Microscopic Kinetics in Poly(Methyl Methacrylate) Exposed to a Single Ultra-Short XUV/X-ray Laser Pulse
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No. LTT17015 and No. LM2015083
Czech Ministry of Education, Youth and Sports
No. 20-08452S
Czech Science Foundation
PubMed
34771111
PubMed Central
PMC8588068
DOI
10.3390/molecules26216701
PII: molecules26216701
Knihovny.cz E-zdroje
- Klíčová slova
- PMMA, ablation, band gap collapse, free-electron laser, nonthermal melting,
- Publikační typ
- časopisecké články MeSH
We study the behavior of poly(methyl methacrylate) (PMMA) exposed to femtosecond pulses of extreme ultraviolet and X-ray laser radiation in the single-shot damage regime. The employed microscopic simulation traces induced electron cascades, the thermal energy exchange of electrons with atoms, nonthermal modification of the interatomic potential, and a triggered atomic response. We identify that the nonthermal hydrogen decoupling triggers ultrafast fragmentation of PMMA strains at the absorbed threshold dose of ~0.07 eV/atom. At higher doses, more hydrogen atoms detach from their parental molecules, which, at the dose of ~0.5 eV/atom, leads to a complete separation of hydrogens from carbon and oxygen atoms and fragmentation of MMA molecules. At the dose of ~0.7 eV/atom, the band gap completely collapses indicating that a metallic liquid is formed with complete atomic disorder. An estimated single-shot ablation threshold and a crater depth as functions of fluence agree well with the experimental data collected.
Zobrazit více v PubMed
Chalupský J., Burian T., Hájková V., Juha L., Polcar T., Gaudin J., Nagasono M., Sobierajski R., Yabashi M., Krzywinski J. Fluence scan: An unexplored property of a laser beam. Opt. Express. 2013;21:26363. doi: 10.1364/OE.21.026363. PubMed DOI
Vozda V., Burian T., Hájková V., Juha L., Enkisch H., Faatz B., Hermann M., Jacyna I., Jurek M., Keitel B., et al. Characterization of megahertz X-ray laser beams by multishot desorption imprints in PMMA. Opt. Express. 2020;28:25664. doi: 10.1364/OE.396755. PubMed DOI
Ravi-Kumar S., Lies B., Zhang X., Lyu H., Qin H. Laser ablation of polymers: A review. Polym. Int. 2019;68:1391–1401. doi: 10.1002/pi.5834. DOI
Yingling Y.G., Garrison B.J. Coarse-Grained Model of the Interaction of Light with Polymeric Material: Onset of Ablation. J. Phys. Chem. B. 2005;109:16482–16489. doi: 10.1021/jp0527711. PubMed DOI
Burian T., Chalupský J., Hájková V., Toufarová M., Vorlíček V., Hau-Riege S., Krzywinski J., Bozek J.D., Bostedt C., Graf A.T., et al. Subthreshold erosion of an organic polymer induced by multiple shots of an X-ray free-electron laser. Phys. Rev. Appl. 2020;14:34057. doi: 10.1103/PhysRevApplied.14.034057. DOI
Guay J.M., Villafranca A., Baset F., Popov K., Ramunno L., Bhardwaj V.R. Polarization-dependent femtosecond laser ablation of poly-methyl methacrylate. New J. Phys. 2012;14:85010. doi: 10.1088/1367-2630/14/8/085010. DOI
Mahan G.D., Cole H.S., Liu Y.S., Philipp H.R. Theory of polymer ablation. Appl. Phys. Lett. 1988;53:2377–2379. doi: 10.1063/1.100235. DOI
Rossbach J., Schneider J.R., Wurth W. 10 years of pioneering X-ray science at the Free-Electron Laser FLASH at DESY. Phys. Rep. 2019;808:1. doi: 10.1016/j.physrep.2019.02.002. DOI
Allaria E., Callegari C., Cocco D., Fawley W.M., Kiskinova M., Masciovecchio C., Parmigiani F. The FERMI Elettra free-electron-laser source for coherent X-ray physics: Photon properties, beam transport system and applications. New J. Phys. 2010;12 doi: 10.1088/1367-2630/12/7/075002. DOI
Bostedt C., Boutet S., Fritz D.M., Huang Z., Lee H.J., Lemke H.T., Robert A., Schlotter W.F., Turner J.J., Williams G.J. Linac Coherent Light Source: The first five years. Rev. Mod. Phys. 2016;88:15007. doi: 10.1103/RevModPhys.88.015007. DOI
Pile D. X-rays: First light from SACLA. Nat. Photonics. 2011;5:456–457. doi: 10.1038/nphoton.2011.178. DOI
Altarelli M., Brinkmann R., Chergui M., Decking W., Dobson B., Düsterer S., Grübel G., Graeff W., Graafsma H., Hajdu J., et al., editors. The European X-ray Free-Electron Laser Technical Design Report. DESY XFEL Project Group European XFEL Project Team Deutsches Elektronen-Synchrotron Member of the Helmholtz Association; Hamburg, Germany: 2007.
Medvedev N., Tkachenko V., Lipp V., Li Z., Ziaja B. Various damage mechanisms in carbon and silicon materials under femtosecond X-ray irradiation. 4open. 2018;1:3. doi: 10.1051/fopen/2018003. DOI
Medvedev N. Nonthermal phase transitions in irradiated oxides. J. Phys. Condens. Matter. 2020;32:435401. doi: 10.1088/1361-648X/aba389. PubMed DOI
Medvedev N., Jeschke H.O., Ziaja B. Nonthermal phase transitions in semiconductors induced by a femtosecond extreme ultraviolet laser pulse. New J. Phys. 2013;15:15016. doi: 10.1088/1367-2630/15/1/015016. DOI
Jenkins T.M., Nelson W.R., Rindi A., editors. Monte Carlo Transport of Electrons and Photons. Springer; Boston, MA, USA: 1988.
Kim Y.-K., Rudd M. Binary-encounter-dipole model for electron-impact ionization. Phys. Rev. A. 1994;50:3954–3967. doi: 10.1103/PhysRevA.50.3954. PubMed DOI
Medvedev N., Li Z., Tkachenko V., Ziaja B. Electron–ion coupling in semiconductors beyond Fermi’s golden rule. Phys. Rev. B. 2017;95:14309. doi: 10.1103/PhysRevB.95.014309. DOI
Medvedev N., Milov I. Electron–phonon coupling in metals at high electronic temperatures. Phys. Rev. B. 2020;102:64302. doi: 10.1103/PhysRevB.102.064302. DOI
Tully J.C. Molecular dynamics with electronic transitions. J. Chem. Phys. 1990;93:1061. doi: 10.1063/1.459170. DOI
Frenzel J., Oliveira A.F., Jardillier N., Heine T., Seifert G. Semi-Relativistic, Self-Consistent Charge Slater-Koster Tables for Density-Functional Based Tight-Binding (DFTB) for Materials Science Simulations. Technical University of Dresden; Dresden, Germany: 2009.
Elstner M., Seifert G. Density functional tight binding. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014;372:20120483. doi: 10.1098/rsta.2012.0483. PubMed DOI
Verlet L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 1967;159:98–103. doi: 10.1103/PhysRev.159.98. DOI
Tu R., Liao Q., Zeng L., Liu Z., Liu W. Impact of torsion and stretching on the thermal conductivity of polyethylene strands. Appl. Phys. Lett. 2017;110:101905. doi: 10.1063/1.4978206. DOI
Medvedev N., Babaev P., Chalupský J., Volkov A.E., Juha L. An interplay of various damage channels in polyethylene exposed to ultra-short XUV/X-ray pulse. Phys. Chem. Chem. Phys. 2021;23:16193. doi: 10.1039/D1CP02199K. PubMed DOI
Christofferson A.J., Yiapanis G., Ren J.M., Qiao G.G., Satoh K., Kamigaito M., Yarovsky I. Molecular mapping of poly(methyl methacrylate) super-helix stereocomplexes. Chem. Sci. 2015;6:1370–1378. doi: 10.1039/C4SC02971B. PubMed DOI PMC
Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Mulliken R.S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J. Chem. Phys. 1955;23:1833–1840. doi: 10.1063/1.1740588. DOI
Henke B.L., Gullikson E.M., Davis J.C. X-ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50–30,000 eV, Z = 1–92. At. Data Nucl. Data Tables. 1993;54:181–342. doi: 10.1006/adnd.1993.1013. DOI
Keski-Rahkonen O., Krause M.O. Total and partial atomic-level widths. At. Data Nucl. Data Tables. 1974;14:139–146. doi: 10.1016/S0092-640X(74)80020-3. DOI
Medvedev N., Jeschke H.O., Ziaja B. Nonthermal graphitization of diamond induced by a femtosecond X-ray laser pulse. Phys. Rev. B. 2013;88:224304. doi: 10.1103/PhysRevB.88.224304. DOI
Hosaka Y., Oyama T.G., Yamamoto H., Ishino M., Dinh T.H., Nishikino M., Maekawa Y. Sensitivity enhancement of poly(methyl methacrylate) upon exposure to picosecond-pulsed extreme ultraviolet. Appl. Phys. Lett. 2019;115:73109. doi: 10.1063/1.5116284. DOI
Chalupský J., Juha L., Kuba J., Cihelka J., Hájková V., Koptyaev S., Krása J., Velyhan A., Bergh M., Caleman C., et al. Characteristics of focused soft X-ray free-electron laser beam determined by ablation of organic molecular solids. Opt. Express. 2007;15:6036. doi: 10.1364/OE.15.006036. PubMed DOI
Chalupský J., Krzywinski J., Juha L., Hájková V., Cihelka J., Burian T., Vyšín L., Gaudin J., Gleeson A., Jurek M., et al. Spot size characterization of focused non-Gaussian X-ray laser beams. Opt. Express. 2010;18:27836. doi: 10.1364/OE.18.027836. PubMed DOI
Damage Mechanisms in Polyalkenes Irradiated with Ultrashort XUV/X-Ray Laser Pulses