FGF signaling refines Wnt gradients to regulate the patterning of taste papillae
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R00 DE022059
NIDCR NIH HHS - United States
R01 DE024988
NIDCR NIH HHS - United States
R35 DE026602
NIDCR NIH HHS - United States
PubMed
28506989
PubMed Central
PMC5482992
DOI
10.1242/dev.148080
PII: dev.148080
Knihovny.cz E-zdroje
- Klíčová slova
- FGF, Taste papilla, Tongue, Wnt,
- MeSH
- adaptorové proteiny signální transdukční MeSH
- biologické modely MeSH
- chuťové pohárky embryologie metabolismus MeSH
- fibroblastový růstový faktor 10 nedostatek genetika metabolismus MeSH
- intracelulární signální peptidy a proteiny nedostatek genetika metabolismus MeSH
- kostní morfogenetické proteiny genetika metabolismus MeSH
- membránové proteiny nedostatek genetika metabolismus MeSH
- myši knockoutované MeSH
- myši transgenní MeSH
- myši MeSH
- počítačová simulace MeSH
- protein-serin-threoninkinasy MeSH
- proteiny hedgehog genetika metabolismus MeSH
- rozvržení tělního plánu genetika fyziologie MeSH
- signální dráha Wnt * MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- Fgf10 protein, mouse MeSH Prohlížeč
- fibroblastový růstový faktor 10 MeSH
- intracelulární signální peptidy a proteiny MeSH
- kostní morfogenetické proteiny MeSH
- membránové proteiny MeSH
- protein-serin-threoninkinasy MeSH
- proteiny hedgehog MeSH
- Shh protein, mouse MeSH Prohlížeč
- Sostdc1 protein, mouse MeSH Prohlížeč
- Spry2 protein, mouse MeSH Prohlížeč
The patterning of repeated structures is a major theme in developmental biology, and the inter-relationship between spacing and size of such structures is an unresolved issue. Fungiform papillae are repeated epithelial structures that house taste buds on the anterior tongue. Here, we report that FGF signaling is a crucial regulator of fungiform papillae development. We found that mesenchymal FGF10 controls the size of the papillary area, while overall patterning remains unchanged. Our results show that FGF signaling negatively affects the extent of canonical Wnt signaling, which is the main activation pathway during fungiform papillae development; however, this effect does not occur at the level of gene transcription. Rather, our experimental data, together with computational modeling, indicate that FGF10 modulates the range of Wnt effects, likely via induction of Sostdc1 expression. We suggest that modification of the reach of Wnt signaling could be due to local changes in morphogen diffusion, representing a novel mechanism in this tissue context, and we propose that this phenomenon might be involved in a broader array of mammalian developmental processes.
Department of Anatomy and Cell Biology University of Kansas Medical Center Kansas City KS 66160 USA
Stowers Institute for Medical Research Kansas City MO 64110 USA
Zobrazit více v PubMed
Adaimy L., Chouery E., Mégarbané H., Mroueh S., Delague V., Nicolas E., Belguith H., de Mazancourt P. and Mégarbané A. (2007). Mutation in WNT10A is associated with an autosomal recessive ectodermal dysplasia: the odonto-onycho-dermal dysplasia. Am. J. Hum. Genet. 81, 821-828. 10.1086/520064 PubMed DOI PMC
Ahn Y. (2015). Signaling in tooth, hair, and mammary placodes. Curr. Top. Dev. Biol. 111, 421-459. 10.1016/bs.ctdb.2014.11.013 PubMed DOI
Ahn Y., Sanderson B. W., Klein O. D. and Krumlauf R. (2010). Inhibition of Wnt signaling by Wise (Sostdc1) and negative feedback from Shh controls tooth number and patterning. Development 137, 3221-3231. 10.1242/dev.054668 PubMed DOI PMC
Ahn Y., Sims C., Logue J. M., Weatherbee S. D. and Krumlauf R. (2013). Lrp4 and Wise interplay controls the formation and patterning of mammary and other skin appendage placodes by modulating Wnt signaling. Development 140, 583-593. 10.1242/dev.085118 PubMed DOI PMC
Bartoshuk L. M., Duffy V. B. and Miller I. J. (1994). PTC/PROP tasting: anatomy, psychophysics, and sex effects. Physiol. Behav. 56, 1165-1171. 10.1016/0031-9384(94)90361-1 PubMed DOI
Beites C. L., Hollenbeck P. L. W., Kim J., Lovell-Badge R., Lander A. D. and Calof A. L. (2009). Follistatin modulates a BMP autoregulatory loop to control the size and patterning of sensory domains in the developing tongue. Development 136, 2187-2197. 10.1242/dev.030544 PubMed DOI PMC
Chaudhari N. and Roper S. D. (2010). The cell biology of taste. J. Cell Biol. 190, 285-296. 10.1083/jcb.201003144 PubMed DOI PMC
Guidato S. and Itasaki N. (2007). Wise retained in the endoplasmic reticulum inhibits Wnt signaling by reducing cell surface LRP6. Dev. Biol. 310, 250-263. 10.1016/j.ydbio.2007.07.033 PubMed DOI
Hall J. M. H., Bell M. L. and Finger T. E. (2003). Disruption of sonic hedgehog signaling alters growth and patterning of lingual taste papillae. Dev. Biol. 255, 263-277. 10.1016/S0012-1606(02)00048-9 PubMed DOI
Hu B., Nadiri A., Bopp-Küchler S., Perrin-Schmitt F. and Lesot H. (2005). Dental epithelial histomorphogenesis in vitro. J. Dent. Res. 84, 521-525. 10.1177/154405910508400607 PubMed DOI
Itasaki N., Jones C. M., Mercurio S., Rowe A., Domingos P. M., Smith J. C. and Krumlauf R. (2003). Wise, a context-dependent activator and inhibitor of Wnt signalling. Development 130, 4295-4305. 10.1242/dev.00674 PubMed DOI
Iwatsuki K., Liu H.-X., Grónder A., Singer M. A., Lane T. F., Grosschedl R., Mistretta C. M. and Margolskee R. F. (2007). Wnt signaling interacts with Shh to regulate taste papilla development. Proc. Natl. Acad. Sci. USA 104, 2253-2258. 10.1073/pnas.0607399104 PubMed DOI PMC
Kapsimali M. and Barlow L. A. (2013). Developing a sense of taste. Semin. Cell Dev. Biol. 24, 200-209. 10.1016/j.semcdb.2012.11.002 PubMed DOI PMC
Kassai Y., Munne P., Hotta Y., Penttilä E., Kavanagh K., Ohbayashi N., Takada S., Thesleff I., Jernvall J. and Itoh N. (2005). Regulation of mammalian tooth cusp patterning by ectodin. Science 309, 2067-2070. 10.1126/science.1116848 PubMed DOI
Kaufman M. H. (1992). The Atlas of Mouse Development. San Diego: Academic Press.
Kawano Y. (2003). Secreted antagonists of the Wnt signalling pathway. J. Cell Sci. 116, 2627-2634. 10.1242/jcs.00623 PubMed DOI
Kettunen P., Laurikkala J., Itäranta P., Vainio S., Itoh N. and Thesleff I. (2000). Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis. Dev. Dyn. 219, 322-332. 10.1002/1097-0177(2000)9999:9999<::aid-dvdy1062>3.0.co;2-j PubMed DOI
Lintern K. B., Guidato S., Rowe A., Saldanha J. W. and Itasaki N. (2009). Characterization of wise protein and its molecular mechanism to interact with both Wnt and BMP signals. J. Biol. Chem. 284, 23159-23168. 10.1074/jbc.M109.025478 PubMed DOI PMC
Liu H.-X., Maccallum D. K., Edwards C., Gaffield W. and Mistretta C. M. (2004). Sonic hedgehog exerts distinct, stage-specific effects on tongue and taste papilla development. Dev. Biol. 276, 280-300. 10.1016/j.ydbio.2004.07.042 PubMed DOI
Liu F., Thirumangalathu S., Gallant N. M., Yang S. H., Stoick-Cooper C. L., Reddy S. T., Andl T., Taketo M. M., Dlugosz A. A., Moon R. T. et al. (2007). Wnt-beta-catenin signaling initiates taste papilla development. Nat. Genet. 39, 106-112. 10.1038/ng1932 PubMed DOI
Liu H.-X., Henson B. S., Zhou Y., D'Silva N. J. and Mistretta C. M. (2008). Fungiform papilla pattern: EGF regulates inter-papilla lingual epithelium and decreases papilla number by means of PI3K/Akt, MEK/ERK, and p38 MAPK signaling. Dev. Dyn. 237, 2378-2393. 10.1002/dvdy.21657 PubMed DOI PMC
Liu H.-X., Grosse A. S., Iwatsuki K., Mishina Y., Gumucio D. L. and Mistretta C. M. (2012). Separate and distinctive roles for Wnt5a in tongue, lingual tissue and taste papilla development. Dev. Biol. 361, 39-56. 10.1016/j.ydbio.2011.10.009 PubMed DOI PMC
Liu H. X., Ermilov A., Grachtchouk M., Li L., Gumucio D. L., Dlugosz A. A. and Mistretta C. M. (2013). Multiple Shh signaling centers participate in fungiform papilla and taste bud formation and maintenance. Dev. Biol. 382, 82-97. 10.1016/j.ydbio.2013.07.022 PubMed DOI PMC
Maretto S., Cordenonsi M., Dupont S., Braghetta P., Broccoli V., Hassan A. B., Volpin D., Bressan G. M. and Piccolo S. (2003). Mapping Wnt/ -catenin signaling during mouse development and in colorectal tumors. Proc. Natl. Acad. Sci. USA 100, 3299-3304. 10.1073/pnas.0434590100 PubMed DOI PMC
Miller I. J. and Reedy F. E. (1990). Variations in human taste bud density and taste intensity perception. Physiol. Behav. 47, 1213-1219. 10.1016/0031-9384(90)90374-D PubMed DOI
Min H., Danilenko D. M., Scully S. A., Bolon B., Ring B. D., Tarpley J. E., DeRose M. and Simonet W. S. (1998). Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev. 12, 3156-3161. 10.1101/gad.12.20.3156 PubMed DOI PMC
Mistretta C. M. and Liu H.-X. (2006). Development of fungiform papillae: patterned lingual gustatory organs. Arch. Histol. Cytol. 69, 199-208. 10.1679/aohc.69.199 PubMed DOI
Miura H., Kusakabe Y., Sugiyama C., Kawamatsu M., Ninomiya Y., Motoyama J. and Hino A. (2001). Shh and Ptc are associated with taste bud maintenance in the adult mouse. Mech. Dev. 106, 143-145. 10.1016/S0925-4773(01)00414-2 PubMed DOI
Mohammadi M., Olsen S. K. and Ibrahimi O. A. (2005). Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor. Rev. 16, 107-137. 10.1016/j.cytogfr.2005.01.008 PubMed DOI
Monteiro A., French V., Smit G., Brakefield P. M. and Metz J. A. J. (2001). Butterfly eyespot patterns: evidence for specification by a morphogen diffusion gradient. Acta Biotheor. 49, 77-88. 10.1023/A:1010226223287 PubMed DOI
Ohazama A., Johnson E. B., Ota M. S., Choi H. Y., Choi H. J., Porntaveetus T., Oommen S., Itoh N., Eto K., Gritli-Linde A. et al. (2008). Lrp4 modulates extracellular integration of cell signaling pathways in development. PLoS One 3, e4092 10.1371/journal.pone.0004092 PubMed DOI PMC
Peterka M., Lesot H. and Peterková R. (2002). Body weight in mouse embryos specifies staging of tooth development. Connect. Tissue Res. 43, 186-190. 10.1080/03008200290000673 PubMed DOI
Petersen C. I., Jheon A. H., Mostowfi P., Charles C., Ching S., Thirumangalathu S., Barlow L. A. and Klein O. D. (2011). FGF signaling regulates the number of posterior taste papillae by controlling progenitor field size. PLoS Genet. 7, e1002098 10.1371/journal.pgen.1002098 PubMed DOI PMC
Rothova M., Thompson H., Lickert H. and Tucker A. S. (2012). Lineage tracing of the endoderm during oral development. Dev. Dyn. 241, 1183-1191. 10.1002/dvdy.23804 PubMed DOI
Shim K., Minowada G., Coling D. E. and Martin G. R. (2005). Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling. Dev. Cell 8, 553-564. 10.1016/j.devcel.2005.02.009 PubMed DOI
Thirumangalathu S., Harlow D. E., Driskell A. L., Krimm R. F. and Barlow L. A. (2009). Fate mapping of mammalian embryonic taste bud progenitors. Development 136, 1519-1528. 10.1242/dev.029090 PubMed DOI PMC
Wilkinson D. G. and Nieto M. A. (1993). Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol. 225, 361-373. 10.1016/0076-6879(93)25025-W PubMed DOI
Yan D. and Lin X. (2009). Shaping morphogen gradients by proteoglycans. Cold Spring Harb. Perspect. Biol. 1, a002493 10.1101/cshperspect.a002493 PubMed DOI PMC
Zhou Y., Liu H.-X. and Mistretta C. M. (2006). Bone morphogenetic proteins and noggin: inhibiting and inducing fungiform taste papilla development. Dev. Biol. 297, 198-213. 10.1016/j.ydbio.2006.05.022 PubMed DOI
Modeling Edar expression reveals the hidden dynamics of tooth signaling center patterning
Bones, Glands, Ears and More: The Multiple Roles of FGF10 in Craniofacial Development