PubMed DOI
Maeda H.. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliv. Rev. 2015;91:3–6. doi: 10.1016/j.addr.2015.01.002. PubMed DOI
Gunaydin G., Gedik M. E., Ayan S.. Photodynamic TherapyCurrent Limitations and Novel Approaches. Front. Chem. 2021;9:691697. doi: 10.3389/fchem.2021.691697. PubMed DOI PMC
Cuadrado C. F., Lagos K. J., Stringasci M. D., Bagnato V. S., Romero M. P.. Clinical and pre-clinical advances in the PDT/PTT strategy for diagnosis and treatment of cancer. Photodiagnosis Photodyn. Ther. 2024;50:104387. doi: 10.1016/j.pdpdt.2024.104387. PubMed DOI
Seymour L. W., Ferry D. R., Kerr D. J., Rea D., Whitlock M., Poyner R., Boivin C., Hesselewood S., Twelves C., Blackie R.. et al. Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int. J. Oncol. 2009;34:1629–1636. doi: 10.3892/ijo_00000293. PubMed DOI
Dozono H., Yanazume S., Nakamura H., Etrych T., Chytil P., Ulbrich K., Fang J., Arimura T., Douchi T., Kobayashi H.. et al. HPMA Copolymer-Conjugated Pirarubicin in Multimodal Treatment of a Patient with Stage IV Prostate Cancer and Extensive Lung and Bone Metastases. Targeted Oncol. 2016;11:101–106. doi: 10.1007/s11523-015-0379-4. PubMed DOI
Fang J., Šubr V., Islam W., Hackbarth S., Islam R., Etrych T., Ulbrich K., Maeda H.. N-(2-hydroxypropyl)methacrylamide polymer conjugated pyropheophorbide-a, a promising tumor-targeted theranostic probe for photodynamic therapy and imaging. Eur. J. Pharm. Biopharm. 2018;130:165–176. doi: 10.1016/j.ejpb.2018.06.005. PubMed DOI
Tavares M. R., Islam R., Šubr V., Hackbarth S., Gao S., Yang K., Lobaz V., Fang J., Etrych T.. Polymer theranostics with multiple stimuli-based activation of photodynamic therapy and tumor imaging. Theranostics. 2023;13:4952–4973. doi: 10.7150/thno.86211. PubMed DOI PMC
Fang J., Gao S., Islam R., Nema H., Yanagibashi R., Yoneda N., Watanabe N., Yasuda Y., Nuita N., Zhou J.-R.. et al. Styrene Maleic Acid Copolymer-Based Micellar Formation of Temoporfin (SMA@ mTHPC) Behaves as A Nanoprobe for Tumor-Targeted Photodynamic Therapy with A Superior Safety. Biomedicines. 2021;9:1493. doi: 10.3390/biomedicines9101493. PubMed DOI PMC
Nakamura H., Liao L., Hitaka Y., Tsukigawa K., Subr V., Fang J., Ulbrich K., Maeda H.. Micelles of zinc protoporphyrin conjugated to N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer for imaging and light-induced antitumor effects in vivo. J. Controlled Release. 2013;165:191–198. doi: 10.1016/j.jconrel.2012.11.017. PubMed DOI
Gadde S., Islam D.-M. S., Wijesinghe C. A., Subbaiyan N. K., Zandler M. E., Araki Y., Ito O., D’Souza F.. Light-Induced Electron Transfer of a Supramolecular Bis(Zinc Porphyrin)–Fullerene Triad Constructed via a Diacetylamidopyridine/Uracil Hydrogen-Bonding Motif. J. Phys. Chem. C. 2007;111:12500–12503. doi: 10.1021/jp073918m. DOI
Ulbrich K., Šubr V., Strohalm J., Plocová D., Jelínková M., Říhová B.. Polymeric drugs based on conjugates of synthetic and natural macromolecules: I. Synthesis and physico-chemical characterisation. J. Controlled Release. 2000;64:63–79. doi: 10.1016/S0168-3659(99)00141-8. PubMed DOI
Šubr V., Sivák L., Koziolová E., Braunová A., Pechar M., Strohalm J., Kabešová M., Říhová B., Ulbrich K., Kovář M.. Synthesis of Poly[N-(2-hydroxypropyl)methacrylamide] Conjugates of Inhibitors of the ABC Transporter That Overcome Multidrug Resistance in Doxorubicin-Resistant P388 Cells in Vitro. Biomacromolecules. 2014;15:3030–3043. doi: 10.1021/bm500649q. PubMed DOI
Ishitake K., Satoh K., Kamigaito M., Okamoto Y.. Stereogradient Polymers Formed by Controlled/Living Radical Polymerization of Bulky Methacrylate Monomers. Angew. Chem., Int. Ed. 2009;48:1991–1994. doi: 10.1002/anie.200805168. PubMed DOI
Etrych T., Jelínková M., Říhová B., Ulbrich K.. New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: synthesis and preliminary in vitro and in vivo biological properties. J. Controlled Release. 2001;73:89–102. doi: 10.1016/S0168-3659(01)00281-4. PubMed DOI
Mosmann T.. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI
Pramanik G., Kvakova K., Thottappali M. A., Rais D., Pfleger J., Greben M., El-Zoka A., Bals S., Dracinsky M., Valenta J.. et al. Inverse heavy-atom effect in near infrared photoluminescent gold nanoclusters. Nanoscale. 2021;13:10462–10467. doi: 10.1039/D1NR02440J. PubMed DOI
Etrych T., Šubr V., Strohalm J., Šírová M., Říhová B., Ulbrich K.. HPMA copolymer-doxorubicin conjugates: The effects of molecular weight and architecture on biodistribution and in vivo activity. J. Controlled Release. 2012;164:346–354. doi: 10.1016/j.jconrel.2012.06.029. PubMed DOI
Spadin F. S., Gergely L. P., Kämpfer T., Frenz M., Vermathen M.. Fluorescence lifetime imaging and phasor analysis of intracellular porphyrinic photosensitizers applied with different polymeric formulations. J. Photochem. Photobiol., B. 2024;254:112904. doi: 10.1016/j.jphotobiol.2024.112904. PubMed DOI
Pavani C., Uchoa A. F., Oliveira C. S., Iamamoto Y., Baptista M. S.. Effect of zinc insertion and hydrophobicity on the membrane interactions and PDT activity of porphyrin photosensitizers. Photochem. Photobiol. Sci. 2009;8:233–240. doi: 10.1039/b810313e. PubMed DOI
Castano A. P., Demidova T. N., Hamblin M. R.. Mechanisms in photodynamic therapy: part onephotosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn. Ther. 2004;1:279–293. doi: 10.1016/S1572-1000(05)00007-4. PubMed DOI PMC
Nelemans L. C., Gurevich L.. Drug Delivery with Polymeric NanocarriersCellular Uptake Mechanisms. Materials. 2020;13:366. doi: 10.3390/ma13020366. PubMed DOI PMC
Kumar Panigrahi S., Kumar Mishra A.. Inner filter effect in fluorescence spectroscopy: As a problem and as a solution. J. Photochem. Photobiol., C. 2019;41:100318. doi: 10.1016/j.jphotochemrev.2019.100318. DOI
Weitner T., Friganović T., Šakić D.. Inner Filter Effect Correction for Fluorescence Measurements in Microplates Using Variable Vertical Axis Focus. Anal. Chem. 2022;94:7107–7114. doi: 10.1021/acs.analchem.2c01031. PubMed DOI PMC
Arudi R. L., O Allen A., H J Bielski B.. Some observations on the chemistry of KO2DMSO solutions. FEBS Lett. 1981;135:265–267. doi: 10.1016/0014-5793(81)80797-1. DOI
Levin P. P., Costa S., Lopes J., Serralha M. d. F., Ribeiro F. R.. Effect of zeolite properties on ground-state and triplet-triplet absorption, prompt and oxygen induced delayed fluorescence of tetraphenylporphyrin at gas/solid interface. Spectrochim. Acta, Part A. 2000;56:1745–1757. doi: 10.1016/S1386-1425(00)00232-8. PubMed DOI