Mechanisms determining a differential threshold for sensing Src family kinase activity by B and T cell antigen receptors

. 2020 Sep 11 ; 295 (37) : 12935-12945. [epub] 20200714

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32665402
Odkazy

PubMed 32665402
PubMed Central PMC7489906
DOI 10.1074/jbc.ra120.013552
PII: S0021-9258(17)49955-8
Knihovny.cz E-zdroje

Although signal transduction by immunoreceptors such as the T cell antigen receptor (TCR), B cell antigen receptor (BCR), and Fc receptors uses the same schematic and similar molecules, the threshold and the fine-tuning are set differently for each receptor. One manifestation of these differences is that inhibition of Src family kinases (SFK) blocks TCR but not BCR signaling. SFKs are key kinases phosphorylating immunoreceptor tyrosine-based activation motifs (ITAM) in both these receptors. However, it has been proposed that in B cells, downstream kinase SYK can phosphorylate ITAM sequences independently of SFK, allowing it to compensate for the loss of SFK activity, whereas its T cell paralog ZAP-70 is not capable of this compensation. To test this proposal, we examined signaling in SYK- and ZAP-70-deficient B and T cell lines expressing SYK or ZAP-70. We also analyzed signal transduction in T cells expressing BCR or B cells expressing part of the TCR complex. We show that when compared with ZAP-70, SYK lowered the threshold for SFK activity necessary to initiate antigen receptor signaling in both T and B cells. However, neither SYK nor ZAP-70 were able to initiate signaling independently of SFK. We further found that additional important factors are involved in setting this threshold. These include differences between the antigen receptor complexes themselves and the spatial separation of the key transmembrane adaptor protein LAT from the TCR. Thus, immunoreceptor sensing of SFK activity is a complex process regulated at multiple levels.

Zobrazit více v PubMed

Irving B., and Weiss A. (2014) A clue to antigen receptor tails. J. Immunol. 192, 4013–4014 10.4049/jimmunol.1400660 PubMed DOI

Getahun A., and Cambier J. C. (2015) Of ITIMs, ITAMs, and ITAMis: Revisiting immunoglobulin Fc receptor signaling. Immunol. Rev. 268, 66–73 10.1111/imr.12336 PubMed DOI PMC

Packard T. A., and Cambier J. C. (2013) B lymphocyte antigen receptor signaling: Initiation, amplification, and regulation. F1000Prime Rep 5, 40 10.12703/P5-40 PubMed DOI PMC

Lanier L. L. (2008) Up on the tightrope: Natural killer cell activation and inhibition. Nat. Immunol. 9, 495–502 10.1038/ni1581 PubMed DOI PMC

Rolli V., Gallwitz M., Wossning T., Flemming A., Schamel W. W., Zürn C., and Reth M. (2002) Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol. Cell. 10, 1057–1069 10.1016/S1097-2765(02)00739-6 PubMed DOI

Saijo K., Schmedt C., Su I. H., Karasuyama H., Lowell C. A., Reth M., Adachi T., Patke A., Santana A., and Tarakhovsky A. (2003) Essential role of Src-family protein tyrosine kinases in NF-κB activation during B cell development. Nat. Immunol. 4, 274–279 10.1038/ni893 PubMed DOI

Takata M., Sabe H., Hata A., Inazu T., Homma Y., Nukada T., Yamamura H., and Kurosaki T. (1994) Tyrosine kinases Lyn and Syk regulate B cell receptor-coupled Ca2+ mobilization through distinct pathways. EMBO J. 13, 1341–1349 10.1002/j.1460-2075.1994.tb06387.x PubMed DOI PMC

Mukherjee S., Zhu J., Zikherman J., Parameswaran R., Kadlecek T. A., Wang Q., Au-Yeung B., Ploegh H., Kuriyan J., Das J., and Weiss A. (2013) Monovalent and multivalent ligation of the B cell receptor exhibit differential dependence upon Syk and Src family kinases. Sci. Signal. 6, ra1 10.1126/scisignal.2003220 PubMed DOI PMC

Hanke J. H., Gardner J. P., Dow R. L., Changelian P. S., Brissette W. H., Weringer E. J., Pollok B. A., and Connelly P. A. (1996) Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J. Biol. Chem. 271, 695–701 10.1074/jbc.271.2.695 PubMed DOI

Zhu X., Kim J. L., Newcomb J. R., Rose P. E., Stover D. R., Toledo L. M., Zhao H., and Morgenstern K. A. (1999) Structural analysis of the lymphocyte-specific kinase Lck in complex with non-selective and Src family selective kinase inhibitors. Structure 7, 651–661 10.1016/S0969-2126(99)80086-0 PubMed DOI

Stepanek O., Draber P., Drobek A., Horejsi V., and Brdicka T. (2013) Nonredundant roles of Src-family kinases and Syk in the initiation of B-cell antigen receptor signaling. J. Immunol. 190, 1807–1818 10.4049/jimmunol.1202401 PubMed DOI

Fasbender F., Claus M., Wingert S., Sandusky M., and Watzl C. (2017) Differential requirements for Src-family kinases in SYK or ZAP70-mediated SLP-76 phosphorylation in lymphocytes. Front. Immunol. 8, 789 10.3389/fimmu.2017.00789 PubMed DOI PMC

Mócsai A., Ruland J., and Tybulewicz V. L. (2010) The SYK tyrosine kinase: A crucial player in diverse biological functions. Nat. Rev. Immunol. 10, 387–402 10.1038/nri2765 PubMed DOI PMC

Au-Yeung B. B., Deindl S., Hsu L. Y., Palacios E. H., Levin S. E., Kuriyan J., and Weiss A. (2009) The structure, regulation, and function of ZAP-70. Immunol. Rev. 228, 41–57 10.1111/j.1600-065X.2008.00753.x PubMed DOI

Klammt C., Novotná L., Li D. T., Wolf M., Blount A., Zhang K., Fitchett J. R., and Lillemeier B. F. (2015) T cell receptor dwell times control the kinase activity of Zap70. Nat. Immunol. 16, 961–969 10.1038/ni.3231 PubMed DOI PMC

Grädler U., Schwarz D., Dresing V., Musil D., Bomke J., Frech M., Greiner H., Jäkel S., Rysiok T., Müller-Pompalla D., and Wegener A. (2013) Structural and biophysical characterization of the Syk activation switch. J. Mol. Biol. 425, 309–333 10.1016/j.jmb.2012.11.007 PubMed DOI

Deindl S., Kadlecek T. A., Brdicka T., Cao X., Weiss A., and Kuriyan J. (2007) Structural basis for the inhibition of tyrosine kinase activity of ZAP-70. Cell 129, 735–746 10.1016/j.cell.2007.03.039 PubMed DOI

Yan Q., Barros T., Visperas P. R., Deindl S., Kadlecek T. A., Weiss A., and Kuriyan J. (2013) Structural basis for activation of ZAP-70 by phosphorylation of the SH2-kinase linker. Mol. Cell Biol. 33, 2188–2201 10.1128/MCB.01637-12 PubMed DOI PMC

Chan A. C., Dalton M., Johnson R., Kong G. H., Wang T., Thoma R., and Kurosaki T. (1995) Activation of ZAP-70 kinase activity by phosphorylation of tyrosine 493 is required for lymphocyte antigen receptor function. EMBO J. 14, 2499–2508 10.1002/j.1460-2075.1995.tb07247.x PubMed DOI PMC

Brdicka T., Kadlecek T. A., Roose J. P., Pastuszak A. W., and Weiss A. (2005) Intramolecular regulatory switch in ZAP-70: analogy with receptor tyrosine kinases. Mol. Cell Biol. 25, 4924–4933 10.1128/MCB.25.12.4924-4933.2005 PubMed DOI PMC

Rowley R. B., Burkhardt A. L., Chao H. G., Matsueda G. R., and Bolen J. B. (1995) Syk protein-tyrosine kinase is regulated by tyrosine-phosphorylated Igα/Igβ immunoreceptor tyrosine activation motif binding and autophosphorylation. J. Biol. Chem. 270, 11590–11594 10.1074/jbc.270.19.11590 PubMed DOI

El-Hillal O., Kurosaki T., Yamamura H., Kinet J. P., and Scharenberg A. M. (1997) Syk kinase activation by a Src kinase-initiated activation loop phosphorylation chain reaction. Proc. Natl. Acad. Sci. U. S. A. 94, 1919–1924 10.1073/pnas.94.5.1919 PubMed DOI PMC

Zoller K. E., MacNeil I. A., and Brugge J. S. (1997) Protein tyrosine kinases Syk and ZAP-70 display distinct requirements for Src family kinases in immune response receptor signal transduction. J. Immunol. 158, 1650–1659 PubMed

Tsang E., Giannetti A. M., Shaw D., Dinh M., Tse J. K., Gandhi S., Ho H., Wang S., Papp E., and Bradshaw J. M. (2008) Molecular mechanism of the Syk activation switch. J. Biol. Chem. 283, 32650–32659 10.1074/jbc.M806340200 PubMed DOI

Williams B. L., Schreiber K. L., Zhang W., Wange R. L., Samelson L. E., Leibson P. J., and Abraham R. T. (1998) Genetic evidence for differential coupling of Syk family kinases to the T-cell receptor: reconstitution studies in a ZAP-70-deficient Jurkat T-cell line. Mol. Cell Biol. 18, 1388–1399 10.1128/mcb.18.3.1388 PubMed DOI PMC

Lo W. L., Shah N. H., Ahsan N., Horkova V., Stepanek O., Salomon A. R., Kuriyan J., and Weiss A. (2018) Lck promotes Zap70-dependent LAT phosphorylation by bridging Zap70 to LAT. Nat. Immunol. 19, 733–741 10.1038/s41590-018-0131-1 PubMed DOI PMC

Steinberg M., Adjali O., Swainson L., Merida P., Di Bartolo V., Pelletier L., Taylor N., and Noraz N. (2004) T-cell receptor-induced phosphorylation of the ζ chain is efficiently promoted by ZAP-70 but not Syk. Blood 104, 760–767 10.1182/blood-2003-12-4314 PubMed DOI

Iwashima M., Irving B. A., van Oers N. S., Chan A. C., and Weiss A. (1994) Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science 263, 1136–1139 10.1126/science.7509083 PubMed DOI

Rotin D., Margolis B., Mohammadi M., Daly R. J., Daum G., Li N., Fischer E. H., Burgess W. H., Ullrich A., and Schlessinger J. (1992) SH2 domains prevent tyrosine dephosphorylation of the EGF receptor: Identification of Tyr992 as the high-affinity binding site for SH2 domains of phospholipase C gamma. EMBO J. 11, 559–567 10.1002/j.1460-2075.1992.tb05087.x PubMed DOI PMC

Hughes C. E., Sinha U., Pandey A., Eble J. A., O'Callaghan C. A., and Watson S. P. (2013) Critical role for an acidic amino acid region in platelet signaling by the HemITAM (hemi-immunoreceptor tyrosine-based activation motif) containing receptor CLEC-2 (C-type lectin receptor-2). J. Biol. Chem. 288, 5127–5135 10.1074/jbc.M112.411462 PubMed DOI PMC

Latour S., Chow L. M., and Veillette A. (1996) Differential intrinsic enzymatic activity of Syk and Zap-70 protein-tyrosine kinases. J. Biol. Chem. 271, 22782–22790 10.1074/jbc.271.37.22782 PubMed DOI

Balagopalan L., Coussens N. P., Sherman E., Samelson L. E., and Sommers C. L. (2010) The LAT story: A tale of cooperativity, coordination, and choreography. Cold Spring Harb. Perspect. Biol. 2, a005512 10.1101/cshperspect.a005512 PubMed DOI PMC

Lo W. L., Shah N. H., Rubin S. A., Zhang W., Horkova V., Fallahee I. R., Stepanek O., Zon L. I., Kuriyan J., and Weiss A. (2019) Slow phosphorylation of a tyrosine residue in LAT optimizes T cell ligand discrimination. Nat. Immunol. 20, 1481–1493 10.1038/s41590-019-0502-2 PubMed DOI PMC

Arbulo-Echevarria M. M., Narbona-Sánchez I., Fernandez-Ponce C. M., Vico-Barranco I., Rueda-Ygueravide M. D., Dustin M. L., Miazek A., Duran-Ruiz M. C., García-Cózar F., and Aguado E. (2018) A stretch of negatively charged amino acids of linker for activation of T-cell adaptor has a dual role in T-cell antigen receptor intracellular signaling. Front. Immunol. 9, 115 10.3389/fimmu.2018.00115 PubMed DOI PMC

Bielekova B., and Martin R. (2001) Antigen-specific immunomodulation via altered peptide ligands. J. Mol. Med. 79, 552–565 10.1007/s001090100259 PubMed DOI

Madrenas J., Wange R. L., Wang J. L., Isakov N., Samelson L. E., and Germain R. N. (1995) Zeta phosphorylation without ZAP-70 activation induced by TCR antagonists or partial agonists. Science 267, 515–518 10.1126/science.7824949 PubMed DOI

McKeithan T. W. (1995) Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl. Acad. Sci. U. S. A. 92, 5042–5046 10.1073/pnas.92.11.5042 PubMed DOI PMC

Courtney A. H., Lo W. L., and Weiss A. (2018) TCR signaling: Mechanisms of initiation and propagation. Trends Biochem. Sci. 43, 108–123 10.1016/j.tibs.2017.11.008 PubMed DOI PMC

Yousefi O. S., Günther M., Hörner M., Chalupsky J., Wess M., Brandl S. M., Smith R. W., Fleck C., Kunkel T., Zurbriggen M. D., Höfer T., Weber W., and Schamel W. W. (2019) Optogenetic control shows that kinetic proofreading regulates the activity of the T cell receptor. Elife 8, e42475 10.7554/eLife.42475 PubMed DOI PMC

Tischer D. K., and Weiner O. D. (2019) Light-based tuning of ligand half-life supports kinetic proofreading model of T cell signaling. Elife 8, e42498 10.7554/eLife.42498 PubMed DOI PMC

Kralova J., Drobek A., Prochazka J., Spoutil F., Fabisik M., Glatzova D., Borna S., Pokorna J., Skopcova T., Angelisova P., Gregor M., Kovarik P., Sedlacek R., and Brdicka T. (2020) Dysregulated NADPH oxidase promotes bone damage in murine model of autoinflammatory osteomyelitis. J. Immunol. 204, 1607–1620 10.4049/jimmunol.1900953 PubMed DOI

Giaretta I., Madeo D., Bonaguro R., Cappellari A., Rodeghiero F., and Giorgio P. (2000) A comparative evaluation of gene transfer into blood cells using the same retroviral backbone for independent expression of the EGFP and ΔLNGFR marker genes. Haematologica 85, 680–689 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...