Slow phosphorylation of a tyrosine residue in LAT optimizes T cell ligand discrimination
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R24 OD017870
NIH HHS - United States
R37 AI114575
NIAID NIH HHS - United States
U54 DK110805
NIDDK NIH HHS - United States
P30 DK063720
NIDDK NIH HHS - United States
P01 AI091580
NIAID NIH HHS - United States
PubMed
31611699
PubMed Central
PMC6858552
DOI
10.1038/s41590-019-0502-2
PII: 10.1038/s41590-019-0502-2
Knihovny.cz E-zdroje
- MeSH
- adaptorové proteiny signální transdukční imunologie metabolismus MeSH
- aktivace lymfocytů * MeSH
- fosfolipasa C gama metabolismus MeSH
- fosforylace imunologie MeSH
- ligandy MeSH
- membránové proteiny imunologie metabolismus MeSH
- myši MeSH
- protein-tyrosinkináza ZAP-70 metabolismus MeSH
- receptory antigenů T-buněk imunologie metabolismus MeSH
- T-lymfocyty imunologie metabolismus MeSH
- tyrosin metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- fosfolipasa C gama MeSH
- Lat protein, mouse MeSH Prohlížeč
- ligandy MeSH
- membránové proteiny MeSH
- Plcg1 protein, mouse MeSH Prohlížeč
- protein-tyrosinkináza ZAP-70 MeSH
- receptory antigenů T-buněk MeSH
- tyrosin MeSH
- Zap70 protein, mouse MeSH Prohlížeč
Self-non-self discrimination is central to T cell-mediated immunity. The kinetic proofreading model can explain T cell antigen receptor (TCR) ligand discrimination; however, the rate-limiting steps have not been identified. Here, we show that tyrosine phosphorylation of the T cell adapter protein LAT at position Y132 is a critical kinetic bottleneck for ligand discrimination. LAT phosphorylation at Y132, mediated by the kinase ZAP-70, leads to the recruitment and activation of phospholipase C-γ1 (PLC-γ1), an important effector molecule for T cell activation. The slow phosphorylation of Y132, relative to other phosphosites on LAT, is governed by a preceding glycine residue (G131) but can be accelerated by substituting this glycine with aspartate or glutamate. Acceleration of Y132 phosphorylation increases the speed and magnitude of PLC-γ1 activation and enhances T cell sensitivity to weaker stimuli, including weak agonists and self-peptides. These observations suggest that the slow phosphorylation of Y132 acts as a proofreading step to facilitate T cell ligand discrimination.
Department of Chemistry Columbia University New York NY USA
Department of Immunology Duke University Medical Center Durham NC USA
Department of Molecular and Cell Biology University of California Berkeley Berkeley CA USA
Harvard Stem Cell Institute Harvard University Cambridge MA USA
Howard Hughes Medical Institute Boston Children's Hospital and Harvard University Boston MA USA
Howard Hughes Medical Institute University of California Berkeley Berkeley CA USA
Howard Hughes Medical Institute University of California San Francisco San Francisco CA USA
Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Feinerman O, Germain RN & Altan-Bonnet G Quantitative challenges in understanding ligand discrimination by alphabeta T cells. Mol. Immunol 45, 619–631 (2008). doi: 10.1016/j.molimm.2007.03.028. PubMed DOI PMC
Brameshuber M et al. Monomeric TCRs drive T cell antigen recognition. Nat. Immunol 19, 487–496 (2018). doi: 10.1038/s41590-018-0092-4. PubMed DOI PMC
Chakraborty AK & Weiss A Insights into the initiation of TCR signaling. Nat. Immunol 15, 798–807 (2014). doi: 10.1038/ni.2940. PubMed DOI PMC
Huang J et al. A single peptide-major histocompatibility complex ligand triggers digital cytokine secretion in CD4(+) T cells. Immunity 39, 846–857 (2013). doi: 10.1016/j.immuni.2013.08.036. PubMed DOI PMC
Cui W & Mehta P Identifying feasible operating regimes for early T-cell recognition: The speed, energy, accuracy trade-off in kinetic proofreading and adaptive sorting. PLoS ONE 13, e0202331 (2018). doi: 10.1371/journal.pone.0202331. PubMed DOI PMC
McKeithan TW Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl. Acad. Sci. U. S. A 92, 5042–5046 (1995). https://www.ncbi.nlm.nih.gov/pubmed/7761445 PubMed PMC
Dustin ML Stop and go traffic to tune T cell responses. Immunity 21, 305–314 (2004). doi: 10.1016/j.immuni.2004.08.016. PubMed DOI
Lo WL & Allen PM Self-peptides in TCR repertoire selection and peripheral T cell function. Curr. Top. Microbiol. Immunol 373, 49–67 (2014). doi: 10.1007/82_2013_319. PubMed DOI
Siller-Farfan JA & Dushek O Molecular mechanisms of T cell sensitivity to antigen. Immunol. Rev 285, 194–205 (2018). doi: 10.1111/imr.12690. PubMed DOI
Germain RN Computational analysis of T cell receptor signaling and ligand discrimination--past, present, and future. FEBS Lett 584, 4814–4822 (2010). doi: 10.1016/j.febslet.2010.10.027. PubMed DOI PMC
Gaud G, Lesourne R & Love PE Regulatory mechanisms in T cell receptor signalling. Nat. Rev. Immunol, 10.1038/s41577-018-0020-8, 2018/05/24 (2018). doi: 10.1038/s41577-018-0020-8. PubMed DOI
Courtney AH, Lo WL & Weiss A TCR Signaling: Mechanisms of Initiation and Propagation. Trends Biochem. Sci 43, 108–123 (2018). doi: 10.1016/j.tibs.2017.11.008. PubMed DOI PMC
Balagopalan L, Kortum RL, Coussens NP, Barr VA & Samelson LE The linker for activation of T cells (LAT) signaling hub: from signaling complexes to microclusters. J. Biol. Chem 290, 26422–26429 (2015). doi: 10.1074/jbc.R115.665869. PubMed DOI PMC
Andreotti AH, Schwartzberg PL, Joseph RE & Berg LJ T-cell signaling regulated by the Tec family kinase, Itk. Cold Spring Harb Perspect Biol 2, a002287 (2010). doi: 10.1101/cshperspect.a002287. PubMed DOI PMC
Shah NH et al. An electrostatic selection mechanism controls sequential kinase signaling downstream of the T cell receptor. Elife 5 (2016). doi: 10.7554/eLife.20105. PubMed DOI PMC
Shah NH, Lobel M, Weiss A & Kuriyan J Fine-tuning of substrate preferences of the Src-family kinase Lck revealed through a high-throughput specificity screen. Elife 7 (2018). doi: 10.7554/eLife.35190. PubMed DOI PMC
Houtman JC, Houghtling RA, Barda-Saad M, Toda Y & Samelson LE Early phosphorylation kinetics of proteins involved in proximal TCR-mediated signaling pathways. J. Immunol 175, 2449–2458 (2005). https://www.ncbi.nlm.nih.gov/pubmed/16081816 PubMed PMC
Schoenborn JR, Tan YX, Zhang C, Shokat KM & Weiss A Feedback circuits monitor and adjust basal Lck-dependent events in T cell receptor signaling. Sci Signal 4, ra59 (2011). doi: 10.1126/scisignal.2001893. PubMed DOI PMC
Zhang W, Sloan-Lancaster J, Kitchen J, Trible RP & Samelson LE LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92, 83–92 (1998). https://www.ncbi.nlm.nih.gov/pubmed/9489702 PubMed
Stoica B et al. The amino-terminal Src homology 2 domain of phospholipase C gamma 1 is essential for TCR-induced tyrosine phosphorylation of phospholipase C gamma 1. J. Immunol 160, 1059–1066 (1998). https://www.ncbi.nlm.nih.gov/pubmed/9570517 PubMed
Songyang Z et al. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778 (1993). https://www.ncbi.nlm.nih.gov/pubmed/7680959 PubMed
Lo WL et al. Lck promotes Zap70-dependent LAT phosphorylation by bridging Zap70 to LAT. Nat. Immunol 19, 733–741 (2018). doi: 10.1038/s41590-018-0131-1. PubMed DOI PMC
Rosette C et al. The impact of duration versus extent of TCR occupancy on T cell activation: a revision of the kinetic proofreading model. Immunity 15, 59–70 (2001). https://www.ncbi.nlm.nih.gov/pubmed/11485738 PubMed
Hogquist KA et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994). https://www.ncbi.nlm.nih.gov/pubmed/8287475 PubMed
Hogquist KA et al. Identification of a naturally occurring ligand for thymic positive selection. Immunity 6, 389–399 (1997). https://www.ncbi.nlm.nih.gov/pubmed/9133418 PubMed
Stepanek O et al. Coreceptor scanning by the T cell receptor provides a mechanism for T cell tolerance. Cell 159, 333–345 (2014). doi: 10.1016/j.cell.2014.08.042. PubMed DOI PMC
Sun S, Zhang X, Tough DF & Sprent J Type I interferon-mediated stimulation of T cells by CpG DNA. J. Exp. Med 188, 2335–2342 (1998). https://www.ncbi.nlm.nih.gov/pubmed/9858519 PubMed PMC
Shen S, Zhu M, Lau J, Chuck M & Zhang W The essential role of LAT in thymocyte development during transition from the double-positive to single-positive stage. J. Immunol 182, 5596–5604 (2009). doi: 10.4049/jimmunol.0803170. PubMed DOI PMC
Donnelly ML et al. Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’. J. Gen. Virol 82, 1013–1025 (2001). doi: 10.1099/0022-1317-82-5-1013. PubMed DOI
Covacu R et al. System-wide Analysis of the T Cell Response. Cell Rep 14, 2733–2744 (2016). doi: 10.1016/j.celrep.2016.02.056. PubMed DOI PMC
Flajnik MF A cold-blooded view of adaptive immunity. Nat. Rev. Immunol 18, 438–453 (2018). doi: 10.1038/s41577-018-0003-9. PubMed DOI PMC
Conrad ML, Davis WC & Koop BF TCR and CD3 antibody cross-reactivity in 44 species. Cytometry A 71, 925–933 (2007). doi: 10.1002/cyto.a.20435. PubMed DOI
Weiss A, Shields R, Newton M, Manger B & Imboden J Ligand-receptor interactions required for commitment to the activation of the interleukin 2 gene. J. Immunol 138, 2169–2176 (1987). https://www.ncbi.nlm.nih.gov/pubmed/3104454 PubMed
Weiss A, Imboden J, Shoback D & Stobo J Role of T3 surface molecules in human T-cell activation: T3-dependent activation results in an increase in cytoplasmic free calcium. Proc. Natl. Acad. Sci. U. S. A 81, 4169–4173 (1984). https://www.ncbi.nlm.nih.gov/pubmed/6234599 PubMed PMC
Juang J et al. Peptide-MHC heterodimers show that thymic positive selection requires a more restricted set of self-peptides than negative selection. J. Exp. Med 207, 1223–1234 (2010). doi: 10.1084/jem.20092170. PubMed DOI PMC
Bartelt RR & Houtman JC The adaptor protein LAT serves as an integration node for signaling pathways that drive T cell activation. Wiley Interdiscip Rev Syst Biol Med 5, 101–110 (2013). doi: 10.1002/wsbm.1194. PubMed DOI PMC
Houtman JC et al. Binding specificity of multiprotein signaling complexes is determined by both cooperative interactions and affinity preferences. Biochemistry (Mosc.) 43, 4170–4178 (2004). doi: 10.1021/bi0357311. PubMed DOI
Zhu M, Janssen E & Zhang W Minimal requirement of tyrosine residues of linker for activation of T cells in TCR signaling and thymocyte development. J. Immunol 170, 325–333 (2003). https://www.ncbi.nlm.nih.gov/pubmed/12496416 PubMed
Aguado E et al. Induction of T helper type 2 immunity by a point mutation in the LAT adaptor. Science 296, 2036–2040 (2002). doi: 10.1126/science.1069057. PubMed DOI
Sommers CL et al. A LAT mutation that inhibits T cell development yet induces lymphoproliferation. Science 296, 2040–2043 (2002). doi: 10.1126/science.1069066. PubMed DOI
Kortum RL et al. A phospholipase C-gamma1-independent, RasGRP1-ERK-dependent pathway drives lymphoproliferative disease in linker for activation of T cells-Y136F mutant mice. J. Immunol 190, 147–158 (2013). doi: 10.4049/jimmunol.1201458. PubMed DOI PMC
Miyaji M et al. Genetic evidence for the role of Erk activation in a lymphoproliferative disease of mice. Proc. Natl. Acad. Sci. U. S. A 106, 14502–14507 (2009). doi: 10.1073/pnas.0903894106. PubMed DOI PMC
Lin J & Weiss A Identification of the minimal tyrosine residues required for linker for activation of T cell function. J. Biol. Chem 276, 29588–29595 (2001). doi: 10.1074/jbc.M102221200. PubMed DOI
Zhang W et al. Association of Grb2, Gads, and phospholipase C-gamma 1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell angigen receptor-mediated signaling. J. Biol. Chem 275, 23355–23361 (2000). doi: 10.1074/jbc.M000404200. PubMed DOI
Yousefi OS et al. Optogenetic control shows that kinetic proofreading regulates the activity of the T cell receptor. Elife 8 (2019). doi: 10.7554/eLife.42475. PubMed DOI PMC
Tischer DK & Weiner OD Light-based tuning of ligand half-life supports kinetic proofreading model of T cell signaling. Elife 8 (2019). doi: 10.7554/eLife.42498. PubMed DOI PMC
Tang MA, Motoshima H & Watanabe K Cold adaptation: structural and functional characterizations of psychrophilic and mesophilic acetate kinase. Protein J 33, 313–322 (2014). doi: 10.1007/s10930-014-9562-1. PubMed DOI
Saavedra HG, Wrabl JO, Anderson JA, Li J & Hilser VJ Dynamic allostery can drive cold adaptation in enzymes. Nature 558, 324–328 (2018). doi: 10.1038/s41586-018-0183-2. PubMed DOI PMC
Flajnik MF & Kasahara M Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat. Rev. Genet 11, 47–59 (2010). doi: 10.1038/nrg2703. PubMed DOI PMC
Hirano M, Das S, Guo P & Cooper MD The evolution of adaptive immunity in vertebrates. Adv. Immunol 109, 125–157 (2011). doi: 10.1016/B978-0-12-387664-5.00004-2. PubMed DOI
Pelosi M et al. Tyrosine 319 in the interdomain B of ZAP-70 is a binding site for the Src homology 2 domain of Lck. J. Biol. Chem 274, 14229–14237 (1999). https://www.ncbi.nlm.nih.gov/pubmed/10318843 PubMed
Thill PA, Weiss A & Chakraborty AK Phosphorylation of a Tyrosine Residue on Zap70 by Lck and Its Subsequent Binding via an SH2 Domain May Be a Key Gatekeeper of T Cell Receptor Signaling In Vivo. Mol. Cell. Biol 36, 2396–2402 (2016). doi: 10.1128/MCB.00165-16. PubMed DOI PMC
Lo WL, Solomon BD, Donermeyer DL, Hsieh CS & Allen PM T cell immunodominance is dictated by the positively selecting self-peptide. Elife 3, e01457 (2014). doi: 10.7554/eLife.01457. PubMed DOI PMC
Sayers EW et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 37, D5–15 (2009). doi: 10.1093/nar/gkn741. PubMed DOI PMC
Langenau DM et al. In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proc. Natl. Acad. Sci. U. S. A 101, 7369–7374 (2004). doi: 10.1073/pnas.0402248101. PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ Basic local alignment search tool. J. Mol. Biol 215, 403–410 (1990). doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Pruitt KD, Tatusova T & Maglott DR NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33, D501–504 (2005). doi: 10.1093/nar/gki025. PubMed DOI PMC
Crooks GE, Hon G, Chandonia JM & Brenner SE WebLogo: a sequence logo generator. Genome Res 14, 1188–1190 (2004). doi: 10.1101/gr.849004. PubMed DOI PMC
Identification of GC-rich LAT genes in birds