Freshwater genome-reduced bacteria exhibit pervasive episodes of adaptive stasis

. 2024 Apr 23 ; 15 (1) : 3421. [epub] 20240423

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38653968

Grantová podpora
PZ00P3_193240 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)

Odkazy

PubMed 38653968
PubMed Central PMC11039613
DOI 10.1038/s41467-024-47767-7
PII: 10.1038/s41467-024-47767-7
Knihovny.cz E-zdroje

The emergence of bacterial species is rooted in their inherent potential for continuous evolution and adaptation to an ever-changing ecological landscape. The adaptive capacity of most species frequently resides within the repertoire of genes encoding the secreted proteome (SP), as it serves as a primary interface used to regulate survival/reproduction strategies. Here, by applying evolutionary genomics approaches to metagenomics data, we show that abundant freshwater bacteria exhibit biphasic adaptation states linked to the eco-evolutionary processes governing their genome sizes. While species with average to large genomes adhere to the dominant paradigm of evolution through niche adaptation by reducing the evolutionary pressure on their SPs (via the augmentation of functionally redundant genes that buffer mutational fitness loss) and increasing the phylogenetic distance of recombination events, most of the genome-reduced species exhibit a nonconforming state. In contrast, their SPs reflect a combination of low functional redundancy and high selection pressure, resulting in significantly higher levels of conservation and invariance. Our findings indicate that although niche adaptation is the principal mechanism driving speciation, freshwater genome-reduced bacteria often experience extended periods of adaptive stasis. Understanding the adaptive state of microbial species will lead to a better comprehension of their spatiotemporal dynamics, biogeography, and resilience to global change.

Erratum v

PubMed

Zobrazit více v PubMed

Rothschild LJ, Mancinelli RL. Life in extreme environments. Nature. 2001;409:1092–1101. doi: 10.1038/35059215. PubMed DOI

Womack AM, Bohannan BJM, Green JL. Biodiversity and biogeography of the atmosphere. Philos. Trans. Royal Soc. B: Biol. Sci. 2010;365:3645–3653. doi: 10.1098/rstb.2010.0283. PubMed DOI PMC

Nunoura T, et al. Hadal biosphere: Insight into the microbial ecosystem in the deepest ocean on Earth. Proc. Natl. Acad. Sci. USA. 2015;112:E1230–E1236. doi: 10.1073/pnas.1421816112. PubMed DOI PMC

Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 2015;13:677–690. doi: 10.1038/nrmicro3522. PubMed DOI

Christner BC, et al. A microbial ecosystem beneath the West Antarctic ice sheet. Nature. 2014;512:310–313. doi: 10.1038/nature13667. PubMed DOI

Louca S, et al. Bacterial diversification through geological time. Nat. Ecol. Evol. 2018;2:1458–1467. doi: 10.1038/s41559-018-0625-0. PubMed DOI

Louca S, et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2018;2:936–943. doi: 10.1038/s41559-018-0519-1. PubMed DOI

Cohan FM. Bacterial speciation: genetic sweeps in bacterial species. Curr. Biol. 2016;26:R112–R115. doi: 10.1016/j.cub.2015.10.022. PubMed DOI

Van Rossum T, Ferretti P, Maistrenko OM, Bork P. Diversity within species: interpreting strains in microbiomes. Nat. Rev. Microbiol. 2020;18:491–506. doi: 10.1038/s41579-020-0368-1. PubMed DOI PMC

Cohan FM. Systematics: the cohesive nature of bacterial species taxa. Curr. Biol. 2019;29:R169–R172. doi: 10.1016/j.cub.2019.01.033. PubMed DOI

Rodriguez-Valera F, et al. Explaining microbial population genomics through phage predation. Nat. Rev. Microbiol. 2009;7:828–836. doi: 10.1038/nrmicro2235. PubMed DOI

Bendall ML, et al. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J. 2016;10:1589–1601. doi: 10.1038/ismej.2015.241. PubMed DOI PMC

Andrei AŞ, et al. Niche-directed evolution modulates genome architecture in freshwater Planctomycetes. ISME J. 2019;13:1056–1071. doi: 10.1038/s41396-018-0332-5. PubMed DOI PMC

Dalbey RE, Kuhn A. Protein traffic in Gram-negative bacteria—how exported and secreted proteins find their way. FEMS Microbiol. Rev. 2012;36:1023–1045. doi: 10.1111/j.1574-6976.2012.00327.x. PubMed DOI

Anné, J., Karamanou, S. & Economou, A. Editorial: thematic issue on bacterial protein export: from fundamentals to applications. FEMS Microbiol. Lett.365, fny206 (2018). PubMed

Nogueira T, Touchon M, Rocha EPC. Rapid evolution of the sequences and gene repertoires of secreted proteins in bacteria. PLoS ONE. 2012;7:e49403. doi: 10.1371/journal.pone.0049403. PubMed DOI PMC

Giovannoni, S. J., Cameron Thrash, J. & Temperton, B. Implications of streamlining theory for microbial ecology. ISME J.8, 1553–1565 (2014). PubMed PMC

Chiriac, M. C., Haber, M. & Salcher, M. M. Adaptive genetic traits in pelagic freshwater microbes. Environ. Microbiol. 10.1111/1462-2920.16313 (2022). PubMed

Parks DH, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 2018;36:996–1004. doi: 10.1038/nbt.4229. PubMed DOI

Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018;9:1–8. doi: 10.1038/s41467-018-07641-9. PubMed DOI PMC

Zaremba-Niedzwiedzka K, et al. Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade. Genome Biol. 2013;14:1–14. doi: 10.1186/gb-2013-14-11-r130. PubMed DOI PMC

Rocha EPC. Neutral theory, microbial practice: challenges in bacterial population genetics. Mol. Biol. Evol. 2018;35:1338–1347. doi: 10.1093/molbev/msy078. PubMed DOI

Shen X, Song S, Li C, Zhang J. Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature. 2022;606:725–731. doi: 10.1038/s41586-022-04823-w. PubMed DOI PMC

Moxon ER, Rainey PB, Nowak MA, Lenski RE. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 1994;4:24–33. doi: 10.1016/S0960-9822(00)00005-1. PubMed DOI

Niccum, B. A., Lee, H., Mohammedismail, W., Tang, H. & Foster, P. L. The symmetrical wave pattern of base-pair substitution rates across the Escherichia coli chromosome has multiple causes. mBio10, 10–1128 (2019). PubMed PMC

Plotkin JB, Kudla G. Synonymous but not the same: the causes and consequences of codon bias. Nat. Rev. Genet. 2010;12:32–42. doi: 10.1038/nrg2899. PubMed DOI PMC

Emiola A, Oh J. High throughput in situ metagenomic measurement of bacterial replication at ultra-low sequencing coverage. Nat. Commun. 2018;9:1–8. doi: 10.1038/s41467-018-07240-8. PubMed DOI PMC

Weissman JL, Hou S, Fuhrman JA. Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. Proc. Natl. Acad. Sci. USA. 2021;118:e2016810118. doi: 10.1073/pnas.2016810118. PubMed DOI PMC

Vieira-Silva S, Rocha EPC. The systemic imprint of growth and its uses in ecological (Meta)Genomics. PLoS Genet. 2010;6:e1000808. doi: 10.1371/journal.pgen.1000808. PubMed DOI PMC

Chiriac MC, Haber M, Salcher MM. Adaptive genetic traits in pelagic freshwater microbes. Environ. Microbiol. 2023;25:606–641. doi: 10.1111/1462-2920.16313. PubMed DOI

Giovannoni, S. J. SAR11 Bacteria: the most abundant plankton in the oceans. Ann. Rev. Mar. Sci.9, 231–255 (2017). PubMed

Salcher MM, Pernthaler J, Posch T. Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria that rule the waves (LD12) ISME J. 2011;5:1242–1252. doi: 10.1038/ismej.2011.8. PubMed DOI PMC

Neuenschwander SM, Ghai R, Pernthaler J, Salcher MM. Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria. ISME J. 2018;12:185–198. doi: 10.1038/ismej.2017.156. PubMed DOI PMC

Barrick JE, Lenski RE. Genome dynamics during experimental evolution. Nat. Rev. Genet. 2013;14:827–839. doi: 10.1038/nrg3564. PubMed DOI PMC

Bushnell, B. BBMap. https://github.com/BioInfoTools/BBMap (2015).

Bushnell, B. Reformat. https://github.com/BioInfoTools/BBMap/blob/master/sh/reformat.sh (2016).

Bushnell, B. BBDuk. https://github.com/BioInfoTools/BBMap/blob/master/sh/bbduk.sh (2016).

Bushnell B, Rood J, Singer E. BBMerge—accurate paired shotgun read merging via overlap. PLoS ONE. 2017;12:1–15. doi: 10.1371/journal.pone.0185056. PubMed DOI PMC

Li D, et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11. doi: 10.1016/j.ymeth.2016.02.020. PubMed DOI

Bushnell, B. BBWrap. https://github.com/BioInfoTools/BBMap/blob/master/sh/bbwrap.sh (2015).

Kang DD, et al. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;2019:e7359. doi: 10.7717/peerj.7359. PubMed DOI PMC

Hofmann FMP, et al. AMBER: assessment of metagenome BinnERs. Gigascience. 2018;7:1–8. PubMed PMC

Meyer F, et al. Critical assessment of metagenome interpretation: the second round of challenges. Nat. Methods. 2022;19:429–440. doi: 10.1038/s41592-022-01431-4. PubMed DOI PMC

Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics11, 1–11 (2010). PubMed PMC

Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 2017;35:2–4. doi: 10.1038/nbt.3988. PubMed DOI

Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 10.1038/s41587-020-0501-8 (2020). PubMed

Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–1055. doi: 10.1101/gr.186072.114. PubMed DOI PMC

Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–1927. doi: 10.1093/bioinformatics/btz848. PubMed DOI PMC

Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–2406. doi: 10.1038/ismej.2017.113. PubMed DOI PMC

Goris J, et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 2007;57:81–91. doi: 10.1099/ijs.0.64483-0. PubMed DOI

Käll L, Krogh A, Sonnhammer ELL. An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics. 2005;21:i251–i257. doi: 10.1093/bioinformatics/bti1014. PubMed DOI

Geisinger E, et al. Antibiotic susceptibility signatures identify potential antimicrobial targets in the Acinetobacter baumannii cell envelope. Nat. Commun. 2020;11:1–16. PubMed PMC

Cong Q, Anishchenko I, Ovchinnikov S, Baker D. Protein interaction networks revealed by proteome coevolution. Science. 2019;365:185–189. doi: 10.1126/science.aaw6718. PubMed DOI PMC

Neri U, et al. Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell. 2022;185:4023–4037.e18. doi: 10.1016/j.cell.2022.08.023. PubMed DOI

Jones P, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–1240. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC

Mitchell AL, et al. InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2019;47:D351–D360. doi: 10.1093/nar/gky1100. PubMed DOI PMC

Reynolds SM, Käll L, Riffle ME, Bilmes JA, Noble WS. Transmembrane topology and signal peptide prediction using dynamic Bayesian networks. PLoS Comput. Biol. 2008;4:e1000213. doi: 10.1371/journal.pcbi.1000213. PubMed DOI PMC

Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 2005;187:6258. doi: 10.1128/JB.187.18.6258-6264.2005. PubMed DOI PMC

Finn RD, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–D230. doi: 10.1093/nar/gkt1223. PubMed DOI PMC

Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 2015;43:D261–D269. doi: 10.1093/nar/gku1223. PubMed DOI PMC

Haft DH, Selengut JD, White O. The TIGRFAMs database of protein families. Nucleic Acids Res. 2003;31:371–373. doi: 10.1093/nar/gkg128. PubMed DOI PMC

Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 2016;428:726–731. doi: 10.1016/j.jmb.2015.11.006. PubMed DOI

Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput. Biol. 2015;11:e1004041. doi: 10.1371/journal.pcbi.1004041. PubMed DOI PMC

Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE. 2010;5:e11147. doi: 10.1371/journal.pone.0011147. PubMed DOI PMC

Guindon S, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI

Ngugi DK, et al. Postglacial adaptations enabled colonization and quasi-clonal dispersal of ammonia-oxidizing archaea in modern European large lakes. Sci. Adv. 2023;9:eadc9392. doi: 10.1126/sciadv.adc9392. PubMed DOI PMC

Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol20, 238 (2019). PubMed PMC

Serra Moncadas, L., Bulzu, P.-A. & Andrei, A.-S. Phobius domain/region retriever. Zenodo10.5281/ZENODO.10925326 (2024).

Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC

Johnson, L. S., Eddy, S. R. & Portugaly, E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics11, 1–8 (2010). PubMed PMC

Löytynoja, A. In Phylogeny-aware alignment with PRANK BT—Multiple Sequence Alignment Methods (ed. Russell, D. J.) 155–170 (Humana Press, Totowa, 2014). PubMed

Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Kosakovsky Pond SL, Frost SDW. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 2005;22:1208–1222. doi: 10.1093/molbev/msi105. PubMed DOI

Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–D361. doi: 10.1093/nar/gkw1092. PubMed DOI PMC

Mirdita M, et al. ColabFold: making protein folding accessible to all. Nat. Methods. 2022;19:679–682. doi: 10.1038/s41592-022-01488-1. PubMed DOI PMC

Pettersen EF, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Ben-David M, et al. Assessment of CASP8 structure predictions for template free targets. Proteins Struct. Funct. Bioinformatics. 2009;77:50–65. doi: 10.1002/prot.22591. PubMed DOI

Olm MR, et al. inStrain profiles population microdiversity from metagenomic data and sensitively detects shared microbial strains. Nat. Biotechnol. 2021;39:727–736. doi: 10.1038/s41587-020-00797-0. PubMed DOI PMC

Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–2069. doi: 10.1093/bioinformatics/btu153. PubMed DOI

Page AJ, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31:3691–3693. doi: 10.1093/bioinformatics/btv421. PubMed DOI PMC

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–2868. doi: 10.1038/ismej.2017.126. PubMed DOI PMC

R: The R Project for Statistical Computing. https://www.r-project.org/ (2023).

Allaire, J. J. RStudio: Integrated Development Environment for R. (2023).

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace