The TCR and LCK: foundations for T-cell activation and therapeutic innovation
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
41601693
PubMed Central
PMC12832860
DOI
10.3389/fimmu.2025.1737013
Knihovny.cz E-zdroje
- Klíčová slova
- Lck, T cells, TCR - T cell receptor, immunotherapy, signaling,
- MeSH
- aktivace lymfocytů * imunologie MeSH
- chimerické antigenní receptory imunologie MeSH
- imunoterapie adoptivní metody MeSH
- lidé MeSH
- receptory antigenů T-buněk * metabolismus imunologie MeSH
- signální transdukce imunologie MeSH
- T-lymfocyty * imunologie metabolismus MeSH
- tyrosinkinasa p56(lck), specifická pro lymfocyty * metabolismus imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- chimerické antigenní receptory MeSH
- LCK protein, human MeSH Prohlížeč
- receptory antigenů T-buněk * MeSH
- tyrosinkinasa p56(lck), specifická pro lymfocyty * MeSH
The T cell receptor (TCR)-CD3 complex is crucial to adaptive immunity, driving antigen recognition and intracellular signaling cascades. CD3 subunits harbor key cytoplasmic motifs that recruit signaling proteins like LCK. While distal αβ TCR signaling is well-understood, gaps persist in our understanding of proximal signaling, particularly the roles of free versus co-receptor CD4 or CD8-associated LCK and their impact on antigen sensitivity and activation thresholds. In contrast to αβ T cells, γδ T cells recognize diverse antigens, often independently of MHC or MHC-like molecules. Despite their shared CD3 signaling components, the proximal signaling mechanisms of γδ T cells remain poorly characterized, raising important questions about their activation pathways and kinase dependencies. Addressing these gaps is essential to unlock the unique therapeutic potential of γδ T cells in cancer immunotherapy. Recent advances in engineered T-cell therapies demonstrate how proximal TCR signaling can be leveraged for therapeutic innovation. Chimeric antigen receptor (CAR) and chimeric-TCR designs that incorporate specific CD3 signaling motifs have shown improved anti-tumor activity, reduced exhaustion, and enhanced persistence, reflecting a shift beyond traditional ζ chain-dominated designs. In parallel, emerging small-molecule modulators targeting early TCR events offer new strategies to tune pathogenic T-cell responses in autoimmunity or to reset exhausted CAR T cells. This review explores the critical roles of CD3 motifs and LCK in TCR activation, with a focus on the underexplored γδ T cells. We also discuss how these insights could drive next-generation cancer immunotherapies and novel treatments for autoimmune diseases and immunopathologies.
Centre for Chronic Immunodeficiency Faculty of Medicine University of Freiburg Freiburg Germany
Department of Synthetic Immunology Faculty of Biology University of Freiburg Freiburg Germany
Faculty of Science Charles University Prague Prague Czechia
Signaling Research Centers BIOSS and CIBSS University of Freiburg Freiburg Germany
Zobrazit více v PubMed
Wu W, Zhou Q, Masubuchi T, Shi X, Li H, Xu X, et al. Multiple signaling roles of CD3ϵ and its application in CAR-T cell therapy. Cell. (2020) 182:855–871.e23. doi: 10.1016/j.cell.2020.07.018, PMID: PubMed DOI
Hartl FA, Beck-Garcìa E, Woessner NM, Flachsmann LJ, Cárdenas R. M.-H. V., Brandl SM, et al. Noncanonical binding of Lck to CD3ϵ promotes TCR signaling and CAR function. Nat Immunol. (2020) 21:902–13. doi: 10.1038/s41590-020-0732-3, PMID: PubMed DOI
Velasco Cárdenas RMH, Brandl S, Meléndez AV, Schlaak EA, Buschky A, Peters T, et al. Harnessing CD3 diversity to optimise CAR T cells. Nat Immunol. (2023) 24:2135–2149. doi: 10.1038/s41590-023-01658-z, PMID: PubMed DOI PMC
Minguet S, Maus MV, Schamel WW. From TCR fundamental research to innovative chimeric antigen receptor design. Nat Rev Immunol. (2024) 25:212–224. doi: 10.1038/s41577-024-01093-7, PMID: PubMed DOI
Boggon TJ, Eck MJ. Structure and regulation of Src family kinases. Oncogene. (2004) 23:7918–27. doi: 10.1038/sj.onc.1208081, PMID: PubMed DOI
Palacios EH, Weiss A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene. (2004) 23:7990–8000. doi: 10.1038/sj.onc.1208074, PMID: PubMed DOI
Deseke M, Prinz I. Ligand recognition by the γδ TCR and discrimination between homeostasis and stress conditions. Cell Mol Immunol. (2020) 17:914–24. doi: 10.1038/s41423-020-0503-y, PMID: PubMed DOI PMC
Salter AI, Rajan A, Kennedy JJ, Ivey RG, Shelby SA, Leung I, et al. Comparative analysis of TCR and CAR signaling informs CAR designs with superior antigen sensitivity and PubMed DOI PMC
Borroto A, Reyes-Garau D, Jiménez MA, Carrasco E, Moreno B, Martínez-Pasamar S, et al. First-in-class inhibitor of the T cell receptor for the treatment of autoimmune diseases. Sci Transl Med. (2016) 8:370ra184–370ra184. doi: 10.1126/scitranslmed.aaf2140, PMID: PubMed DOI
Woessner NM, Chinestrad P, Rueckert T, Weiss L, Zintchenko M, Schaffer A-M, et al. and CAR activation by targeting LCK recruitment with a first-in-class small-molecule inhibitor. bioRxiv. (2025). doi: 10.64898/2025.12.10.693420 DOI
Weber EW, Lynn RC, Sotillo E, Lattin J, Xu P, Mackall CL. Pharmacologic control of CAR-T cell function using dasatinib. Blood Adv. (2019) 3:711–7. doi: 10.1182/bloodadvances.2018028720, PMID: PubMed DOI PMC
Weber EW, Parker KR, Sotillo E, Lynn RC, Anbunathan H, Lattin J, et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Sci (80-.). (2021) 372:eaba1786. doi: 10.1126/science.aba1786, PMID: PubMed DOI PMC
Song F, Tsahouridis O, Stucchi S, Walhart T, Mendell S, Hardy PB, et al. A multi-kinase inhibitor screen identifies inhibitors preserving stem-cell-like chimeric antigen receptor T cells. Nat Immunol. (2025) 26279–293. doi: 10.1038/s41590-024-02042-1, PMID: PubMed DOI PMC
Reth M. Antigen receptor tail clue. Nature. (1989) 338:383–4. doi: 10.1038/338383b0, PMID: PubMed DOI
Osman N, Turner H, Lucas S, Reif K, Cantrell DA. The protein interactions of the immunoglobulin receptor family tyrosine-based activation motifs present in the T cell receptor t, subunits and the CD3 y,6 and E chains. Eur J Immunol. (1996) 26:1063–8. doi: 10.1002/eji.1830260516, PMID: PubMed DOI
Cambier JC. Antigen and Fc receptor signaling. The awesome power of the immunoreceptor tyrosine-based activation motif (ITAM). J Immunol. (1995) 155:3281–5. doi: 10.4049/jimmunol.155.7.3281, PMID: PubMed DOI
Guirado M, De Aós I, Orta T, Sancho J, Rivas L, Terhorst C, et al. Phosphorylation of the N-terminal and C-terminal CD3-ϵ-ITAM tyrosines is differentially regulated in T cells. Biochem Biophys Res Commun. (2002) 291:574–81. doi: 10.1006/bbrc.2002.6492, PMID: PubMed DOI
Woessner NM, Brandl SM, Hartmann S, Schamel WW, Hartl FA, Minguet S. Phospho-mimetic CD3 e variants prevent TCR and CAR signaling. Front Immunol. (2024) 15:1–14. doi: 10.3389/fimmu.2024.1392933, PMID: PubMed DOI PMC
Weiss A, Littman DR. Signal transduction by lymphocyte antigen receptors. Nature. (1994) 76:263–74. doi: 10.1016/0092-8674(94)90334-4, PMID: PubMed DOI
Berry R, Call ME. Modular activating receptors in innate and adaptive immunity. Biochemistry. (2017) 56:1383–402. doi: 10.1021/acs.biochem.6b01291, PMID: PubMed DOI
Irvine DJ, Purbhoo MA, Krogsgaard M, Davis MM. Direct observation of ligand recognition by T cells. Nature. (2002) 419:845–9. doi: 10.1038/nature01076, PMID: PubMed DOI
Purbhoo MA, Irvine DJ, Huppa JB, Davis MM. T cell killing does not require the formation of a stable mature immunological synapse. Nat Immunol. (2004) 5:524–30. doi: 10.1038/ni1058, PMID: PubMed DOI
Holst J, Wang H, Eder KD, Workman CJ, Boyd KL, Baquet Z, et al. Scalable signaling mediated by T cell antigen receptor-CD3 ITAMs ensures effective negative selection and prevents autoimmunity. Nat Immunol. (2008) 9:658–66. doi: 10.1038/ni.1611, PMID: PubMed DOI
Gaud G, Achar S, Bourassa FXP, Davies J, Hatzihristidis T, Choi S, et al. CD3ζ ITAMs enable ligand discrimination and antagonism by inhibiting TCR signaling in response to low-affinity peptides. Nature Immunol. (2023) 24:2121–2134. doi: 10.1038/s41590-023-01663-2, PMID: PubMed DOI PMC
Bettini ML, Chou P-C, Guy CS, Lee T, Vignali KM, Vignali DAA. Cutting edge: CD3 ITAM diversity is required for optimal TCR signaling and thymocyte development. J Immunol. (2017) 199:1555–60. doi: 10.4049/jimmunol.1700069, PMID: PubMed DOI PMC
Shi X, He X, Xu C. Charge-based immunoreceptor signalling in health and disease. Nat Rev Immunol. (2024) 25:298–311. doi: 10.1038/s41577-024-01105-6, PMID: PubMed DOI
Sigalov AB, Aivazian DA, Uversky VN, Stern LJ. Lipid-binding activity of intrinsically unstructured cytoplasmic domains of multichain immune recognition receptor signaling subunits. Biochemistry. (2006) 51:15731–9. doi: 10.1021/bi061108f, PMID: PubMed DOI PMC
Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nat Immunol. (2008) 9:361–8. doi: 10.1038/ni1569, PMID: PubMed DOI PMC
Liou J, Kim ML, Won DH, Jones JT, Myers JW, Ferrell JE, et al. STIM is a Ca2+ sensor essential for Ca2+-store- depletion-triggered Ca2+ influx. Curr Biol. (2005) 15:1235–41. doi: 10.1016/j.cub.2005.05.055, PMID: PubMed DOI PMC
DeFord-Watts LM, Young JA, Pitcher LA, Van Oers NSC. The membrane-proximal portion of CD3 ϵ associates with the serine/threonine kinase GRK2. J Biol Chem. (2007) 282:16126–34. doi: 10.1074/jbc.M609418200, PMID: PubMed DOI
DeFord-Watts LM, Tassin TC, Becker AM, Medeiros JJ, Albanesi JP, Love PE, et al. The cytoplasmic tail of the T cell receptor CD3 subunit contains a phospholipid-binding motif that regulates T cell functions. J Immunol. (2009) 183:1055–64. doi: 10.4049/jimmunol.0900404, PMID: PubMed DOI PMC
DeFord-Watts LM, Dougall DS, Belkaya S, Johnson BA, Eitson JL, Roybal KT, et al. The CD3 ζ subunit contains a phosphoinositide-binding motif that is required for the stable accumulation of TCR/CD3 c1. Walker, M., J.G. Kublin, and J.R. Zunt. 2011. The CD3 ζ subunit contains a phosphoinositide-binding motif that is required for the stab. J Immunol. (2011) 42:115–25. doi: 10.4049/jimmunol.1002721, PMID: PubMed DOI PMC
Aivazian D, Stern LJ. Phosphorylation of T cell receptor ζ is regulated by a lipid dependent folding transition. Nat Struct Biol. (2000) 7:1023–6. doi: 10.1038/80930, PMID: PubMed DOI
Kuhns MS, Davis MM. The safety on the TCR trigger. Cell. (2008) 135:594–6. doi: 10.1016/j.cell.2008.10.033, PMID: PubMed DOI PMC
Xu C, Gagnon E, Call ME, Schnell JR, Schwieters CD, Carman CV, et al. Regulation of T cell receptor activation by dynamic membrane binding of the CD3ϵ Cytoplasmic tyrosine-based motif. Cell. (2008) 135:702–13. doi: 10.1016/j.cell.2008.09.044, PMID: PubMed DOI PMC
Lee MS, Glassman CR, Deshpande NR, Badgandi HB, Parrish HL, Uttamapinant C, et al. A mechanical switch couples T cell receptor triggering to the cytoplasmic juxtamembrane regions of CD3ζζ. Immunity. (2015) 43:227–39. doi: 10.1016/j.immuni.2015.06.018, PMID: PubMed DOI PMC
Zhang H, Cordoba S-P, Dushek O, van der Merwe PA. Basic residues in the T-cell receptor ζ cytoplasmic domain mediate membrane association and modulate signaling. Proc Natl Acad Sci U. S. A. (2011) 108:19323–8. doi: 10.1073/pnas.1108052108, PMID: PubMed DOI PMC
Bettini ML, Guy C, Dash P, Vignail KM, Hamm DE, Dobbins J, et al. Membrane association of the CD3ϵ signaling domain is required for optimal T cell development and function. J Immunol. (2014) 23:258–67. doi: 10.4049/jimmunol.1400322, PMID: PubMed DOI PMC
Yamazaki T, Hamano Y, Tashiro H, Itoh K, Nakano H, Miyatake S, et al. CAST, a novel CD3ϵ-binding protein transducing activation signal for interleukin-2 production in T cells. J Biol Chem. (1999) 274:18173–80. doi: 10.1074/jbc.274.26.18173, PMID: PubMed DOI
Li X, Shi X, Li C, Wu W, Yan C, Wang H, et al. Ionic CD3–Lck interaction regulates the initiation of T-cell receptor signaling. Proc Natl Acad Sci U. S. A. (2017) 114:E5891–9. doi: 10.1073/pnas.1701990114, PMID: PubMed DOI PMC
Gil D, Schamel WWA, Montoya M, Sánchez-Madrid F, Alarcón B. Recruitment of Nck by CD3 epsilon reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell. (2002) 109:901–12. doi: 10.1016/S0092-8674(02)00799-7, PMID: PubMed DOI
Hartl FA, Ngoenkam J, Beck-Garcìa E, Cerqueirs L, Wipa P, Paensuwan P, et al. Cooperative interaction of nck and lck orchestrates optimal TCR sgnaling. Cells. (2021) 10:834. doi: 10.3390/cells10040834, PMID: PubMed DOI PMC
Martin-Blanco N, Teja DJ, Bretones G, Borroto A, Caraballo M, Screpanti I, et al. CD3ϵ recruits Numb to promote TCR degradation. Int Immunol. (2016) 28:127–37. doi: 10.1093/intimm/dxv060, PMID: PubMed DOI
Kesti T, Ruppelt A, Wang J-H, Liss M, Wagner R, Taskén K, et al. Reciprocal regulation of SH3 and SH2 domain binding via tyrosine phosphorylation of a common site in CD3ϵ. J Immunol. (2007) 179:878–85. doi: 10.4049/jimmunol.179.2.878, PMID: PubMed DOI
Mingueneau M, Sansoni A, Grégoire C, Roncagalli R, Aguado E, Weiss A, et al. The proline-rich sequence of CD3ϵ controls T cell antigen receptor expression on and signaling potency in preselection CD4+CD8+ thymocytes. Nat Immunol. (2008) 9:522–32. doi: 10.1038/ni.1608, PMID: PubMed DOI
Borroto A, Arellano I, Dopfer EP, Prouza M, Suchànek M, Fuentes M, et al. Nck recruitment to the TCR required for ZAP70 activation during thymic development. J Immunol. (2013) 190:1103–12. doi: 10.4049/jimmunol.1202055, PMID: PubMed DOI PMC
Tailor P, Tsai S, Shameli A, Serra P, Wang J, Robbins S, et al. The proline-rich sequence of CD3 as an amplifier of low-avidity TCR signaling. J Immunol. (2008) 181:243–55. doi: 10.4049/jimmunol.181.1.243, PMID: PubMed DOI PMC
Roy E, Togbe D, Holdorf AD, Trubetskoy D, Nabti S, Küblbeck G, et al. Nck adaptors are positive regulators of the size and sensitivity of the T-cell repertoire. Proc Natl Acad Sci U. S. A. (2010) 107:15529–34. doi: 10.1073/pnas.1009743107, PMID: PubMed DOI PMC
Van Oers NSC, Lowin-Kropf B, Finlay D, Connolly K, Weiss A. αβ T cell development is abolished in mice lacking both Lck and Fyn protein tyrosine kinases. Immunity. (1996) 5:429–36. doi: 10.1016/S1074-7613(00)80499-9, PMID: PubMed DOI
Groves T, Smiley P, Cooke MP, Forbush K, Perlmutter RM, Guidos CJ. Fyn can partially substitute for Lck in T lymphocyte development. Immunity. (1996) 5:417–28. doi: 10.1016/S1074-7613(00)80498-7, PMID: PubMed DOI
Kang H, Freund C, Duke-Cohan JS, Musacchio A, Wagner G, Rudd CE. SH3 domain recognition of a proline-independent tyrosine-based RKxxYxxY motif in immune cell adaptor SKAP55. EMBO J. (2000) 19:2889–99. doi: 10.1093/emboj/19.12.2889, PMID: PubMed DOI PMC
Gkourtsa A, van den Burg J, Avula T, Hochstenbach F, Distel B. Binding of a proline-independent hydrophobic motif by the Candida albicans Rvs167–3 SH3 domain. Microbiol Res. (2016) 190:27–36. doi: 10.1016/j.micres.2016.04.018, PMID: PubMed DOI
Brodeur JF, Li S, Damlaj O, Dave VP. Expression of fully assembled TCR-CD3 complex on double positive thymocytes: Synergistic role for the PRS and ER retention motifs in the intra-cytoplasmic tail of CD3ϵ. Int Immunol. (2009) 21:1317–27. doi: 10.1093/intimm/dxp098, PMID: PubMed DOI
Delgado P, Alarcón B. An orderly inactivation of intracellular retention signals controls surface expression of the T cell antigen receptor. J Exp Med. (2005) 201:555–66. doi: 10.1084/jem.20041133, PMID: PubMed DOI PMC
Dietrich J, Hou X, Wegener AM, Geisler C. CD3 gamma contains a phosphoserine-dependent di-leucine motif involved in down-regulation of the T cell receptor. EMBO J. (1994) 13:2156–66. doi: 10.1002/j.1460-2075.1994.tb06492.x, PMID: PubMed DOI PMC
von Essen M, Menne C, Nielsen BL, Lauritsen JPH, Dietrich J, Andersen PS, et al. The CD3 leucine-based receptor-sorting motif is required for efficient ligand-mediated TCR down-regulation. J Immunol. (2002) 168:4519–23. doi: 10.4049/jimmunol.168.9.4519, PMID: PubMed DOI
Boding L, Bonefeld CM, Nielsen BL, Lauritsen JPH, von Essen MR, Hansen AK, et al. TCR down-regulation controls T cell homeostasis. J Immunol. (2009) 183:4994–5005. doi: 10.4049/jimmunol.0901539, PMID: PubMed DOI
Bonefeld CM, Haks M, Nielsen B, von Essen M, Boding L, Hansen AK, et al. TCR down-regulation controls virus-specific CD8+ T cell responses. J Immunol. (2009) 181:7786–99. doi: 10.4049/jimmunol.181.11.7786, PMID: PubMed DOI
Schamel W, Alarcon B, Höfer T, Minguet S. The allostery model of TCR regulation. J Immunol. (2017) 198:47–52. doi: 10.4049/jimmunol.1601661, PMID: PubMed DOI
Courtney AH, Lo WL, Weiss A. TCR signaling: mechanisms of initiation and propagation. Trends Biochem Sci. (2018) 43:108–23. doi: 10.1016/j.tibs.2017.11.008, PMID: PubMed DOI PMC
Chang VT, Fernandes RA, Ganzinger KA, Lee SF, Siebold C, McColl J, et al. Initiation of T cell signaling by CD45 segregation at “close contacts. Nat Immunol. (2016) 17:574–82. doi: 10.1038/ni.3392, PMID: PubMed DOI PMC
Schamel WW, Alarcon B, Minguet S. The TCR is an allosterically regulated macromolecular machinery changing its conformation while working. Immunol Rev. (2019) 291:8–25. doi: 10.1111/imr.12788, PMID: PubMed DOI
Alarcon B, Schamel WW. Allosteric changes underlie the outside-in transmission of activatory signals in the TCR. Immunol Rev. (2025) 329:1–11. doi: 10.1111/imr.13438, PMID: PubMed DOI
Notti RQ, Yi F, Heissel S, Bush MW, Molvi Z, Das P, et al. The resting and ligand-bound states of the membrane-embedded human T-cell receptor– CD3 complex. bioRxiv. Nature Communications. (2024) 16:1–58. doi: 10.1038/s41467-025-66939-7, PMID: PubMed DOI PMC
van Eerden FJ, Sherif AA, Llamas-Covarrubias MA, Millius A, Lu X, Ishizuka S, et al. TCR-pMHC complex formation triggers CD3 dynamics. Elife. (2023) 12:1–35. doi: 10.7554/eLife.88065.1 DOI
Dong D, Zheng L, Lin J, Zhang B, Zhu Y, Li N, et al. Structural basis of assembly of the human T cell receptor–CD3 complex. Nature. (2019) 573:546–52. doi: 10.1038/s41586-019-1537-0, PMID: PubMed DOI
Chen Y, Zhu Y, Li X, Gao W, Zhen Z, Dong D, et al. Cholesterol inhibits TCR signaling by directly restricting TCR-CD3 core tunnel motility. Mol Cell. (2022) 82:1–10. doi: 10.1016/j.molcel.2022.02.017, PMID: PubMed DOI
Sušac L, Vuong MT, Thomas C, von Bülow S, O’Brien-Ball C, Santos AM, et al. Structure of a fully assembled tumor-specific T cell receptor ligated by pMHC. Cell. (2022) 185:3201–3213.e19. doi: 10.1016/j.cell.2022.07.010, PMID: PubMed DOI PMC
Saotome K, Dudgeon D, Colotti K, Moore MJ, Jones J, Zhou Y, et al. Structural analysis of cancer-relevant TCR-CD3 and peptide-MHC complexes by cryoEM. Nat Commun. (2023) 14:2401. doi: 10.1038/s41467-023-37532-7, PMID: PubMed DOI PMC
Prakaash D, Cook GP, Acuto O, Kalli AC. Multi-scale simulations of the T cell receptor reveal its lipid interactions, dynamics and the arrangement of its cytoplasmic region. PLoS Comput Biol. (2021) 17:1–22. doi: 10.1371/journal.pcbi.1009232, PMID: PubMed DOI PMC
Chouaki-Benmansour N, Ruminski K, Sartre AM, Phelipot MC, Salles A, Bergot E, et al. Phosphoinositides regulate the TCR/CD3 complex membrane dynamics and activation. Sci Rep. (2018) 8:1–16. doi: 10.1038/s41598-018-23109-8, PMID: PubMed DOI PMC
Swamy M, Beck-Garcia K, Beck-Garcia E, Hartl FA, Morath A, Yousefi OS, et al. Article A cholesterol-based allostery model of T cell receptor phosphorylation article A cholesterol-based allostery model of T cell receptor phosphorylation. Immunity. (2016) 44:1091–101. doi: 10.1016/j.immuni.2016.04.011, PMID: PubMed DOI
Wang F, Beck-García K, Zorzin C, Schamel WWA, Davis MM. Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol. Nat Immunol. (2016) 17:844–50. doi: 10.1038/ni.3462, PMID: PubMed DOI PMC
Kersh EN, Shaw AS, Allen PM. Fidelity of T cell activation through multistep T cell receptor ζ phosphorylation. Sci (80-.). (1998) 281:572–5. doi: 10.1126/science.281.5376.572, PMID: PubMed DOI
McNeill L, Salmond RJ, Cooper JC, Carret CK, Cassady-Cain RL, Roche-Molina M, et al. The differential regulation of lck kinase phosphorylation sites by CD45 is critical for T cell receptor signaling responses. Immunity. (2007) 27:425–37. doi: 10.1016/j.immuni.2007.07.015, PMID: PubMed DOI
Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol. (2006) 24:419–66. doi: 10.1146/annurev.immunol.23.021704.115658, PMID: PubMed DOI
Xu X, Li H, Xu C. Structural understanding of T cell receptor triggering. Cell Mol Immunol. (2020) 17:193–202. doi: 10.1038/s41423-020-0367-1, PMID: PubMed DOI PMC
Risueño RM, Gil D, Fernández E, Sánchez-Madrid F, Alarcón B. Ligand-induced conformational change in the T-cell receptor associated with productive immune synapses. Blood. (2005) 106:601–8. doi: 10.1182/blood-2004-12-4763, PMID: PubMed DOI
Martínez-Martín N, Risueño RM, Morreale A, Zaldívar I, Fernández-Arenas E, Herranz F, et al. Immunology: Cooperativity between T cell receptor complexes revealed by conformational mutants of CD3ϵ. Sci Signal. (2009) 2:1–12. doi: 10.1126/scisignal.2000402, PMID: PubMed DOI
Minguet S, Swamy M, Alarcón B, Luescher IF, Schamel WWA. Full activation of the T cell receptor requires both clustering and conformational changes at CD3. Immunity. (2007) 26:43–54. doi: 10.1016/j.immuni.2006.10.019, PMID: PubMed DOI
Sibener LV, Fernandes RA, Kolawole EM, Carbone CB, Liu F, Mcaffee D, et al. Isolation and visualization of a structural trigger that uncouples TCR signaling from pMHC binding. Cell. (2018) 174:672–87. doi: 10.1016/j.cell.2018.06.017, PMID: PubMed DOI PMC
Liu Y, Blanchfield L, Pui-Yan Ma V, Andargachew R, Galior K, Liu Z, et al. DNA-based nanoparticle tension sensors reveal that T-cell receptors transmit defined pN forces to their antigens for enhanced fidelity. Proc Natl Acad Sci U. S. A. (2016) 113:5610–5. doi: 10.1073/pnas.1600163113, PMID: PubMed DOI PMC
Rudd CE. How the discovery of the CD4/CD8-p56lck complexes changed immunology and immunotherapy. Front Cell Dev Biol. (2021) 9:1–20. doi: 10.3389/fcell.2021.626095, PMID: PubMed DOI PMC
Szymczak AL, Workman CJ, Gil D, Dilioglou S, Vignali KM, Palmer E, et al. The CD3 proline-rich sequence, and its interaction with nck, is not required for T cell development and function. J Immunol. (2005) 175:270–5. doi: 10.4049/jimmunol.175.1.270, PMID: PubMed DOI
Hem CD, Sundvold-Gjerstad V, Granum S, Koll L, Abrahamsen G, Buday L, et al. T cell specific adaptor protein (TSAd) promotes interaction of Nck with Lck and SLP-76 in T cells. Cell Commun Signal. (2015) 13:1–14. doi: 10.1186/s12964-015-0109-7, PMID: PubMed DOI PMC
Paensuwan P, Hartl FA, Yousefi OS, Ngoenkam J, Wipa P, Beck-Garcia E, et al. Nck binds to the T cell antigen receptor using its SH3.1 and SH2 domains in a cooperative manner, promoting TCR functioning. J Immunol. (2016) 196:4833–3. doi: 10.4049/jimmunol.1600551, PMID: PubMed DOI
Thome M, Germain V, Disanto JP. The p56lck SH2 domain mediates recruitment of CD8/p56lck to the activated T cell receptor/CD3/zeta complex. Eur J Immunol. (1996) 26:2093–100. doi: 10.1002/eji.1830260920, PMID: PubMed DOI
Thome M, Duplay P, Guttinger M, Acuto O. Syk and ZAP-70 mediate recruitment of p56lck/CD4 to the activated T cell receptor/CD3/ζ complex. J Exp Med. (1995) 181:1997–2006. doi: 10.1084/jem.181.6.1997, PMID: PubMed DOI PMC
Gao M, Skolnick J. Predicting protein interactions of the kinase Lck critical to T cell modulation. Structure. (2024) 32:2168–2179.e2. doi: 10.1016/j.str.2024.09.010, PMID: PubMed DOI PMC
Straus DB, Chan AC, Patai B, Weiss A. SH2 domain function is essential for the role of the Lck tyrosine kinase in T cell receptor signal transduction. J Biol Chem. (1996) 271:9976–81. doi: 10.1074/jbc.271.17.9976, PMID: PubMed DOI
Choudhuri K, Wiseman D, Brown MH, Gould K, van der Merwe PA. T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature. (2005) 436:578–82. doi: 10.1038/nature03843, PMID: PubMed DOI
Fernandes RA, Ganzinger KA, Tzou JC, Jönsson P, Lee SF, Palayret M, et al. A cell topography-based mechanism for ligand discrimination by the T cell receptor. Proc Natl Acad Sci U. S. A. (2019) 116:14002–10. doi: 10.1073/pnas.1817255116, PMID: PubMed DOI PMC
Davis SJ, van der Merwe PA. The kinetic-segregation model: TCR triggering and beyond. Nat Immunol. (2006) 7:803–9. doi: 10.1038/ni1369, PMID: PubMed DOI
Lin J, Weiss A. The tyrosine phosphatase CD148 is excluded from the immunologic synapse and down-regulates prolonged T cell signaling. J Cell Biol. (2003) 162:673–82. doi: 10.1083/jcb.200303040, PMID: PubMed DOI PMC
Chan AC, Irving BA, Fraser JD, Weiss A. The zeta chain is associated with a tyrosine kinase and upon T-cell antigen receptor stimulation associates with ZAP-70, a 70-kDa tyrosine phosphoprotein. Proc Natl Acad Sci U. S. A. (1991) 88:9166–70. doi: 10.1073/pnas.88.20.9166, PMID: PubMed DOI PMC
Wange RL, Malek SN, Desiderio S, Samelson LE. Tandem SH2 domains of ZAP-70 bind to T cell antigen receptor z and CD3e from activated jurkat T cells. J Biol Chem. (1993) 268:19797–801. doi: 10.1016/S0021-9258(19)36584-6, PMID: PubMed DOI
Isakov N, Wange RL, Burgess WH, Watts JD, Aebersold R, Samelson LE. ZAP-70 binding specificity to T cell receptor tyrosine-based activation motifs: the tandem SH2 domains of ZAP-70 bind distinct tyrosine-based activation motifs with varying affinity. J Exp Med. (1995) 182:20–2. doi: 10.1084/jem.181.1.375, PMID: PubMed DOI PMC
Zenner G, Vorherr T, Mustelin T, Burn P. Differential and multiple binding of signal transducing molecules to the ITAMs of the TCR-ζ chain. J Cell Biochem. (1996) 63:94–103. doi: 10.1002/(SICI)1097-4644(199610)63:1<94::AID-JCB8>3.0.CO;2-V, PMID: PubMed DOI
Love PE, Hayes SM. ITAM-mediated signaling by the T-cell antigen receptor. Cold Spring Harb. Perspect Biol. (2010) 2:1–11. doi: 10.1101/cshperspect.a002485, PMID: PubMed DOI PMC
Deindl S, Kadlecek TA, Brdicka T, Cao X, Weiss A, Kuriyan J. Structural basis for the inhibition of tyrosine kinase activity of ZAP-70. Cell. (2007) 129:735–46. doi: 10.1016/j.cell.2007.03.039, PMID: PubMed DOI
Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol. (2009) 27:591–619. doi: 10.1146/annurev.immunol.021908.132706, PMID: PubMed DOI PMC
Samelson LE. Signal transduction mediated by the T cell antigen receptor: the role of adaptor proteins. Annu Rev Pharmacol Toxicol. (2002) 20:371–94. doi: 10.1146/annurev.immunol.20.092601.111357, PMID: PubMed DOI
Wange RL, Samelson LE. Complex complexes: Signaling at the TCR. Immunity. (1996) 5:197–205. doi: 10.1016/S1074-7613(00)80315-5, PMID: PubMed DOI
McKeithan TW. Kinetic proofreading in T-cell receptor signal transduction. Proc Natl Acad Sci U. S. A. (1995) 92:5042–6. doi: 10.1073/pnas.92.11.5042, PMID: PubMed DOI PMC
Yousefi OS, Günther M, Hörner M, Chalupsky J, Wess M, Brandl SM, et al. Optogenetic control shows that kinetic proofreading regulates the activity of the t cell receptor. Elife. (2019) 8:1–33. doi: 10.7554/eLife.42475, PMID: PubMed DOI PMC
Shi X, Bi Y, Yang W, Guo X, Jiang Y, Wan C, et al. Ca 2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature. (2013) 493:111–5. doi: 10.1038/nature11699, PMID: PubMed DOI
Lanz AL, Masi G, Porciello N, Cohnen A, Cipria D, Prakaash D, et al. Allosteric activation of T cell antigen receptor signaling by quaternary structure relaxation. Cell Rep. (2021) 36:109375. doi: 10.1016/j.celrep.2021.109375, PMID: PubMed DOI PMC
Platzer R, Hellmeier J, Göhring J, Perez ID, Schatzlmaier P, Bodner C, et al. Monomeric agonist peptide/MHCII complexes activate T-cells in an autonomous fashion. EMBO Rep. (2023) 24:1–39. doi: 10.15252/embr.202357842, PMID: PubMed DOI PMC
Delon J, Grégoire C, Malissen B, Darche S, Lemaître F, Kourilsky P, et al. CD8 expression allows T cell signaling by monomeric peptide-MHC complexes. Immunity. (1998) 9:467–73. doi: 10.1016/S1074-7613(00)80630-5, PMID: PubMed DOI
Cochran JR, Aivazian D, Cameron TO, Stern LJ. Receptor clustering and transmembrane signaling in T cells. Trends Biochem Sci. (2001) 26:304–10. doi: 10.1016/S0968-0004(01)01815-1, PMID: PubMed DOI
Boniface JJ, Rabinowtiz JD, Wulfing C, Hampi J, Reich Z, Altman JD, et al. Erratum: Initiation of signal transduction through the T cell receptor requires the multivalent engagement of peptide/MHC ligands (Immunity 9 (459- 466)). Immunity. (1998) 9:891. doi: 10.1016/S1074-7613(00)80629-9, PMID: PubMed DOI
Filby A, Seddon B, Kleczkowska J, Salmond R, Tomlinson P, Smida M, et al. Fyn regulates the duration of TCR engagement needed for commitment to effector function. J Immunol. (2007) 179:4635–44. doi: 10.4049/jimmunol.179.7.4635, PMID: PubMed DOI
Zamoyska R, Basson A, Filby A, Legname G, Lovatt M, Seddon B. The influence of the src-family kinases, Lck and Fyn, on T cell differentiation, survival and activation. Immunol Rev. (2003) 191:107–18. doi: 10.1034/j.1600-065X.2003.00015.x, PMID: PubMed DOI
Yasuda K, Nagafuku M, Shima T, Okada M, Yagi T, Yamada T, et al. Cutting edge: fyn is essential for tyrosine phosphorylation of csk-binding protein/phosphoprotein associated with glycolipid-enriched microdomains in lipid rafts in resting T cells. J Immunol. (2002) 169:2813–7. doi: 10.4049/jimmunol.169.6.2813, PMID: PubMed DOI
Badour K, Zhang J, Shi F, Leng Y, Collins M, Siminovitch KA. Fyn and PTP-PEST-mediated regulation of wiskott-aldrich syndrome protein (WASp) tyrosine phosphorylation is required for coupling T cell antigen receptor engagement to WASp effector function and T cell activation. J Exp Med. (2004) 199:99–111. doi: 10.1084/jem.20030976, PMID: PubMed DOI PMC
Bommhardt U, Schraven B, Simeoni L. Beyond TCR signaling: Emerging functions of Lck in cancer and immunotherapy. Int J Mol Sci. (2019) 20:1–18. doi: 10.3390/ijms20143500, PMID: PubMed DOI PMC
Bozso SJ, Kang JJH, Nagendran J. The role of competing mechanisms on Lck regulation. Immunol Res. (2020) 68:289–95. doi: 10.1007/s12026-020-09148-2, PMID: PubMed DOI
Schoenborn JR, Tan YX, Zhang C, Shokat KM, Weiss A. Feedback circuits monitor and adjust basal Lck-dependent events in T cell receptor signaling. Sci Signal. (2011) 4:1–13. doi: 10.1126/scisignal.2001893, PMID: PubMed DOI PMC
Furlan G, Minowa T, Hanagata N, Kataoka-Hamai C, Kaizuka Y. Phosphatase CD45 both positively and negatively regulates T cell receptor phosphorylation in reconstituted membrane protein clusters. J Biol Chem. (2014) 289:28514–25. doi: 10.1074/jbc.M114.574319, PMID: PubMed DOI PMC
Stepanek O, Kalina T, Draber P, Skopcova T, Svojgr K, Angelisova P, et al. Regulation of Src family kinases involved in T cell receptor signaling by protein-tyrosine phosphatase CD148. J Biol Chem. (2011) 286:22101–12. doi: 10.1074/jbc.M110.196733, PMID: PubMed DOI PMC
Chiang GG, Sefton BM. Specific dephosphorylation of the lck tyrosine protein kinase at tyr-394 by the SHP-1 protein-tyrosine phosphatase. J Biol Chem. (2001) 276:23173–8. doi: 10.1074/jbc.M101219200, PMID: PubMed DOI
Wu J, Katrekar A, Honigberg LA, Smith AM, Conn MT, Tang J, et al. Identification of substrates of human protein-tyrosine phosphatase PTPN22. J Biol Chem. (2006) 281:11002–10. doi: 10.1074/jbc.M600498200, PMID: PubMed DOI
Arimura Y, Vang T, Tautz L, Williams S, Mustelin T. TCR-induced downregulation of protein tyrosine phosphatase PEST augments secondary T cell responses. Mol Immunol. (2008) 45:3074–84. doi: 10.1016/j.molimm.2008.03.019, PMID: PubMed DOI PMC
Hasegawa K, Martin F, Huang G. PEST domain – enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Sci (80-.). (2009) 685:685–90. doi: 10.1126/science.1092138, PMID: PubMed DOI
Duan H, Jing L, Jiang X, Ma Y, Wang D, Xiang J, et al. CD146 bound to LCK promotes TCR signaling and anti-tumor immune response in mice. J Clin Invest. (2021) 131:e148568. doi: 10.1172/jci148568, PMID: PubMed DOI PMC
Nika K, Soldani C, Salek M, Paster W, Gray A, Etzensperger R, et al. Article constitutively active lck kinase in T cells drives antigen receptor signal transduction. Immunity. (2010) 32:766–77. doi: 10.1016/j.immuni.2010.05.011, PMID: PubMed DOI PMC
Wan R, Wu J, Ouyang M, Lei L, Wei J, Peng Q, et al. Biophysical basis underlying dynamic Lck activation visualized by ZapLck FRET biosensor. Sci Adv. (2019) 5:eaau2001. doi: 10.1126/sciadv.aau2001, PMID: PubMed DOI PMC
Wei Q, Brzostek J, Sankaran S, Casas J, Hew LS-Q, Yap J, et al. Lck bound to coreceptor is less active than free Lck. Proc Natl Acad Sci. (2020) 117:15809–15817. doi: 10.1073/pnas.1913334117, PMID: PubMed DOI PMC
Paster W, Paar C, Eckerstorfer P, Jakober A, Drbal K, Schu GJ, et al. Genetically encoded förster resonance energy transfer sensors for the conformation of the src family kinase lck. J Immunol. (2009) 182:2160–7. doi: 10.4049/jimmunol.0802639, PMID: PubMed DOI
Ballek O, Valečka J, Manning J, Filipp D. The pool of preactivated Lck in the initiation of T-cell signaling: A critical re-evaluation of the Lck standby model. Immunol Cell Biol. (2015) 93:384–95. doi: 10.1038/icb.2014.100, PMID: PubMed DOI
Philipsen L, Reddycherla AV, Hartig R, Gumz J, Kästle M, Kritikos A, et al. PubMed DOI
Kim PW, Sun ZYJ, Blacklow SC, Wagner G, Eck MJ. A zinc clasp structure tethers Lck to T cell coreceptors CD4 and CD8. Sci (80-.). (2003) 301:1725–8. doi: 10.1126/science.1085643, PMID: PubMed DOI
Van Der Merwe PA, Dushek O. Mechanisms for T cell receptor triggering. Nat Rev Immunol. (2011) 11:47–55. doi: 10.1038/nri2887, PMID: PubMed DOI
Hutchinson SL, Wooldridge L, Tafuro S, Laugel B, Glick M, Boulter JM, et al. The CD8 T cell coreceptor exhibits disproportionate biological activity at extremely low binding affinities. J Biol Chem. (2003) 278:24285–93. doi: 10.1074/jbc.M300633200, PMID: PubMed DOI
Pettmann J, Huhn A, Shah EA, Kutuzov MA, Wilson DB, Dustin ML, et al. The discriminatory power of the T cell receptor. Elife. (2021) 10:1–42. doi: 10.7554/eLife.67092, PMID: PubMed DOI PMC
Stepanek O, Prabhakar AS, Osswald C, King CG, Bulek A, Naeher D, et al. Coreceptor scanning by the T cell receptor provides a mechanism for T cell tolerance. Cell. (2014) 159:333–45. doi: 10.1016/j.cell.2014.08.042, PMID: PubMed DOI PMC
Horkova V, Drobek A, Paprckova D, Niederlova V, Prasai A, Uleri V, et al. Unique roles of co-receptor-bound LCK in helper and cytotoxic T cells. Nat Immunol. (2023) 24:174–185. doi: 10.1038/s41590-022-01366-0, PMID: PubMed DOI PMC
Clement M, Pearson JA, Gras S, Van Den Berg HA, Lissina A, Llewellyn-Lacey S, et al. Targeted suppression of autoreactive CD8+ T-cell activation using blocking anti-CD8 antibodies. Sci Rep. (2016) 6:1–14. doi: 10.1038/srep35332, PMID: PubMed DOI PMC
Chiang YJ, Hodes RJ. T-cell development is regulated by the coordinated function of proximal and distal Lck promoters active at different developmental stages. Eur J Immunol. (2016) 46:2401–8. doi: 10.1002/eji.201646440, PMID: PubMed DOI PMC
Levin SD, Anderson SJ, Forbush KA, Perlmutter RM. A dominant-negative transgene defines a role for p56lck in thymopoiesis. EMBO J. (1993) 12:1671–80. doi: 10.1002/j.1460-2075.1993.tb05812.x, PMID: PubMed DOI PMC
Molina TJ, Kishihara K, Siderovski DP, van Ewijk W, Narendran A, Timms E, et al. Profound block in thymocyte development in mice lacking p56lck. Nature. (1992) 357:161–4. doi: 10.1038/357161a0, PMID: PubMed DOI
Veillette A, Bookman MA, Horak EM, Bolen JB. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrasine-protein kinase p56lck. Cell. (1988) 55:301–8. doi: 10.1016/0092-8674(88)90053-0, PMID: PubMed DOI
Horkova V, Drobek A, Mueller D, Gubser C, Niederlova V, Wyss L, et al. Dynamics of the coreceptor-LCK interactions during T cell development shape the self-reactivity of peripheral CD4 and CD8 T cells. Cell Rep. (2020) 30:1504–1514.e7. doi: 10.1016/j.celrep.2020.01.008, PMID: PubMed DOI PMC
Zamoyska R, Derham P, Gorman SD, van Hoegen P, Bolen JB, Veillette A, et al. Inability of CD8a’ polypeptides to associate with p56lck correlates with impaired function. Vitro lack Expression vivo. Lett to Nat. (1989) 342:278–81. doi: 10.1038/342278a0, PMID: PubMed DOI
Van Laethem F, Sarafova SD, Park JH, Tai X, Pobezinsky L, Guinter TII, et al. Deletion of CD4 and CD8 coreceptors permits generation of αβT cells that recognize antigens independently of the MHC. Immunity. (2007) 27:735–50. doi: 10.1016/j.immuni.2007.10.007, PMID: PubMed DOI
Carmo AM, Mason DW, Beyers AD. Physical association of the cytoplasmic domain of CD2 with the tyrosine kinases p56lck and p59fyn. Eur J Immunol. (1993) 23:2196–201. doi: 10.1002/eji.1830230922, PMID: PubMed DOI
Xu H, Littman DR. A kinase-independent function of Lck in potentiating antigen-specific T cell activation. Cell. (1993) 74:633–43. doi: 10.1016/0092-8674(93)90511-N, PMID: PubMed DOI
Foti M, Phelouzat MA, Holm Å., Rasmusson BJ, Carpentier JL. P56Lck anchors CD4 to distinct microdomains on microvilli. Proc Natl Acad Sci U. S. A. (2002) 99:2008–13. doi: 10.1073/pnas.042689099, PMID: PubMed DOI PMC
Pelchen-Matthews A, Boulet I, Littman DR, Fagard R, Marsh M. The protein tyrosine kinase p56lck inhibits CD4 endocytosis by preventing entry of CD4 into coated pits. J Cell Biol. (1992) 117:279–90. doi: 10.1083/jcb.117.2.279, PMID: PubMed DOI PMC
Artyomov MN, Lis M, Devadas S, Davis MM, Chakraborty AK. CD4 and CD8 binding to MHC molecules primarily acts to enhance Lck delivery. Proc Natl Acad Sci U. S. A. (2010) 107:16916–21. doi: 10.1073/pnas.1010568107, PMID: PubMed DOI PMC
Cheroutre H, Lambolez F. Doubting the TCR coreceptor function of CD8αα. Immunity. (2008) 28:149–59. doi: 10.1016/j.immuni.2008.01.005, PMID: PubMed DOI
Turner JM, Brodsky MH, Irving BA, Levin SD, Permutter RM, Littman DR. Interaction of the unique N-terminal region of tyrosine kinase p56lck with cytoplasmic domains of CD4 and CD8 is mediated by cysteine motifs. Cell. (1990) 60:755–65. doi: 10.1016/0092-8674(90)90090-2, PMID: PubMed DOI
Bosselut R, Kubo S, Guinter T, Kopacz JL, Altman JD, Feigenbaum L, et al. Role of CD8β domains in CD8 coreceptor function: Importance for MHC I binding, signaling, and positive selection of CD8+ T cells in the thymus. Immunity. (2000) 12:409–18. doi: 10.1016/S1074-7613(00)80193-4, PMID: PubMed DOI
Erman B, Alag AS, Dahle O, Van Laethem F, Sarafova SD, Guinter TI, et al. Coreceptor signal strength regulates positive selection but does not determine CD4/CD8 lineage choice in a physiologic. In Vivo Model J Immunol. (2006) 177:6613–25. doi: 10.4049/jimmunol.177.10.6613, PMID: PubMed DOI
Drobek A, Moudra A, Mueller D, Huranova M, Horkova V, Pribikova M, et al. Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells. EMBO J. (2018) 37:1–17. doi: 10.15252/embj.201798518, PMID: PubMed DOI PMC
Van Laethem F, Tikhonova AN, Singer A. MHC restriction is imposed on a diverse T cell receptor repertoire by CD4 and CD8 co-receptors during thymic selection. Trends Immunol. (2012) 33:437–41. doi: 10.1016/j.it.2012.05.006, PMID: PubMed DOI PMC
Tikhonova AN, Van Laethem F, Hanada KI, Lu J, Pobezinsky LA, Hong C, et al. αβ T cell receptors that do not undergo major histocompatibility complex-specific thymic selection possess antibody-like recognition specificities. Immunity. (2012) 36:79–91. doi: 10.1016/j.immuni.2011.11.013, PMID: PubMed DOI PMC
Jiang N, Huang J, Edwards LJ, Liu B, Zhang Y, Beal CD, et al. Two-stage cooperative T cell receptor-peptide major histocompatibility complex-CD8 trimolecular interactions amplify antigen discrimination. Immunity. (2011) 34:13–23. doi: 10.1016/j.immuni.2010.12.017, PMID: PubMed DOI PMC
Wooldridge L, Van Den Berg HA, Glick M, Gostick E, Laugel B, Hutchinson SL, et al. Interaction between the CD8 coreceptor and major histocompatibility complex class I stabilizes T cell receptor-antigen complexes at the cell surface. J Biol Chem. (2005) 280:27491–501. doi: 10.1074/jbc.M500555200, PMID: PubMed DOI PMC
Rushdi MN, Pan V, Li K, Choi HK, Travaglino S, Hong J, et al. Cooperative binding of T cell receptor and CD4 to peptide-MHC enhances antigen sensitivity. Nat Commun. (2022) 13:7055. doi: 10.1038/s41467-022-34587-w, PMID: PubMed DOI PMC
Casas J, Brzostek J, Zarnitsyna VI, Hong JS, Wei Q, Hoerter JAH, et al. Ligand-engaged TCR is triggered by Lck not associated with CD8 coreceptor. Nat Commun. (2014) 5:5624. doi: 10.1038/ncomms6624, PMID: PubMed DOI PMC
Jönsson P, Southcombe JH, Mafalda Santos A, Huo J, Fernandes RA, McColl J, et al. Remarkably low affinity of CD4/peptide-major histocompatibility complex class II protein interactions. Proc Natl Acad Sci U. S. A. (2016) 113:5682–7. doi: 10.1073/pnas.1513918113, PMID: PubMed DOI PMC
Voisinne G, Locard-Paulet M, Froment C, Maturin E, Menoita MG, Girard L, et al. Kinetic proofreading through the multi-step activation of the ZAP70 kinase underlies early T cell ligand discrimination. Nat Immunol. (2022) 23:1355–64. doi: 10.1038/s41590-022-01288-x, PMID: PubMed DOI PMC
Goyette J, Depoil D, Yang Z, Isaacson SA, Allard J, van der Merwe PA, et al. Dephosphorylation accelerates the dissociation of ZAP70 from the T cell receptor. Proc Natl Acad Sci U. S. A. (2022) 119:e2116815119. doi: 10.1073/pnas.2116815119, PMID: PubMed DOI PMC
Britain DM, Town JP, Weiner OD. Progressive enhancement of kinetic proofreading in T cell antigen discrimination from receptor activation to DAG generation. Elife. (2022) 11:1–25. doi: 10.7554/eLife.75263, PMID: PubMed DOI PMC
Van Laethem F, Tikhonova AN, Pobezinsky LA, Tai X, Kimura MY, Le Saout C, et al. Lck availability during thymic selection determines the recognition specificity of the T cell repertoire. Cell. (2013) 154:1326. doi: 10.1016/j.cell.2013.08.009, PMID: PubMed DOI PMC
Morch AM, Schneider F, Jenkins E, Mafalda Santos A, Fraser SE, Davis SJ, et al. The kinase occupancy of T cell coreceptors reconsidered. Proc Natl Acad Sci. (2022) 120:2017. doi: 10.1073/pnas.2213538119, PMID: PubMed DOI PMC
Liaunardy-Jopeace A, Murton BL, Mahesh M, Chin JW, James JR. Encoding optical control in LCK kinase to quantitatively investigate its activity in live cells. Nat Struct Mol Biol. (2017) 24:1155–63. doi: 10.1038/nsmb.3492, PMID: PubMed DOI PMC
Heilig JS, Tonegawa S. Diversity of murine gamma genes and expression in fetal and adult T lymphocytes. Lett to Nat. (1986) 322:836–40. doi: 10.1038/322836a0, PMID: PubMed DOI
Hayday AC. γδ T cell update: adaptate orchestrators of immune surveillance. J Immunol. (2019) 203:311–20. doi: 10.4049/jimmunol.1800934, PMID: PubMed DOI
Zhao Y, Niu C, Cui J. Gamma-delta (γδ) T cells: friend or foe in cancer development. J Transl Med. (2018) 16:1–13. doi: 10.1073/pnas.1513918113, PMID: PubMed DOI PMC
Groh V, Steinle A, Bauer S, Spies T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Sci (80-.). (1998) 279:1737–40. doi: 10.1126/science.279.5357.1737, PMID: PubMed DOI
Le Nours J, Gherardin NA, Ramarathinam SH, Awad W, Wiede F, Gully BS, et al. A class of gd T cell receptors recognize the underside of the antigen-presenting molecule MR1. Sci (80-.). (2019) 366:1522–7. doi: 10.1126/science.aav3900, PMID: PubMed DOI
Luoma AM, Castro CD, Mayassi T, Bembinster LA, Bai L, Picard D, et al. Crystal structure of Vδ1T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells. Immunity. (2013) 39:1032–42. doi: 10.1016/j.immuni.2013.11.001, PMID: PubMed DOI PMC
Herrmann T, Karunakaran MM. Butyrophilins: γδ T cell receptor ligands, immunomodulators and more. Front Immunol. (2022) 13:1–6. doi: 10.3389/fimmu.2022.876493, PMID: PubMed DOI PMC
Siegers GM, Swamy M, Fernández-Malavé E, Minguet S, Rathmann S, Guardo AC, et al. Different composition of the human and the mouse γδ T cell receptor explains different phenotypes of CD3γ and CD3δ immunodeficiencies. J Exp Med. (2007) 204:2537–44. doi: 10.1084/jem.20070782, PMID: PubMed DOI PMC
Allison TJ, Winter CC, Fournié J-J, Bonneville M, Garboczi DN. Structure of the human gd T-cell antigen receptor. Nature. (2001) 411:820–4. doi: 10.1038/35081115, PMID: PubMed DOI
Morath A, Schamel WW. αβ and γδ T cell receptors: Similar but different. J Leukoc. Biol. (2020) 107:1045–55. doi: 10.1002/JLB.2MR1219-233R, PMID: PubMed DOI
Xin W, Huang B, Chi X, Liu Y, Xu M, Zhang Y, et al. Structures of human γδ T cell receptor–CD3 complex. Nature. (2024) 630:222–9. doi: 10.1038/s41586-024-07439-4, PMID: PubMed DOI PMC
Gully BS, Ferreira Fernandes J, Gunasinghe SD, Vuong MT, Lui Y, Rice MT, et al. Structure of a fully assembled γδ T-cell antigen receptor. Nature. (2024) 634:729–736. doi: 10.1038/s41586-024-07920-0, PMID: PubMed DOI PMC
Blanco R, Borroto A, Schamel W, Pereira P, Alarcon B. Conformational changes in the T cell receptor differentially determine T cell subset development in mice. Sci Signal. (2014) 7:1–16. doi: 10.1126/scisignal.2005650, PMID: PubMed DOI
Dopfer EP, Hartl FA, Oberg HH, Siegers GM, Yousefi OS, Kock S, et al. The CD3 conformational change in the γδ T cell receptor is not triggered by antigens but can be enforced to enhance tumor killing. Cell Rep. (2014) 7:1704–15. doi: 10.1016/j.celrep.2014.04.049, PMID: PubMed DOI
Li F, Roy S, Niculcea J, Gould K, Adams EJ, Van Der PA, et al. Ligand-induced segregation from large cell-surface phosphatases is a critical step in γδ TCR triggering. Cell Rep. (2024) 43:114761. doi: 10.1016/j.celrep.2024.114761, PMID: PubMed DOI PMC
Tan YX, Manz BN, Freedman TS, Zhang C, Shokat KM, Weiss A. Inhibition of the kinase Csk in thymocytes reveals a requirement for actin remodeling in the initiation of full TCR signaling. Nat Immunol. (2014) 15:186–94. doi: 10.1038/ni.2772, PMID: PubMed DOI PMC
Fiala GJ, Schaffer A-M, Merches K, Morath A, Swann J, Herr LA, et al. Proximal lck promoter–driven cre function is limited in neonatal and ineffective in adult γδ T cell development. J Immunol. (2019) 203:569–79. doi: 10.4049/jimmunol.1701521, PMID: PubMed DOI
Negishi I, Motoyama N, Nakayama KI, Nakayama K, Senju S, Hatakeyama S, et al. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature. (1995) 376:435–8. doi: 10.1038/376435a0, PMID: PubMed DOI
Keller B, Kfir-Erenfeld S, Matusewicz P, Hartl F, Lev A, Lee YN, et al. Combined immunodeficiency caused by a novel nonsense mutation in LCK. J Clin Immunol. (2024) 44:4. doi: 10.1007/s10875-023-01614-4, PMID: PubMed DOI PMC
Hauck F, Randriamampita C, Martin E, Gerart S, Lambert N, Lim A, et al. Primary T-cell immunodeficiency with immunodysregulation caused by autosomal recessive LCK deficiency. J Allergy Clin Immunol. (2012) 130:1144–1152. doi: 10.1016/j.jaci.2012.07.029, PMID: PubMed DOI
Spidale NA, Sylvia K, Narayan K, Miu B, Frascoli M, Melichar HJ, et al. Interleukin-17-producing γδ T cells originate from SOX13+ Progenitors that are independent of γδTCR signaling. Immunity. (2018) 49:857–872.e5. doi: 10.1016/j.immuni.2018.09.010, PMID: PubMed DOI PMC
Tan L, Sandrock I, Odak I, Aizenbud Y, Wilharm A, Barros-Martins J, et al. Single-cell transcriptomics identifies the adaptation of scart1+ Vγ6+ T cells to skin residency as activated effector cells. Cell Rep. (2019) 27:3657–3671.e4. doi: 10.1016/j.celrep.2019.05.064, PMID: PubMed DOI
Fujise S, Matsuzaki G, Kishihara K, Kadena T, Molina T, Nomoto K. The role of p56lck in the development of gamma delta T cells and their function during an infection by Listeria monocytogenes. J Immunol. (1996) 157:247–54. doi: 10.4049/jimmunol.157.1.247, PMID: PubMed DOI
Kawai K, Kishihara K, Molina TJ, Wallace VA, Mak TW, Ohashi PS. Impaired development of V3/3 dendritic epidermal T cells in p56/ok protein tyrosine kinase-deficient and CD45 protein tyrosine phosphatase-deficient mice. J Exp Med. (1995) 181:345–9. doi: 10.1084/jem.181.1.345, PMID: PubMed DOI PMC
Laird RM, Laky K, Hayes SM. Unexpected role for the B cell-specific src family kinase B lymphoid kinase in the development of IL-17–producing γδ T cells. J Immunol. (2010) 185:6518–27. doi: 10.4049/jimmunol.1002766, PMID: PubMed DOI PMC
Prinz I, Silva-santos B, Pennington DJ. Functional development of γδ T cells. Eur J Clin Invest. (2013) 43:1988–94. doi: 10.1002/eji.201343759, PMID: PubMed DOI
Jensen KDC, Su X, Shin S, Li L, Youssef S, Yamasaki S, et al. Thymic selection determines γδ T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon γ. Immunity. (2008) 29:90–100. doi: 10.1016/j.immuni.2008.04.022, PMID: PubMed DOI PMC
Fahl SP, Coffey F, Kain L, Zarin P, Dunbrack RL, Teyton L, et al. Role of a selecting ligand in shaping the murine γδ-TCR repertoire. Proc Natl Acad Sci U. S. A. (2018) 115:1889–94. doi: 10.1073/pnas.1718328115, PMID: PubMed DOI PMC
Endo Y, Ishikawa O, Negishi I. Zeta-chain-associated protein-70 molecule is essential for the proliferation and the final maturation of dendritic epidermal T cells. Exp Dermatol. (2005) 14:188–93. doi: 10.1111/j.0906-6705.2005.00264.x, PMID: PubMed DOI
Muro R, Nitta T, Nakano K, Okamura T, Takayanagi H, Suzuki H. γδTCR recruits the Syk/PI3K axis to drive proinflammatory differentiation program. J Clin Invest. (2018) 128:415–26. doi: 10.1172/JCI95837, PMID: PubMed DOI PMC
Borna S, Fabisik M, Ilievova K, Dvoracek T, Brdicka T. Mechanisms determining a differential threshold for sensing Src family kinase activity by B and T cell antigen receptors. J Biol Chem. (2020) 295:12935–45. doi: 10.1074/jbc.RA120.013552, PMID: PubMed DOI PMC
Stepanek O, Draber P, Drobek A, Horejsi V, Brdicka T. Nonredundant roles of src-family kinases and syk in the initiation of B-cell antigen receptor signaling. J Immunol. (2013) 190:1807–18. doi: 10.4049/jimmunol.1202401, PMID: PubMed DOI
Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R, et al. Regulation of cutaneous Malignancy by γδ T cells. J Immunol. (2018) 200:3031–5. doi: 10.1093/jimmunol/200.9.3031 PubMed DOI
Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. (2015) 21:938–45. doi: 10.1038/nm.3909, PMID: PubMed DOI PMC
Lu H, Dai W, Guo J, Wang D, Wen S, Yang L, et al. High abundance of intratumoral γδ T cells favors a better prognosis in head and neck squamous cell carcinoma: A bioinformatic analysis. Front Immunol. (2020) 11:1–14. doi: 10.3389/fimmu.2020.573920, PMID: PubMed DOI PMC
Wang J, Lin C, Li H, Li R, Wu Y, Liu H, et al. Tumor-infiltrating γδT cells predict prognosis and adjuvant chemotherapeutic benefit in patients with gastric cancer. Oncoimmunology. (2017) 6:e1353858. doi: 10.1080/2162402X.2017.1353858, PMID: PubMed DOI PMC
Meraviglia S, Lo Presti E, Tosolini M, La Mendola C, Orlando V, Todaro M, et al. Distinctive features of tumor-infiltrating γδ T lymphocytes in human colorectal cancer. Oncoimmunology. (2017) 6:e1347742. doi: 10.1080/2162402X.2017.1347742, PMID: PubMed DOI PMC
Castro CD, Boughter CT, Broughton AE, Ramesh A, Adams EJ. Diversity in recognition and function of human γδ T cells. Immunol Rev. (2020) 298:134–52. doi: 10.1111/imr.12930, PMID: PubMed DOI
Van Rhijn I, Le Nours J. CD1 and MR1 recognition by human γδ T cells. Mol Immunol. (2021) 133:95–100. doi: 10.1016/j.molimm.2020.12.008, PMID: PubMed DOI PMC
Mikulak J, Oriolo F, Bruni E, Roberto A, Colombo FS, Villa A, et al. NKp46-expressing human gut-resident intraepithelial Vδ1 T cell subpopulation exhibits high antitumor activity against colorectal cancer. JCI Insight. (2019) 4:e125884. doi: 10.1172/jci.insight.125884, PMID: PubMed DOI PMC
Knight A, MacKinnon S, Lowdell MW. Human Vdelta1 gamma-delta T cells exert potent specific cytotoxicity against primary multiple myeloma cells. Cytotherapy. (2012) 14:1110–8. doi: 10.3109/14653249.2012.700766, PMID: PubMed DOI
Siegers GM, Dhamko H, Wang XH, Mathieson AM, Kosaka Y, Felizardo TC, et al. Human Vδ1 γδ T cells expanded from peripheral blood exhibit specific cytotoxicity against B-cell chronic lymphocytic leukemia-derived cells. Cytotherapy. (2011) 13:753–64. doi: 10.3109/14653249.2011.553595, PMID: PubMed DOI
Daley D, Zambirinis CP, Seifert L, Akkad N, Mohan N, Werba G, et al. γδ T cells support pancreatic oncogenesis by restraining αβ T cell activation. Cell. (2016) 166:1485–1499.e15. doi: 10.1016/j.cell.2016.07.046, PMID: PubMed DOI PMC
Kühl AA, Pawlowski NN, Grollich K, Blessenohl M, Westermann J, Zeitz M, et al. Human peripheral γ;δ; T cells possess regulatory potential. Immunology. (2009) 128:580–8., PMID: PubMed PMC
Li Y, Li G, Zhang J, Wu X, Chen X. The dual roles of human γδ T cells: anti-tumor or tumor-promoting. Front Immunol. (2021) 11:1–13. doi: 10.3389/fimmu.2020.619954, PMID: PubMed DOI PMC
Adams EJ, Gu S, Luoma AM. Human gamma delta T cells: evolution and ligand recognition. Cell Immunol. (2015) 296:31–40. doi: 10.1016/j.cellimm.2015.04.008, PMID: PubMed DOI PMC
Alnaggar M, Xu Y, Li J, He J, Chen J, Li M, et al. Allogenic Vγ9Vδ2 T cell as new potential immunotherapy drug for solid tumor: A case study for cholangiocarcinoma. J Immunother. Cancer. (2019) 7:1–7., PMID: PubMed PMC
Meraviglia S, Eberl M, Vermijlen D, Todaro M, Buccheri S, Cicero G, et al. PubMed DOI PMC
Di Carlo E, Bocca P, Emionite L, Cilli M, Cipollone G, Morandi F, et al. Mechanisms of the antitumor activity of human Vγ9Vδ2 T cells in combination with zoledronic acid in a preclinical model of neuroblastoma. Mol Ther. (2013) 21:1034–43. doi: 10.1038/mt.2013.38, PMID: PubMed DOI PMC
Joalland N, Chauvin C, Oliver L, Vallette FM, Pecqueur C, Jarry U, et al. IL-21 increases the reactivity of allogeneic human Vγ9Vδ2 T cells against primary glioblastoma tumors. J Immunother. (2018) 41:224–31. doi: 10.1097/CJI.0000000000000225, PMID: PubMed DOI
Lai D, Wang F, Chen Y, Wang C, Liu S, Lu B, et al. Human ovarian cancer stem-like cells can be efficiently killed by γδ T lymphocytes. Cancer Immunol Immunother. (2012) 61:979–89. doi: 10.1007/s00262-011-1166-4, PMID: PubMed DOI PMC
Nishio N, Fujita M, Tanaka Y, Maki H, Zhang R, Hirosawa T, et al. Zoledronate sensitizes neuroblastoma-derived tumor-initiating cells to cytolysis mediated by human γδ T cells. J Immunother. (2012) 35:598–606. doi: 10.1097/CJI.0b013e31826a745a, PMID: PubMed DOI
Bartkowiak J, Kulczyck-Wojdala D, Blonski J, Robak T. Molecular diversity of gammadelta T cells in peripheral blood from patients with B-cell chronic lymphocytic leukaemia. Neuplasma. (2002) 49:86–90., PMID: PubMed
Kenna T, Golden-Mason L, Norris S, Hegarty JE, O’Farrelly C, Doherty DG. Distinct subpopulations of γδ T cells are present in normal and tumor-bearing human liver. Clin Immunol. (2004) 113:56–63. doi: 10.1016/j.clim.2004.05.003, PMID: PubMed DOI
Petrasca A, Melo AM, Breen EP, Doherty DG. Human Vδ3 + γδ T cells induce maturation and IgM secretion by B cells. Immunol Lett. (2018) 196:126–34. doi: 10.1016/j.imlet.2018.02.002, PMID: PubMed DOI
Mangan BA, Dunne MR, O’Reilly VP, Dunne PJ, Exley MA, O’Shea D, et al. Cutting edge: CD1d restriction and th1/th2/th17 cytokine secretion by human Vδ3 T cells. J Immunol. (2013) 191:30–4. doi: 10.4049/jimmunol.1300121, PMID: PubMed DOI PMC
Schamel WW, Zinchenko M, Nguyen T, Fehse B, Briquez PS, Minguet S. The potential of γδ CAR and TRuC T cells: An unearthed treasure. Eur J Immunol. (2024) 54:1–10. doi: 10.1002/eji.202451074, PMID: PubMed DOI
Hayday A, Dechanet-Merville J, Rossjohn J, Silva-Santos B. Cancer immunotherapy by gd T cells. Sci (80-.). (2024) 386:eabq7248. doi: 10.1126/science.abq7248, PMID: PubMed DOI PMC
Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci. (1993) 90:720–4. doi: 10.1073/pnas.90.2.720, PMID: PubMed DOI PMC
McGuinness RP, Ge Y, Patel SD, Kashmiri SVS, Lee HS, Hand PH, et al. Anti-tumor activity of human T cells expressing the CC49-ζ chimeric immune receptor. Hum Gene Ther. (1999) 10:165–73. doi: 10.1089/10430349950018968, PMID: PubMed DOI
June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Sci (80-.). (2018) 359:1361–5., PMID: PubMed
Salter AI, Ivey RG, Kennedy JJ, Voillet V, Rajan A, Alderman EJ, et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci Signal. (2018) 11:1–17. doi: 10.1126/scisignal.aat6753, PMID: PubMed DOI PMC
Wu L, Brzostek J, Sakthi Vale PD, Wei Q, Koh CKT, Ong JXH, et al. CD28-CAR-T cell activation through FYN kinase signaling rather than LCK enhances therapeutic performance. Cell Rep Med. (2023) 4:100917. doi: 10.1016/j.xcrm.2023.100917, PMID: PubMed DOI PMC
Feucht J, Sun J, Eyquem J, Ho YJ, Zhao Z, Leibold J, et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat Med. (2019) 25:82–8. doi: 10.1038/s41591-018-0290-5, PMID: PubMed DOI PMC
A. Atara Bio . EBV-specific allogenic 1XX CAR-T cells. Available online at: https://www.atarabio.com/ (Accessed September 15, 2025).
F. Fate Therapeutica . FT819, iPSC-derived CAR T-cell product, which incorporates a novel 1XX CAR targeting CD19. Available online at: https://www.fatetherapeutics.com/ (Accessed September 15, 2025).
Wang P, Wang Y, Zhao X, Zheng R, Zhang Y, Meng R, et al. Chimeric antigen receptor with novel intracellular modules improves antitumor performance of T cells. London, England: Signal Transduct. Target. Ther. 10; (2025). doi: 10.1038/s41392-024-02096-5, PMID: PubMed DOI PMC
Kolanus W, Romeo C, Seed B. T cell activation by clustered tyrosine kinases. Cell. (1993) 74:171–83. doi: 10.1016/0092-8674(93)90304-9, PMID: PubMed DOI
Fitzer-Attas CJ, Schindler DG, Waks T, Eshhar Z. Harnessing syk family tyrosine kinases as signaling domains for chimeric single chain of the variable domain receptors: optimal design for T cell activation. J Immunol. (1998) 160:145–54. doi: 10.4049/jimmunol.160.1.145, PMID: PubMed DOI
Tousley AM, Rotiroti MC, Labanieh L, Rysavy LW, Kim WJ, Lareau C, et al. Co-opting signalling molecules enables logic-gated control of CAR T cells. Nature. (2023) 615:507–16. doi: 10.1038/s41586-023-05778-2, PMID: PubMed DOI PMC
Balagopalan L, Moreno T, Qin H, Angeles BC, Kondo T, Yi J, et al. Generation of antitumor chimeric antigen receptors incorporating T cell signaling motifs. Sci Signal. (2024) 17:eadp8569. doi: 10.1126/scisignal.adp8569, PMID: PubMed DOI PMC
Baeuerle PA, Ding J, Patel E, Thorausch N, Horton H, Gierut J, et al. Synthetic TRuC receptors engaging the complete T cell receptor for potent anti-tumor response. Nat Commun. (2019) 10:1–12. doi: 10.1038/s41467-019-10097-0, PMID: PubMed DOI PMC
Ding J, Guyette S, Schrand B, Geirut J, Horton H, Guo G, et al. Mesothelin-targeting T cells bearing a novel T cell receptor fusion construct (TRuC) exhibit potent antitumor efficacy against solid tumors. Oncoimmunology. (2023) 12:2182058. doi: 10.1080/2162402X.2023.2182058, PMID: PubMed DOI PMC
Hassan R, Butler M, O’Cearbhaill RE, Oh DY, Johnson M, Zikaras K, et al. Mesothelin-targeting T cell receptor fusion construct cell therapy in refractory solid tumors: phase 1/2 trial interim results. Nat Med. (2023) 29:2099–109. doi: 10.1038/s41591-023-02452-y, PMID: PubMed DOI PMC
Xu Y, Yang Z, Horan LH, Zhang P, Liu L, Zimdahl B, et al. A novel antibody-TCR (AbTCR) platform combines Fab-based antigen recognition with gamma/delta-TCR signaling to facilitate T-cell cytotoxicity with low cytokine release. Cell Discov. (2018) 4:62. doi: 10.1038/s41421-018-0066-6, PMID: PubMed DOI PMC
Liu Y, Liu G, Wang J, Zheng ZY, Jia L, Rui W, et al. Chimeric STAR receptors using TCR machinery mediate robust responses against solid tumors. Sci Transl Med. (2021) 13:eabb5191. doi: 10.1126/scitranslmed.abb5191, PMID: PubMed DOI
Mansilla-Soto J, Eyquem J, Haubner S, Hamieh M, Feucht J, Paillon N, et al. HLA-independent T cell receptors for targeting tumors with low antigen density. Nat Med. (2022) 28:345–52. doi: 10.1038/s41591-021-01621-1, PMID: PubMed DOI PMC
Burton J, Siller-Farfán JA, Pettmann J, Salzer B, Kutuzov M, van der Merwe PA, et al. Inefficient exploitation of accessory receptors reduces the sensitivity of chimeric antigen receptors. Proc Natl Acad Sci U. S. A. (2023) 120:1–10., PMID: PubMed PMC
Morris EC, Neelapu SS, Giavridis T, Sadelain M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol. (2022) 22:85–96. doi: 10.1038/s41577-021-00547-6, PMID: PubMed DOI PMC
Tailor P, Tsai S, Schameli A, Serra P, Wang J, Robbins S, et al. The Proline-Rich Sequence of CD3ϵ as an amplifier of low-avidity TCR signaling. J Immunol. (2008) 181:243–55. doi: 10.4049/jimmunol.181.1.243, PMID: PubMed DOI PMC
A. Artax BioPharma . Resetting the immune system to restore healthy responses. website; Cambridge, Massachusetts, USA: (2025). Available online at: https://artaxbiopharma.com/ (Accessed September 15, 2025).
Mestermann K, Giavridis T, Weber J, Rydzek J, Frenz S, Nerreter T, et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci Transl Med. (2019) 11:eaau5907. doi: 10.1126/scitranslmed.aau5907, PMID: PubMed DOI PMC