Slow phosphorylation of a tyrosine residue in LAT optimizes T cell ligand discrimination

. 2019 Nov ; 20 (11) : 1481-1493. [epub] 20191014

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31611699

Grantová podpora
R24 OD017870 NIH HHS - United States
R37 AI114575 NIAID NIH HHS - United States
U54 DK110805 NIDDK NIH HHS - United States
P30 DK063720 NIDDK NIH HHS - United States
P01 AI091580 NIAID NIH HHS - United States

Odkazy

PubMed 31611699
PubMed Central PMC6858552
DOI 10.1038/s41590-019-0502-2
PII: 10.1038/s41590-019-0502-2
Knihovny.cz E-zdroje

Self-non-self discrimination is central to T cell-mediated immunity. The kinetic proofreading model can explain T cell antigen receptor (TCR) ligand discrimination; however, the rate-limiting steps have not been identified. Here, we show that tyrosine phosphorylation of the T cell adapter protein LAT at position Y132 is a critical kinetic bottleneck for ligand discrimination. LAT phosphorylation at Y132, mediated by the kinase ZAP-70, leads to the recruitment and activation of phospholipase C-γ1 (PLC-γ1), an important effector molecule for T cell activation. The slow phosphorylation of Y132, relative to other phosphosites on LAT, is governed by a preceding glycine residue (G131) but can be accelerated by substituting this glycine with aspartate or glutamate. Acceleration of Y132 phosphorylation increases the speed and magnitude of PLC-γ1 activation and enhances T cell sensitivity to weaker stimuli, including weak agonists and self-peptides. These observations suggest that the slow phosphorylation of Y132 acts as a proofreading step to facilitate T cell ligand discrimination.

Zobrazit více v PubMed

Feinerman O, Germain RN & Altan-Bonnet G Quantitative challenges in understanding ligand discrimination by alphabeta T cells. Mol. Immunol 45, 619–631 (2008). doi: 10.1016/j.molimm.2007.03.028. PubMed DOI PMC

Brameshuber M et al. Monomeric TCRs drive T cell antigen recognition. Nat. Immunol 19, 487–496 (2018). doi: 10.1038/s41590-018-0092-4. PubMed DOI PMC

Chakraborty AK & Weiss A Insights into the initiation of TCR signaling. Nat. Immunol 15, 798–807 (2014). doi: 10.1038/ni.2940. PubMed DOI PMC

Huang J et al. A single peptide-major histocompatibility complex ligand triggers digital cytokine secretion in CD4(+) T cells. Immunity 39, 846–857 (2013). doi: 10.1016/j.immuni.2013.08.036. PubMed DOI PMC

Cui W & Mehta P Identifying feasible operating regimes for early T-cell recognition: The speed, energy, accuracy trade-off in kinetic proofreading and adaptive sorting. PLoS ONE 13, e0202331 (2018). doi: 10.1371/journal.pone.0202331. PubMed DOI PMC

McKeithan TW Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl. Acad. Sci. U. S. A 92, 5042–5046 (1995). https://www.ncbi.nlm.nih.gov/pubmed/7761445 PubMed PMC

Dustin ML Stop and go traffic to tune T cell responses. Immunity 21, 305–314 (2004). doi: 10.1016/j.immuni.2004.08.016. PubMed DOI

Lo WL & Allen PM Self-peptides in TCR repertoire selection and peripheral T cell function. Curr. Top. Microbiol. Immunol 373, 49–67 (2014). doi: 10.1007/82_2013_319. PubMed DOI

Siller-Farfan JA & Dushek O Molecular mechanisms of T cell sensitivity to antigen. Immunol. Rev 285, 194–205 (2018). doi: 10.1111/imr.12690. PubMed DOI

Germain RN Computational analysis of T cell receptor signaling and ligand discrimination--past, present, and future. FEBS Lett 584, 4814–4822 (2010). doi: 10.1016/j.febslet.2010.10.027. PubMed DOI PMC

Gaud G, Lesourne R & Love PE Regulatory mechanisms in T cell receptor signalling. Nat. Rev. Immunol, 10.1038/s41577-018-0020-8, 2018/05/24 (2018). doi: 10.1038/s41577-018-0020-8. PubMed DOI

Courtney AH, Lo WL & Weiss A TCR Signaling: Mechanisms of Initiation and Propagation. Trends Biochem. Sci 43, 108–123 (2018). doi: 10.1016/j.tibs.2017.11.008. PubMed DOI PMC

Balagopalan L, Kortum RL, Coussens NP, Barr VA & Samelson LE The linker for activation of T cells (LAT) signaling hub: from signaling complexes to microclusters. J. Biol. Chem 290, 26422–26429 (2015). doi: 10.1074/jbc.R115.665869. PubMed DOI PMC

Andreotti AH, Schwartzberg PL, Joseph RE & Berg LJ T-cell signaling regulated by the Tec family kinase, Itk. Cold Spring Harb Perspect Biol 2, a002287 (2010). doi: 10.1101/cshperspect.a002287. PubMed DOI PMC

Shah NH et al. An electrostatic selection mechanism controls sequential kinase signaling downstream of the T cell receptor. Elife 5 (2016). doi: 10.7554/eLife.20105. PubMed DOI PMC

Shah NH, Lobel M, Weiss A & Kuriyan J Fine-tuning of substrate preferences of the Src-family kinase Lck revealed through a high-throughput specificity screen. Elife 7 (2018). doi: 10.7554/eLife.35190. PubMed DOI PMC

Houtman JC, Houghtling RA, Barda-Saad M, Toda Y & Samelson LE Early phosphorylation kinetics of proteins involved in proximal TCR-mediated signaling pathways. J. Immunol 175, 2449–2458 (2005). https://www.ncbi.nlm.nih.gov/pubmed/16081816 PubMed PMC

Schoenborn JR, Tan YX, Zhang C, Shokat KM & Weiss A Feedback circuits monitor and adjust basal Lck-dependent events in T cell receptor signaling. Sci Signal 4, ra59 (2011). doi: 10.1126/scisignal.2001893. PubMed DOI PMC

Zhang W, Sloan-Lancaster J, Kitchen J, Trible RP & Samelson LE LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92, 83–92 (1998). https://www.ncbi.nlm.nih.gov/pubmed/9489702 PubMed

Stoica B et al. The amino-terminal Src homology 2 domain of phospholipase C gamma 1 is essential for TCR-induced tyrosine phosphorylation of phospholipase C gamma 1. J. Immunol 160, 1059–1066 (1998). https://www.ncbi.nlm.nih.gov/pubmed/9570517 PubMed

Songyang Z et al. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778 (1993). https://www.ncbi.nlm.nih.gov/pubmed/7680959 PubMed

Lo WL et al. Lck promotes Zap70-dependent LAT phosphorylation by bridging Zap70 to LAT. Nat. Immunol 19, 733–741 (2018). doi: 10.1038/s41590-018-0131-1. PubMed DOI PMC

Rosette C et al. The impact of duration versus extent of TCR occupancy on T cell activation: a revision of the kinetic proofreading model. Immunity 15, 59–70 (2001). https://www.ncbi.nlm.nih.gov/pubmed/11485738 PubMed

Hogquist KA et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994). https://www.ncbi.nlm.nih.gov/pubmed/8287475 PubMed

Hogquist KA et al. Identification of a naturally occurring ligand for thymic positive selection. Immunity 6, 389–399 (1997). https://www.ncbi.nlm.nih.gov/pubmed/9133418 PubMed

Stepanek O et al. Coreceptor scanning by the T cell receptor provides a mechanism for T cell tolerance. Cell 159, 333–345 (2014). doi: 10.1016/j.cell.2014.08.042. PubMed DOI PMC

Sun S, Zhang X, Tough DF & Sprent J Type I interferon-mediated stimulation of T cells by CpG DNA. J. Exp. Med 188, 2335–2342 (1998). https://www.ncbi.nlm.nih.gov/pubmed/9858519 PubMed PMC

Shen S, Zhu M, Lau J, Chuck M & Zhang W The essential role of LAT in thymocyte development during transition from the double-positive to single-positive stage. J. Immunol 182, 5596–5604 (2009). doi: 10.4049/jimmunol.0803170. PubMed DOI PMC

Donnelly ML et al. Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’. J. Gen. Virol 82, 1013–1025 (2001). doi: 10.1099/0022-1317-82-5-1013. PubMed DOI

Covacu R et al. System-wide Analysis of the T Cell Response. Cell Rep 14, 2733–2744 (2016). doi: 10.1016/j.celrep.2016.02.056. PubMed DOI PMC

Flajnik MF A cold-blooded view of adaptive immunity. Nat. Rev. Immunol 18, 438–453 (2018). doi: 10.1038/s41577-018-0003-9. PubMed DOI PMC

Conrad ML, Davis WC & Koop BF TCR and CD3 antibody cross-reactivity in 44 species. Cytometry A 71, 925–933 (2007). doi: 10.1002/cyto.a.20435. PubMed DOI

Weiss A, Shields R, Newton M, Manger B & Imboden J Ligand-receptor interactions required for commitment to the activation of the interleukin 2 gene. J. Immunol 138, 2169–2176 (1987). https://www.ncbi.nlm.nih.gov/pubmed/3104454 PubMed

Weiss A, Imboden J, Shoback D & Stobo J Role of T3 surface molecules in human T-cell activation: T3-dependent activation results in an increase in cytoplasmic free calcium. Proc. Natl. Acad. Sci. U. S. A 81, 4169–4173 (1984). https://www.ncbi.nlm.nih.gov/pubmed/6234599 PubMed PMC

Juang J et al. Peptide-MHC heterodimers show that thymic positive selection requires a more restricted set of self-peptides than negative selection. J. Exp. Med 207, 1223–1234 (2010). doi: 10.1084/jem.20092170. PubMed DOI PMC

Bartelt RR & Houtman JC The adaptor protein LAT serves as an integration node for signaling pathways that drive T cell activation. Wiley Interdiscip Rev Syst Biol Med 5, 101–110 (2013). doi: 10.1002/wsbm.1194. PubMed DOI PMC

Houtman JC et al. Binding specificity of multiprotein signaling complexes is determined by both cooperative interactions and affinity preferences. Biochemistry (Mosc.) 43, 4170–4178 (2004). doi: 10.1021/bi0357311. PubMed DOI

Zhu M, Janssen E & Zhang W Minimal requirement of tyrosine residues of linker for activation of T cells in TCR signaling and thymocyte development. J. Immunol 170, 325–333 (2003). https://www.ncbi.nlm.nih.gov/pubmed/12496416 PubMed

Aguado E et al. Induction of T helper type 2 immunity by a point mutation in the LAT adaptor. Science 296, 2036–2040 (2002). doi: 10.1126/science.1069057. PubMed DOI

Sommers CL et al. A LAT mutation that inhibits T cell development yet induces lymphoproliferation. Science 296, 2040–2043 (2002). doi: 10.1126/science.1069066. PubMed DOI

Kortum RL et al. A phospholipase C-gamma1-independent, RasGRP1-ERK-dependent pathway drives lymphoproliferative disease in linker for activation of T cells-Y136F mutant mice. J. Immunol 190, 147–158 (2013). doi: 10.4049/jimmunol.1201458. PubMed DOI PMC

Miyaji M et al. Genetic evidence for the role of Erk activation in a lymphoproliferative disease of mice. Proc. Natl. Acad. Sci. U. S. A 106, 14502–14507 (2009). doi: 10.1073/pnas.0903894106. PubMed DOI PMC

Lin J & Weiss A Identification of the minimal tyrosine residues required for linker for activation of T cell function. J. Biol. Chem 276, 29588–29595 (2001). doi: 10.1074/jbc.M102221200. PubMed DOI

Zhang W et al. Association of Grb2, Gads, and phospholipase C-gamma 1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell angigen receptor-mediated signaling. J. Biol. Chem 275, 23355–23361 (2000). doi: 10.1074/jbc.M000404200. PubMed DOI

Yousefi OS et al. Optogenetic control shows that kinetic proofreading regulates the activity of the T cell receptor. Elife 8 (2019). doi: 10.7554/eLife.42475. PubMed DOI PMC

Tischer DK & Weiner OD Light-based tuning of ligand half-life supports kinetic proofreading model of T cell signaling. Elife 8 (2019). doi: 10.7554/eLife.42498. PubMed DOI PMC

Tang MA, Motoshima H & Watanabe K Cold adaptation: structural and functional characterizations of psychrophilic and mesophilic acetate kinase. Protein J 33, 313–322 (2014). doi: 10.1007/s10930-014-9562-1. PubMed DOI

Saavedra HG, Wrabl JO, Anderson JA, Li J & Hilser VJ Dynamic allostery can drive cold adaptation in enzymes. Nature 558, 324–328 (2018). doi: 10.1038/s41586-018-0183-2. PubMed DOI PMC

Flajnik MF & Kasahara M Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat. Rev. Genet 11, 47–59 (2010). doi: 10.1038/nrg2703. PubMed DOI PMC

Hirano M, Das S, Guo P & Cooper MD The evolution of adaptive immunity in vertebrates. Adv. Immunol 109, 125–157 (2011). doi: 10.1016/B978-0-12-387664-5.00004-2. PubMed DOI

Pelosi M et al. Tyrosine 319 in the interdomain B of ZAP-70 is a binding site for the Src homology 2 domain of Lck. J. Biol. Chem 274, 14229–14237 (1999). https://www.ncbi.nlm.nih.gov/pubmed/10318843 PubMed

Thill PA, Weiss A & Chakraborty AK Phosphorylation of a Tyrosine Residue on Zap70 by Lck and Its Subsequent Binding via an SH2 Domain May Be a Key Gatekeeper of T Cell Receptor Signaling In Vivo. Mol. Cell. Biol 36, 2396–2402 (2016). doi: 10.1128/MCB.00165-16. PubMed DOI PMC

Lo WL, Solomon BD, Donermeyer DL, Hsieh CS & Allen PM T cell immunodominance is dictated by the positively selecting self-peptide. Elife 3, e01457 (2014). doi: 10.7554/eLife.01457. PubMed DOI PMC

Sayers EW et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 37, D5–15 (2009). doi: 10.1093/nar/gkn741. PubMed DOI PMC

Langenau DM et al. In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proc. Natl. Acad. Sci. U. S. A 101, 7369–7374 (2004). doi: 10.1073/pnas.0402248101. PubMed DOI PMC

Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ Basic local alignment search tool. J. Mol. Biol 215, 403–410 (1990). doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Pruitt KD, Tatusova T & Maglott DR NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33, D501–504 (2005). doi: 10.1093/nar/gki025. PubMed DOI PMC

Crooks GE, Hon G, Chandonia JM & Brenner SE WebLogo: a sequence logo generator. Genome Res 14, 1188–1190 (2004). doi: 10.1101/gr.849004. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...