Polymeric Nanocarriers of a Monosubstituted Tetraphenylporphyrin Sensitizer Intended for Photodynamic Therapy and Tumor Imaging

. 2025 Nov 25 ; 10 (46) : 56201-56216. [epub] 20251110

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41322635

To effectively combat advanced cancers, next-generation nanomedicines should combine both therapeutic and diagnostic functions. In this study, we developed stimulus-responsive theranostics systems based on micellar nanostructures that deliver derivatives of tetraphenylporphyrins (TPP) bound via tumor microenvironment-sensitive hydrazone bonds. These nanomedicines are engineered using a micelle-forming polymer-TPP conjugate, enabling the pH-sensitive activation of both photodynamic therapy (PDT) and fluorescence. Two pH-sensitive and one stable polymer-TPP conjugates were synthesized and characterized by size exclusion chromatography and TPP release rates. Micelle stability was evaluated using UV/vis spectroscopy, while fluorescence and singlet oxygen production were measured to determine their theranostics potential. Femtosecond transient absorption and time-correlated single photon counting techniques were employed for the photophysical evaluation of micellar systems. Compared to polymer conjugates where TPP is linked through nondegradable amide bonds, the pH-sensitive systems exhibit superior physicochemical properties. These micellar conjugates are highly stable, allowing prolonged circulation in the body while remaining in an "off" state, where fluorescence and singlet oxygen production are minimized. Overall, the hydrazone-linked conjugates display favorable properties that make them strong candidates for future anticancer theranostic applications.

Zobrazit více v PubMed

Penetra M., Arnaut L. G., Gomes-da-Silva L. C.. Trial watch: an update of clinical advances in photodynamic therapy and its immunoadjuvant properties for cancer treatment. Oncoimmunology. 2023;12:2226535. doi: 10.1080/2162402X.2023.2226535. PubMed DOI PMC

Allison R. R., Bansal S.. Photodynamic therapy for peripheral lung cancer. Photodiagnosis Photodyn. Ther. 2022;38:102825. doi: 10.1016/j.pdpdt.2022.102825. PubMed DOI

Kato H., Furukawa K., Sato M., Okunaka T., Kusunoki Y., Kawahara M., Fukuoka M., Miyazawa T., Yana T., Matsui K.. et al. Phase II clinical study of photodynamic therapy using mono-l-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung. Lung Cancer. 2003;42:103–111. doi: 10.1016/S0169-5002(03)00242-3. PubMed DOI

Wang K., Yu B., Pathak J. L.. An update in clinical utilization of photodynamic therapy for lung cancer. J. Cancer. 2021;12:1154–1160. doi: 10.7150/jca.51537. PubMed DOI PMC

van Doeveren T. E. M., Karakullukçu M. B., van Veen R. L. P., Lopez-Yurda M., Schreuder W. H., Tan I. B.. Adjuvant photodynamic therapy in head and neck cancer after tumor-positive resection margins. Laryngoscope. 2018;128:657–663. doi: 10.1002/lary.26792. PubMed DOI

Ramsay D., Stevenson H., Jerjes W.. From Basic Mechanisms to Clinical Research: Photodynamic Therapy Applications in Head and Neck Malignancies and Vascular Anomalies. J. Clin. Med. 2021;10:4404. doi: 10.3390/jcm10194404. PubMed DOI PMC

Biel, M. A. Photodynamic Therapy of Head and Neck Cancers. In Photodynamic Therapy: Methods and Protocols; Gomer, C. J. , Ed.; Humana Press: Totowa, NJ, 2010; pp 281–293 ISBN 978–1-60761–697–9. 10.1007/978-1-60761-697-9_18. PubMed DOI

Moore C. M., Nathan T. R., Lees W. R., Mosse C. A., Freeman A., Emberton M., Bown S. G.. Photodynamic therapy using meso tetra hydroxy phenyl chlorin (mTHPC) in early prostate cancer. Laser Surg. Med. 2006;38:356–363. doi: 10.1002/lsm.20275. PubMed DOI

Nathan T. R., Whitelaw D. E., Chang S. C., Lees W. R., Ripley P. M., Payne H., Jones L., Parkinson M. C., Emberton M., Gillams A. R.. et al. Photodynamic Therapy for Prostate Cancer Recurrence After Radiotherapy: A Phase I Study. J. Urol. 2002;168:1427–1432. doi: 10.1016/S0022-5347(05)64466-7. PubMed DOI

Moore C. M., Pendse D., Emberton M.. Photodynamic therapy for prostate cancera review of current status and future promise. Nat. Clin. Pract. Urol. 2009;6:18–30. doi: 10.1038/ncpuro1274. PubMed DOI

Azzouzi A.-R., Vincendeau S., Barret E., Cicco A., Kleinclauss F., van der Poel H. G., Stief C. G., Rassweiler J., Salomon G., Solsona E.. et al. Padeliporfin vascular-targeted photodynamic therapy versus active surveillance in men with low-risk prostate cancer (CLIN1001 PCM301): an open-label, phase 3, randomised controlled trial. Lancet Oncol. 2017;18:181–191. doi: 10.1016/S1470-2045(16)30661-1. PubMed DOI

Morton C. A., Dominicus R., Radny P., Dirschka T., Hauschild A., Reinhold U., Aschoff R., Ulrich M., Keohane S., Ekanayake-Bohlig S.. et al. A randomized, multinational, noninferiority, phase III trial to evaluate the safety and efficacy of BF-200 aminolaevulinic acid gel vs. methyl aminolaevulinate cream in the treatment of nonaggressive basal cell carcinoma with photodynamic therapy. Br. J. Dermatol. 2018;179:309–319. doi: 10.1111/bjd.16441. PubMed DOI

De Rosa F. S., Bentley M. V. L. B.. Photodynamic Therapy of Skin Cancers: Sensitizers, Clinical Studies and Future Directives. Pharm. Res. 2000;17:1447–1455. doi: 10.1023/A:1007612905378. PubMed DOI

Kochneva E. V., Filonenko E. V., Vakulovskaya E. G., Scherbakova E. G., Seliverstov O. V., Markichev N. A., Reshetnickov A.. V Photosensitizer Radachlorin®: Skin cancer PDT phase II clinical trials. Photodiagnosis Photodyn. Ther. 2010;7:258–267. doi: 10.1016/j.pdpdt.2010.07.006. PubMed DOI

Arnaut, L. G. Design of porphyrin-based photosensitizers for photodynamic therapy. In Inorganic Photochemistry; van Eldik, R. , Stochel, G. , Eds.; Academic Press, 2011; Vol. 63, pp 187–233. 10.1016/B978-0-12-385904-4.00006-8.Advances in Inorganic Chemistry DOI

Lang K., Mosinger J., Wagnerová D. M.. Photophysical properties of porphyrinoid sensitizers non-covalently bound to host molecules; models for photodynamic therapy. Coord. Chem. Rev. 2004;248:321–350. doi: 10.1016/j.ccr.2004.02.004. DOI

Lan M., Zhao S., Liu W., Lee C.-S., Zhang W., Wang P.. Photosensitizers for Photodynamic Therapy. Adv. Healthc Mater. 2019;8:1900132. doi: 10.1002/adhm.201900132. PubMed DOI

Zhang Y., Lovell J. F.. Porphyrins as Theranostic Agents from Prehistoric to Modern Times. Theranostics. 2012;2:905–915. doi: 10.7150/thno.4908. PubMed DOI PMC

Janas K., Boniewska-Bernacka E., Dyrda G., Słota R.. Porphyrin and phthalocyanine photosensitizers designed for targeted photodynamic therapy of colorectal cancer. Bioorg. Med. Chem. 2021;30:115926. doi: 10.1016/j.bmc.2020.115926. PubMed DOI

Correia J. H., Rodrigues J. A., Pimenta S., Dong T., Yang Z.. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics. 2021;13:1332. doi: 10.3390/pharmaceutics13091332. PubMed DOI PMC

Donohoe C., Senge M. O., Arnaut L. G., Gomes-da-Silva L. C.. Cell death in photodynamic therapy: From oxidative stress to anti-tumor immunity. Biochim. Biophys. Acta Rev. Cancer. 2019;1872:188308. doi: 10.1016/j.bbcan.2019.07.003. PubMed DOI

Calixto G. M. F., Bernegossi J., De Freitas L. M., Fontana C. R., Chorilli M.. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review. Molecules. 2016;21:342. doi: 10.3390/molecules21030342. PubMed DOI PMC

Xu D., Duan Q., Yu H., Dong W.. Photodynamic therapy based on porphyrin-based metal–organic frameworks. J. Mater. Chem. B. 2023;11:5976–5989. doi: 10.1039/D2TB02789E. PubMed DOI

Moreira L., Vieira dos Santos F., Lyon J., Maftoum Costa M., Pacheco Soares C., Soares da Silva N.. Photodynamic Therapy: Porphyrins and Phthalocyanines as Photosensitizers. Aust. J. Chem. 2008;61:741–754. doi: 10.1071/CH08145. DOI

Park J., Lee Y.-K., Park I.-K., Hwang S. R.. Current Limitations and Recent Progress in Nanomedicine for Clinically Available Photodynamic Therapy. Biomedicines. 2021;9:85. doi: 10.3390/biomedicines9010085. PubMed DOI PMC

Baskin J., Yu H.-Z., Zewail A.. Ultrafast Dynamics of Porphyrins in the Condensed Phase: I. Free Base Tetraphenylporphyrin†. J. Phys. Chem. A. 2002;106:9837. doi: 10.1021/jp020398g. PubMed DOI

Gouterman, M. 1 - Optical Spectra and Electronic Structure of Porphyrins and Related Rings. In Physical Chemistry, Part A; Elsevier Inc, 1978; pp 1–165 ISBN 0323143903.

Gouterman M., Khalil G.-E.. Porphyrin free base phosphorescence. J. Mol. Spectrosc. 1974;53:88–100. doi: 10.1016/0022-2852(74)90263-X. DOI

Taniguchi M., Lindsey J. S., Bocian D. F., Holten D.. Comprehensive review of photophysical parameters (ε, Φf, τs) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP) – Critical benchmark molecules in photochemistry and photosynthesis. J. Photochem. Photobiol., C. 2021;46:100401. doi: 10.1016/j.jphotochemrev.2020.100401. DOI

Debele T. A., Peng S., Tsai H. C.. Drug Carrier for Photodynamic Cancer Therapy. Int. J. Mol. Sci. 2015;16:22094. doi: 10.3390/ijms160922094. PubMed DOI PMC

Konan Y. N., Gurny R., Allémann E.. State of the art in the delivery of photosensitizers for photodynamic therapy. J. Photochem. Photobiol., B. 2002;66:89–106. doi: 10.1016/S1011-1344(01)00267-6. PubMed DOI

Iyer A. K., Khaled G., Fang J., Maeda H.. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today. 2006;11:812–818. doi: 10.1016/j.drudis.2006.07.005. PubMed DOI

Maeda H.. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliv. Rev. 2015;91:3–6. doi: 10.1016/j.addr.2015.01.002. PubMed DOI

Gunaydin G., Gedik M. E., Ayan S.. Photodynamic TherapyCurrent Limitations and Novel Approaches. Front. Chem. 2021;9:691697. doi: 10.3389/fchem.2021.691697. PubMed DOI PMC

Cuadrado C. F., Lagos K. J., Stringasci M. D., Bagnato V. S., Romero M. P.. Clinical and pre-clinical advances in the PDT/PTT strategy for diagnosis and treatment of cancer. Photodiagnosis Photodyn. Ther. 2024;50:104387. doi: 10.1016/j.pdpdt.2024.104387. PubMed DOI

Seymour L. W., Ferry D. R., Kerr D. J., Rea D., Whitlock M., Poyner R., Boivin C., Hesselewood S., Twelves C., Blackie R.. et al. Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int. J. Oncol. 2009;34:1629–1636. doi: 10.3892/ijo_00000293. PubMed DOI

Dozono H., Yanazume S., Nakamura H., Etrych T., Chytil P., Ulbrich K., Fang J., Arimura T., Douchi T., Kobayashi H.. et al. HPMA Copolymer-Conjugated Pirarubicin in Multimodal Treatment of a Patient with Stage IV Prostate Cancer and Extensive Lung and Bone Metastases. Targeted Oncol. 2016;11:101–106. doi: 10.1007/s11523-015-0379-4. PubMed DOI

Fang J., Šubr V., Islam W., Hackbarth S., Islam R., Etrych T., Ulbrich K., Maeda H.. N-(2-hydroxypropyl)­methacrylamide polymer conjugated pyropheophorbide-a, a promising tumor-targeted theranostic probe for photodynamic therapy and imaging. Eur. J. Pharm. Biopharm. 2018;130:165–176. doi: 10.1016/j.ejpb.2018.06.005. PubMed DOI

Tavares M. R., Islam R., Šubr V., Hackbarth S., Gao S., Yang K., Lobaz V., Fang J., Etrych T.. Polymer theranostics with multiple stimuli-based activation of photodynamic therapy and tumor imaging. Theranostics. 2023;13:4952–4973. doi: 10.7150/thno.86211. PubMed DOI PMC

Fang J., Gao S., Islam R., Nema H., Yanagibashi R., Yoneda N., Watanabe N., Yasuda Y., Nuita N., Zhou J.-R.. et al. Styrene Maleic Acid Copolymer-Based Micellar Formation of Temoporfin (SMA@ mTHPC) Behaves as A Nanoprobe for Tumor-Targeted Photodynamic Therapy with A Superior Safety. Biomedicines. 2021;9:1493. doi: 10.3390/biomedicines9101493. PubMed DOI PMC

Nakamura H., Liao L., Hitaka Y., Tsukigawa K., Subr V., Fang J., Ulbrich K., Maeda H.. Micelles of zinc protoporphyrin conjugated to N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer for imaging and light-induced antitumor effects in vivo. J. Controlled Release. 2013;165:191–198. doi: 10.1016/j.jconrel.2012.11.017. PubMed DOI

Gadde S., Islam D.-M. S., Wijesinghe C. A., Subbaiyan N. K., Zandler M. E., Araki Y., Ito O., D’Souza F.. Light-Induced Electron Transfer of a Supramolecular Bis­(Zinc Porphyrin)–Fullerene Triad Constructed via a Diacetylamidopyridine/Uracil Hydrogen-Bonding Motif. J. Phys. Chem. C. 2007;111:12500–12503. doi: 10.1021/jp073918m. DOI

Ulbrich K., Šubr V., Strohalm J., Plocová D., Jelínková M., Říhová B.. Polymeric drugs based on conjugates of synthetic and natural macromolecules: I. Synthesis and physico-chemical characterisation. J. Controlled Release. 2000;64:63–79. doi: 10.1016/S0168-3659(99)00141-8. PubMed DOI

Šubr V., Sivák L., Koziolová E., Braunová A., Pechar M., Strohalm J., Kabešová M., Říhová B., Ulbrich K., Kovář M.. Synthesis of Poly­[N-(2-hydroxypropyl)­methacrylamide] Conjugates of Inhibitors of the ABC Transporter That Overcome Multidrug Resistance in Doxorubicin-Resistant P388 Cells in Vitro. Biomacromolecules. 2014;15:3030–3043. doi: 10.1021/bm500649q. PubMed DOI

Ishitake K., Satoh K., Kamigaito M., Okamoto Y.. Stereogradient Polymers Formed by Controlled/Living Radical Polymerization of Bulky Methacrylate Monomers. Angew. Chem., Int. Ed. 2009;48:1991–1994. doi: 10.1002/anie.200805168. PubMed DOI

Etrych T., Jelínková M., Říhová B., Ulbrich K.. New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: synthesis and preliminary in vitro and in vivo biological properties. J. Controlled Release. 2001;73:89–102. doi: 10.1016/S0168-3659(01)00281-4. PubMed DOI

Mosmann T.. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI

Pramanik G., Kvakova K., Thottappali M. A., Rais D., Pfleger J., Greben M., El-Zoka A., Bals S., Dracinsky M., Valenta J.. et al. Inverse heavy-atom effect in near infrared photoluminescent gold nanoclusters. Nanoscale. 2021;13:10462–10467. doi: 10.1039/D1NR02440J. PubMed DOI

Etrych T., Šubr V., Strohalm J., Šírová M., Říhová B., Ulbrich K.. HPMA copolymer-doxorubicin conjugates: The effects of molecular weight and architecture on biodistribution and in vivo activity. J. Controlled Release. 2012;164:346–354. doi: 10.1016/j.jconrel.2012.06.029. PubMed DOI

Spadin F. S., Gergely L. P., Kämpfer T., Frenz M., Vermathen M.. Fluorescence lifetime imaging and phasor analysis of intracellular porphyrinic photosensitizers applied with different polymeric formulations. J. Photochem. Photobiol., B. 2024;254:112904. doi: 10.1016/j.jphotobiol.2024.112904. PubMed DOI

Pavani C., Uchoa A. F., Oliveira C. S., Iamamoto Y., Baptista M. S.. Effect of zinc insertion and hydrophobicity on the membrane interactions and PDT activity of porphyrin photosensitizers. Photochem. Photobiol. Sci. 2009;8:233–240. doi: 10.1039/b810313e. PubMed DOI

Castano A. P., Demidova T. N., Hamblin M. R.. Mechanisms in photodynamic therapy: part onephotosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn. Ther. 2004;1:279–293. doi: 10.1016/S1572-1000(05)00007-4. PubMed DOI PMC

Nelemans L. C., Gurevich L.. Drug Delivery with Polymeric NanocarriersCellular Uptake Mechanisms. Materials. 2020;13:366. doi: 10.3390/ma13020366. PubMed DOI PMC

Kumar Panigrahi S., Kumar Mishra A.. Inner filter effect in fluorescence spectroscopy: As a problem and as a solution. J. Photochem. Photobiol., C. 2019;41:100318. doi: 10.1016/j.jphotochemrev.2019.100318. DOI

Weitner T., Friganović T., Šakić D.. Inner Filter Effect Correction for Fluorescence Measurements in Microplates Using Variable Vertical Axis Focus. Anal. Chem. 2022;94:7107–7114. doi: 10.1021/acs.analchem.2c01031. PubMed DOI PMC

Arudi R. L., O Allen A., H J Bielski B.. Some observations on the chemistry of KO2DMSO solutions. FEBS Lett. 1981;135:265–267. doi: 10.1016/0014-5793(81)80797-1. DOI

Levin P. P., Costa S., Lopes J., Serralha M. d. F., Ribeiro F. R.. Effect of zeolite properties on ground-state and triplet-triplet absorption, prompt and oxygen induced delayed fluorescence of tetraphenylporphyrin at gas/solid interface. Spectrochim. Acta, Part A. 2000;56:1745–1757. doi: 10.1016/S1386-1425(00)00232-8. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...