• Something wrong with this record ?

Advantages of nanofibrous membranes for culturing of primary RPE cells compared to commercial scaffolds

L. Tichotová, H. Studenovska, G. Petrovski, Š. Popelka, Y. Nemesh, M. Sedláčková, S. Drutovič, S. Rohiwal, P. Jendelová, S. Erceg, A. Brymová, A. Artero-Castro, L. Lytvynchuk, Z. Straňák, Z. Ellederová, J. Motlík, T. Ardan

. 2022 ; 100 (5) : e1172-e1185. [pub] 20211022

Language English Country England, Great Britain

Document type Journal Article

Grant support
18-04393S Grantová Agentura České Republiky
19-09628J Grantová Agentura České Republiky
TO01000107 Norway Grants and Technology Agency of the Czech Republic

E-resources Online Full text

NLK Free Medical Journals from 2008 to 1 year ago
Medline Complete (EBSCOhost) from 2008-02-01 to 1 year ago
Wiley Free Content from 2008 to 1 year ago

PURPOSE: Dysfunction of the retinal pigment epithelium (RPE) causes numerous forms of retinal degeneration. RPE replacement is a modern option to save vision. We aimed to test the results of transplanting cultured RPEs on biocompatible membranes. METHODS: We cultivated porcine primary RPE cells isolated from cadaver eyes from the slaughterhouse on two types of membranes: commercial polyester scaffolds Transwell (Corning Inc., Kenneburg, ME, USA) with 0.4 μm pore size and prepared Poly (L-lactide-co-DL-lactide) (PDLLA) nanofibrous membranes with an average pore size of 0.4 μm. RESULTS: Five types of assays were used for the analysis: immunocytochemistry (ICC), phagocytosis assay, Western blotting, real-time qPCR (RT-qPCR) and electron microscopy. RT-qPCR demonstrated that RPEs cultured on nanofibrous membranes have higher expressions of BEST1 (bestrophin 1), RLBP1 (retinaldehyde-binding protein 1), RPE65 (retinal pigment epithelium-specific 65 kDa protein), PAX6 (transcription factor PAX6), SOX9 (transcription factor SOX9), DCT (dopachrome tautomerase) and MITF (microphthalmia-associated transcription factor). ICC of the RPEs cultured on nanofibrous membranes showed more intensive staining of markers such as BEST1, MCT1 (monocarboxylate transporter 1), Na+ /K+ ATPase, RPE65 and acetylated tubulin in comparison with commercial ones. Additionally, the absence of α-SMA proved the stability of the RPE polarization state and the absence of epithelial-to-mesenchymal transition. RPE possessed high phagocytic activity. Electron microscopy of both membranes confirmed a confluent layer of RPE cells and their genuine morphological structure, which was comparable to native RPEs. CONCLUSIONS: Retinal pigment epitheliums cultured on polylactide nanofibrous membranes improved the final quality of the cell product by having better maturation and long-term survival of the RPE monolayer compared to those cultured on commercial polyester scaffolds. PDLLA-cultured RPEs are a plausible source for the replacement of non-functioning RPEs during cell therapy.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22024945
003      
CZ-PrNML
005      
20221031100053.0
007      
ta
008      
221017s2022 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/aos.15034 $2 doi
035    __
$a (PubMed)34687141
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Tichotová, Lucie $u Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic $u Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
245    10
$a Advantages of nanofibrous membranes for culturing of primary RPE cells compared to commercial scaffolds / $c L. Tichotová, H. Studenovska, G. Petrovski, Š. Popelka, Y. Nemesh, M. Sedláčková, S. Drutovič, S. Rohiwal, P. Jendelová, S. Erceg, A. Brymová, A. Artero-Castro, L. Lytvynchuk, Z. Straňák, Z. Ellederová, J. Motlík, T. Ardan
520    9_
$a PURPOSE: Dysfunction of the retinal pigment epithelium (RPE) causes numerous forms of retinal degeneration. RPE replacement is a modern option to save vision. We aimed to test the results of transplanting cultured RPEs on biocompatible membranes. METHODS: We cultivated porcine primary RPE cells isolated from cadaver eyes from the slaughterhouse on two types of membranes: commercial polyester scaffolds Transwell (Corning Inc., Kenneburg, ME, USA) with 0.4 μm pore size and prepared Poly (L-lactide-co-DL-lactide) (PDLLA) nanofibrous membranes with an average pore size of 0.4 μm. RESULTS: Five types of assays were used for the analysis: immunocytochemistry (ICC), phagocytosis assay, Western blotting, real-time qPCR (RT-qPCR) and electron microscopy. RT-qPCR demonstrated that RPEs cultured on nanofibrous membranes have higher expressions of BEST1 (bestrophin 1), RLBP1 (retinaldehyde-binding protein 1), RPE65 (retinal pigment epithelium-specific 65 kDa protein), PAX6 (transcription factor PAX6), SOX9 (transcription factor SOX9), DCT (dopachrome tautomerase) and MITF (microphthalmia-associated transcription factor). ICC of the RPEs cultured on nanofibrous membranes showed more intensive staining of markers such as BEST1, MCT1 (monocarboxylate transporter 1), Na+ /K+ ATPase, RPE65 and acetylated tubulin in comparison with commercial ones. Additionally, the absence of α-SMA proved the stability of the RPE polarization state and the absence of epithelial-to-mesenchymal transition. RPE possessed high phagocytic activity. Electron microscopy of both membranes confirmed a confluent layer of RPE cells and their genuine morphological structure, which was comparable to native RPEs. CONCLUSIONS: Retinal pigment epitheliums cultured on polylactide nanofibrous membranes improved the final quality of the cell product by having better maturation and long-term survival of the RPE monolayer compared to those cultured on commercial polyester scaffolds. PDLLA-cultured RPEs are a plausible source for the replacement of non-functioning RPEs during cell therapy.
650    _2
$a zvířata $7 D000818
650    _2
$a bestrofiny $x metabolismus $7 D000075002
650    _2
$a kultivované buňky $7 D002478
650    12
$a nanovlákna $x chemie $7 D057139
650    _2
$a polyestery $x metabolismus $7 D011091
650    12
$a degenerace retiny $x metabolismus $7 D012162
650    _2
$a retinální pigmentový epitel $x metabolismus $7 D055213
650    _2
$a prasata $7 D013552
655    _2
$a časopisecké články $7 D016428
700    1_
$a Studenovska, Hana $u Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic $1 https://orcid.org/https://orcid.org/0000000179171790
700    1_
$a Petrovski, Goran $u Center for Eye Research, Department of Ophthalmology, Oslo University Hospital and Institute for Clinical Medicine, University of Oslo, Oslo, Norway $1 https://orcid.org/https://orcid.org/0000000329059252
700    1_
$a Popelka, Štěpán $u Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
700    1_
$a Nemesh, Yaroslav $u Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic $u Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic $1 https://orcid.org/https://orcid.org/0000000338629413
700    1_
$a Sedláčková, Miroslava $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
700    1_
$a Drutovič, Saskia $u Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
700    1_
$a Rohiwal, Sonali $u Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
700    1_
$a Jendelová, Pavla $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic $1 https://orcid.org/https://orcid.org/0000000246449212
700    1_
$a Erceg, Slaven $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic $u Stem Cell Therapies in Neurodegenerative Diseases Lab, Research Center 'Principe Felipe', Valencia, Spain
700    1_
$a Brymová, Anna $u Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic $u Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
700    1_
$a Artero-Castro, Ana $u Stem Cell Therapies in Neurodegenerative Diseases Lab, Research Center 'Principe Felipe', Valencia, Spain
700    1_
$a Lytvynchuk, Lyubomyr $u Department of Ophthalmology, Justus-Liebig-University Giessen, University Hospital Giessen and Marburg, Giessen, Germany
700    1_
$a Straňák, Zbyněk $u Ophthalmology Department of 3rd Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic $u Third Faculty of Medicine, Charles University, Prague, Czech Republic
700    1_
$a Ellederová, Zdeňka $u Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
700    1_
$a Motlík, Jan $u Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
700    1_
$a Ardan, Taras $u Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic $1 https://orcid.org/https://orcid.org/0000000243548354
773    0_
$w MED00179743 $t Acta ophthalmologica $x 1755-3768 $g Roč. 100, č. 5 (2022), s. e1172-e1185
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34687141 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20221017 $b ABA008
991    __
$a 20221031100051 $b ABA008
999    __
$a ok $b bmc $g 1854572 $s 1176235
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 100 $c 5 $d e1172-e1185 $e 20211022 $i 1755-3768 $m Acta ophthalmologica $n Acta Ophthalmol $x MED00179743
GRA    __
$a 18-04393S $p Grantová Agentura České Republiky
GRA    __
$a 19-09628J $p Grantová Agentura České Republiky
GRA    __
$a TO01000107 $p Norway Grants and Technology Agency of the Czech Republic
LZP    __
$a Pubmed-20221017

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...