-
Something wrong with this record ?
Distribution of data in cellular electrophysiology: Is it always normal
R. Kula, M. Bébarová, P. Matejovič, J. Šimurda, M. Pásek
Language English Country Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
NV16-30571A
MZ0
CEP Register
- MeSH
- Algorithms MeSH
- Cell Membrane pathology physiology MeSH
- Electric Capacitance MeSH
- Electrodes MeSH
- Electrophysiology methods MeSH
- Data Interpretation, Statistical MeSH
- Rats MeSH
- Membrane Potentials MeSH
- Normal Distribution * MeSH
- Rats, Wistar MeSH
- Reproducibility of Results MeSH
- Heart Atria pathology MeSH
- Muscle Cells physiology MeSH
- Models, Theoretical MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The distribution of data presented in many electrophysiological studies is presumed to be normal without any convincing evidence. To test this presumption, the cell membrane capacitance and magnitude of inward rectifier potassium currents were recorded by the whole-cell patch clamp technique in rat atrial myocytes. Statistical analysis of the data showed that these variables were not distributed normally. Instead, a positively skewed distribution appeared to be a better approximation of the real data distribution. Consequently, the arithmetic mean, used inappropriately in such data, may substantially overestimate the true mean value characterizing the central tendency of the data. Moreover, a large standard deviation describing the variance of positively skewed data allowed 95% confidence interval to include unrealistic negative values. We therefore conclude that the normality of the electrophysiological data should be tested in every experiment and, if rejected, the positively skewed data should be more accurately characterized by the median and interpercentile range or, if justified (namely in the case of log-normal and gamma data distribution), by the geometric mean and the geometric standard deviation.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21026464
- 003
- CZ-PrNML
- 005
- 20211026132906.0
- 007
- ta
- 008
- 211013s2020 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.pbiomolbio.2020.05.008 $2 doi
- 035 __
- $a (PubMed)32621819
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Kula, Roman $u Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- 245 10
- $a Distribution of data in cellular electrophysiology: Is it always normal / $c R. Kula, M. Bébarová, P. Matejovič, J. Šimurda, M. Pásek
- 520 9_
- $a The distribution of data presented in many electrophysiological studies is presumed to be normal without any convincing evidence. To test this presumption, the cell membrane capacitance and magnitude of inward rectifier potassium currents were recorded by the whole-cell patch clamp technique in rat atrial myocytes. Statistical analysis of the data showed that these variables were not distributed normally. Instead, a positively skewed distribution appeared to be a better approximation of the real data distribution. Consequently, the arithmetic mean, used inappropriately in such data, may substantially overestimate the true mean value characterizing the central tendency of the data. Moreover, a large standard deviation describing the variance of positively skewed data allowed 95% confidence interval to include unrealistic negative values. We therefore conclude that the normality of the electrophysiological data should be tested in every experiment and, if rejected, the positively skewed data should be more accurately characterized by the median and interpercentile range or, if justified (namely in the case of log-normal and gamma data distribution), by the geometric mean and the geometric standard deviation.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a buněčná membrána $x patologie $x fyziologie $7 D002462
- 650 _2
- $a interpretace statistických dat $7 D003627
- 650 _2
- $a elektrická kapacitance $7 D025802
- 650 _2
- $a elektrody $7 D004566
- 650 _2
- $a elektrofyziologie $x metody $7 D004594
- 650 _2
- $a srdeční síně $x patologie $7 D006325
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a membránové potenciály $7 D008564
- 650 _2
- $a teoretické modely $7 D008962
- 650 _2
- $a svalové buňky $x fyziologie $7 D032342
- 650 12
- $a normální rozdělení $7 D016011
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 _2
- $a potkani Wistar $7 D017208
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Bébarová, Markéta $u Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- 700 1_
- $a Matejovič, Peter $u Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- 700 1_
- $a Šimurda, Jiří $u Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- 700 1_
- $a Pásek, Michal $u Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; Institute of Thermomechanics, Czech Academy of Sciences, Dolejškova 5, 182 00, Prague, Czech Republic. Electronic address: mpasek@med.muni.cz
- 773 0_
- $w MED00003923 $t Progress in biophysics and molecular biology $x 1873-1732 $g Roč. 157, č. - (2020), s. 11-17
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32621819 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026132912 $b ABA008
- 999 __
- $a ok $b bmc $g 1715244 $s 1146971
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 157 $c - $d 11-17 $e 20200701 $i 1873-1732 $m Progress in biophysics and molecular biology $n Prog Biophys Mol Biol $x MED00003923
- GRA __
- $a NV16-30571A $p MZ0
- LZP __
- $a Pubmed-20211013