Detailed insight into chromium species released from failed CoCrMo implants: Ex vivo periprosthetic tissues study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36507699
DOI
10.1002/jbm.b.35149
Knihovny.cz E-zdroje
- Klíčová slova
- aseptic loosening, inductively coupled plasma mass spectrometry, speciation, tissue samples, total hip/knee replacement,
- MeSH
- chrom MeSH
- kovy MeSH
- kyčelní protézy * MeSH
- lidé MeSH
- náhrada kyčelního kloubu * MeSH
- selhání protézy MeSH
- totální endoprotéza kolene * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chrom MeSH
- chromium hexavalent ion MeSH Prohlížeč
- kovy MeSH
This unique study provides information on Cr species and their distribution in periprosthetic tissues of patients with metal-on-polyethylene joint implants. Co-Cr-Mo alloy has been widely used in joint replacement and represents a source of metal derived species. In the case of chromium, previous studies on periprosthetic tissues revealed mainly Cr(III) distribution, whereas the potential release of carcinogenic Cr(VI) species has been still a subject of debate. Here, an analytical approach utilizing speciation and fractionation was developed to analyze periprosthetic tissue samples collected from wide range of patients with failed total hip or knee replacements. The results reveal that Cr(III) is mainly released in the form of insoluble CrPO4 and Cr2 O3 particles. The highest Cr contents were found in periprosthetic tissues of patients suffering from aseptic loosening and having more Cr-based implants in the body. Cr species penetrated tissue layers, but their levels decreased with the distance from an implant. The detailed speciation/fractionation study carried out using the set of consecutive periprosthetic tissues of a patient with extensive metallosis showed the presence of trace amounts of free Cr(III), nanoparticles, and metal-protein complexes, but the majority of Cr still occurred in CrPO4 form. Carcinogenic Cr(VI) species were not detected. Up to date, there is no published human tissue study focused on the detailed speciation of both soluble and insoluble Cr-based species in the context of failing total hip and knee replacements.
Zobrazit více v PubMed
Bijukumar DR, Segu A, Souza JCM, et al. Systemic and local toxicity of metal debris released from hip prostheses: a review of experimental approaches. Nanomed Nanotechnol. 2018;14(3):951-963.
UZIS. Narodni registr kloubnich nahrad. 2020.
Bormann T, Mai PT, Gibmeier J, Sonntag R, Müller U, Kretzer JP. Corrosion behavior of surface-treated metallic implant materials. Materials (Basel). 2020;13(9):1-15.
Wimmer MA, Radice S, Janssen D, Fischer A. Fretting-corrosion of CoCr-alloys against TiAl6V4: the importance of molybdenum in oxidative biological environments. Wear. 2021;477:203813.
Gallo J, Goodman SB, Konttinen YT, Wimmer MA, Holinka M. Osteolysis around total knee arthroplasty: a review of pathogenetic mechanisms. Acta Biomater. 2013;9(9):8046-8058.
Matusiewicz H. Potential release of in vivo trace metals from metallic medical implants in the human body: from ions to nanoparticles-a systematic analytical review. Acta Biomater. 2014;10(6):2379-2403.
Kuba M, Pluháček T, Hobza M, et al. Content of distinct metals in periprosthetic tissues and pseudosynovial joint fluid in patients with total hip arthroplasty. J Biomed Mater Res B. 2018;107B:454-462.
Pechancová R, Pluháček T, Gallo J, Milde D. Study of chromium species release in blood and joint effusion utilizing HPLC-ICP-MS. Talanta. 2018;185:370-375.
Catelas I, Campbell PA, Bobyn JD, Medley JB, Huk OL. Wear particles from metal-on-metal total hip replacements: effects of implant design and implantation time. Proc Inst Mech Eng Part H. 2006;220(H2):195-208.
Middleton S, Toms A. Allergy in total knee arthroplasty: a review of the facts. Bone Joint J. 2016;98-B(4):437-441.
Cornelis RC, Crews H, Heumann KG. Handbook of elemental speciation II species in the environment. Food Med Occup Health Chichester. 2004;1-772.
Swiatkowska I, Mosselmans JFW, Geraki T, et al. Synchrotron analysis of human organ tissue exposed to implant material. J Trace Elem Med Biol. 2018;46:128-137.
Pechancova R, Pluhacek T, Milde D. Recent advances in chromium speciation in biological samples. Spectrochim Acta Part B. 2019;152:109-122.
Di Laura A, Quinn PD, Panagiotopoulou VC, et al. The chemical form of metal species released from corroded taper junctions of hip implants: synchrotron analysis of patient tissue. Sci Rep. 2017;7:1-13.
Goode AE, Perkins JM, Sandison A, et al. Chemical speciation of nanoparticles surrounding metal-on-metal hips. Chem Commun. 2012;48(67):8335-8337.
Hart AJ, Quinn PD, Sampson B, et al. The chemical form of metallic debris in tissues surrounding metal-on-metal hips with unexplained failure. Acta Biomater. 2010;6(11):4439-4446.
Hart AJ, Sandison A, Quinn P, et al. Microfocus study of metal distribution and speciation in tissue extracted from revised metal on metal hip implants. J. Phys. Conf. Ser. 2009;190:1-5.
Wang YF, Su H, Gu YL, Song X, Zhao J. Carcinogenicity of chromium and chemoprevention: a brief update. Onco Targets Ther. 2017;10:4065-4079.
Milacic R, Scancar J. Cr speciation in foodstuffs, biological and environmental samples: methodological approaches and analytical challenges - a critical review. Trends Analyt Chem. 2020;127:115888.
Merritt K, Brown SA. Release of hexavalent chromium from corrosion of stainless-steel and cobalt-chromium alloys. J Biomed Mater Res. 1995;29(5):627-633.
Cornelis R. Handbook of Elemental Speciation: Techniques and Methodology. John Wiley Sons; 2003.
Delafiori J, Ring G, Furey A. Clinical applications of HPLC-ICP-MS element speciation: a review. Talanta. 2016;153:306-331.
Montes-Bayon M, DeNicola K, Caruso JA. Liquid chromatography-inductively coupled plasma mass spectrometry. J Chromatogr A. 2003;1000(1-2):457-476.
Pechancová R, Gallo J, Milde D, Pluháček T. Ion-exchange HPLC-ICP-MS: a new window to chromium speciation in biological tissues. Talanta. 2020;218:121150.
Saraiva M, Chekri R, Leufroy A, Guérin T, Sloth JJ, Jitaru P. Development and validation of a single run method based on species specific isotope dilution and HPLC-ICP-MS for simultaneous species interconversion correction and speciation analysis of Cr(III)/Cr(VI) in meat and dairy products. Talanta. 2021;222:121538.
Doker S, Mounicou S, Dogan M, et al. Probing the metal-homeostatis effects of the administration of chromium(VI) to mice by ICP MS and size-exclusion chromatography-ICP MS. Metallomics. 2010;2(8):549-555.
Gray EP, Coleman JG, Bednar AJ, Kennedy AJ, Ranville JF, Higgins CP. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry. Environ Sci Technol. 2013;47(24):14315-14323.
Hobza M, Milde D, Slobodová Z, et al. The number of lymphocytes increases in the periprosthetic tissues with increasing time of implant service in non-metal-on-metal total joint arthroplasties: a role of metallic byproducts? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2020;164:416-427.
Belbachir K, Noreen R, Gouspillou G, Petibois C. Collagen types analysis and differentiation by FTIR spectroscopy. Anal Bioanal Chem. 2009;395(3):829-837.
Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A. 6th ed. Wiley; 2009.
Liu S, Hall DJ, McCarthy SM, et al. Fourier transform infrared spectroscopic imaging of wear and corrosion products within joint capsule tissue from total hip replacements patients. J Biomed Mater Res Part B. 2020;108(2):513-526.
Liu S, Hall DJ, CJD V, et al. Simultaneous characterization of implant Wear and Tribocorrosion debris within its corresponding tissue response using infrared chemical imaging. Biotribology. 2021;26:100163.
Vincent JB. The biochemistry of chromium. J Nutr. 2000;130(4):715-718.
Grose A, Gonzalez Della Valle A, Bullough P, et al. High failure rate of a modern, proximally roughened, cemented stem for total hip arthroplasty. Int Orthop. 2006;30(4):243-247.
Gruen TA, McNeice GM, Amstutz HC. "modes of failure" of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res. 1979;141:17-27.
Tkaczyk C, Huk OL, Mwale F, et al. Investigation of the binding of Cr(III) complexes to bovine and human serum proteins: a proteomic approach. J Biomed Mater Res A. 2010;94A(1):214-222.
Koronfel MA, Goode AE, Gomez-Gonzalez MA, et al. Chemical evolution of CoCrMo wear particles: an in situ characterization study. J Phys Chem C. 2019;123(15):9894-9901.
Simoes TA, Bryant MG, Brown AP, et al. Evidence for the dissolution of molybdenum during tribocorrosion of CoCrMo hip implants in the presence of serum protein. Acta Biomater. 2016;45:410-418.
Liao Y, Pourzal R, Wimmer MA, Jacobs JJ, Fischer A, Marks LD. Graphitic Tribological layers in metal-on-metal hip replacements. Science. 2011;334(6063):1687-1690.
Mathew MT, Nagelli C, Pourzal R, et al. Tribolayer formation in a metal-on-metal (MoM) hip joint: an electrochemical investigation. J Mech Behav Biomed Mater. 2014;29:199-212.
Cheung AC, Banerjee S, Cherian JJ, et al. Systemic cobalt toxicity from total hip arthroplasties review of a rare condition part 1-history, mechanism, measurements, and pathophysiology. Bone Joint J. 2016;98B(1):6-13.
Schoon J, Hesse B, Rakow A, et al. Metal-specific biomaterial accumulation in human Peri-implant bone and bone marrow. Adv Science. 2020;7(20):2000412.
Goodman SB, Gallo J, Gibon E, Takagi M. Diagnosis and management of implant debris-associated inflammation. Expert Rev Med Devices. 2020;17(1):41-56.
Silva D, Arcos C, Montero C, et al. A Tribological and ion released research of Ti-materials for medical devices. Materials. 2022;15(1):1-16.