Reconstruction of the ZnAl Mixed Oxides Into the Layered Double Hydroxide Catalysts Active in the Aldol Condensation of Furfural: The Role of ZnO Particles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35096769
PubMed Central
PMC8795589
DOI
10.3389/fchem.2021.803764
PII: 803764
Knihovny.cz E-zdroje
- Klíčová slova
- Na leaching, ZnAl reconstructed LDHs, aldol condensation of furfural, basic properties, in-situ DRS, structural properties, temperature programmed techniques,
- Publikační typ
- časopisecké články MeSH
A memory effect is the ability to restore the original, lamellar layered double hydroxide structure. Herein, we have described 1) the changes in the structural and basic properties of ZnAl mixed oxides during their transformation into ZnAl-reconstructed LDHs (RE-LDHs); 2) the extraordinary properties of ZnAl RE-LDHs compared to the original ZnAl LDHs; and 3) the changes of basic properties during the interaction of ZnAl RE-LDHs with atmospheric CO2. Aldol condensation was selected as probe reaction to prove the catalytic potential of ZnAl RE-LDHs. We have described a target method for preparing ZnAl RE-LDHs with a large number of basic sites. ZnAl RE-LDHs possess significantly higher furfural conversion in the aldol condensation of furfural than MOs. The structural, textural, and basic properties of the studied materials were described by temperature-programmed analysis, X-ray diffraction, N2 adsorption, temperature-programmed desorption of CO2, and in-situ diffuse reflectance spectroscopy.
Zobrazit více v PubMed
Abelló S., Medina F., Tichit D., Pérez-Ramírez J., Groen J. C., Sueiras J. E., et al. (2005). Aldol Condensations over Reconstructed Mg-Al Hydrotalcites: Structure-Activity Relationships Related to the Rehydration Method. Chem. - A Eur. J. 11 (2), 728–739. 10.1002/chem.200400409 PubMed DOI
Ahmed A. A. A., Talib Z. A., Hussein M. Z. b., Zakaria A. (2012). Improvement of the Crystallinity and Photocatalytic Property of Zinc Oxide as Calcination Product of Zn-Al Layered Double Hydroxide. J. Alloys Compd. 539, 154–160. 10.1016/j.jallcom.2012.05.093 DOI
Álvarez M. G., Chimentão R. J., Barrabés N., Föttinger K., Gispert-Guirado F., Kleymenov E., et al. (2013). Structure Evolution of Layered Double Hydroxides Activated by Ultrasound Induced Reconstruction. Appl. Clay Sci. 83-84, 1–11. 10.1016/j.clay.2013.08.006 DOI
Ambrogi V., Perioli L., Nocchetti M., Latterini L., Pagano C., Massetti E., et al. (2012). Immobilization of Kojic Acid in ZnAl-Hydrotalcite like Compounds. J. Phys. Chem. Sol. 73 (1), 94–98. 10.1016/j.jpcs.2011.10.007 DOI
Angelescu E., Pavel O., Bîrjega R., Florea M., Zăvoianu R. (2008). The Impact of the “Memory Effect” on the Catalytic Activity of Mg/Al; Mg, Zn/Al; Mg/Al, Ga Hydrotalcite-like Compounds Used as Catalysts for Cycloxene Epoxidation. Appl. Catal. A: Gen. 341 (1-2), 50–57. 10.1016/j.apcata.2007.12.022 DOI
Bellezza F., Alberani A., Nocchetti M., Marsili V., Cipiciani A. (2014). Intercalation of 5-fluorouracil into ZnAl Hydrotalcite-like Nanoparticles: Preparation, Characterization and Drug Release. Appl. Clay Sci. 101, 320–326. 10.1016/j.clay.2014.08.022 DOI
Bukhtiyarova M. V. (2019). A Review on Effect of Synthesis Conditions on the Formation of Layered Double Hydroxides. J. Solid State. Chem. 269, 494–506. 10.1016/j.jssc.2018.10.018 DOI
Calgaro C. O., Perez-Lopez O. W. (2019). Biogas Dry Reforming for Hydrogen Production over Ni-M-Al Catalysts (M = Mg, Li, Ca, La, Cu, Co, Zn). Int. J. Hydrogen Energ. 44 (33), 17750–17766. 10.1016/j.ijhydene.2019.05.113 DOI
Cavani F., Trifirò F., Vaccari A. (1991). Hydrotalcite-type Anionic Clays: Preparation, Properties and Applications. Catal. Today 11 (2), 173–301. 10.1016/0920-5861(91)80068-k DOI
Chimentao R., Abelló S., Medina F., Llorca J., Sueiras J., Cesteros Y., et al. (2007). Defect-induced Strategies for the Creation of Highly Active Hydrotalcites in Base-Catalyzed Reactions. J. Catal. 252 (2), 249–257. 10.1016/j.jcat.2007.09.015 DOI
Dahdah E., Estephane J., Gennequin C., Aboukaïs A., Aouad S., Abi-Aad E. (2020). Effect of La Promotion on Ni/Mg-Al Hydrotalcite Derived Catalysts for Glycerol Steam Reforming. J. Environ. Chem. Eng. 8 (5), 104228. 10.1016/j.jece.2020.104228 DOI
Dahdah E., Estephane J., Taleb Y., El Khoury B., El Nakat J., Aouad S. (2021). The Role of Rehydration in Enhancing the Basic Properties of Mg-Al Hydrotalcites for Biodiesel Production. Sustain. Chem. Pharm. 22, 100487. 10.1016/j.scp.2021.100487 DOI
Dat N. T., Ngoc Mai T. T., Lin K. S., Minh Thu N. T., Thao N. T. (2021). Reactivity of Styrene with Tert-Butyl Hydroperoxide over Cu-Based Double Hydroxide Catalysts. Mol. Catal. 500, 111337. 10.1016/j.mcat.2020.111337 DOI
Debecker D. P., Gaigneaux E. M., Busca G. (2009). Exploring, Tuning, and Exploiting the Basicity of Hydrotalcites for Applications in Heterogeneous Catalysis. Chem. Eur. J. 15 (16), 3920–3935. 10.1002/chem.200900060 PubMed DOI
Dubnová L., Smoláková L., Kikhtyanin O., Kocík J., Kubička D., Zvolská M., et al. (2021). The Role of ZnO in the Catalytic Behaviour of Zn-Al Mixed Oxides in Aldol Condensation of Furfural with Acetone. Catal. Today 379, 181–191. 10.1016/j.cattod.2020.09.011 DOI
Gil J. J., Aguilar-Martínez O., Piña-Pérez Y., Pérez-Hernández R., Santolalla-Vargas C. E., Gómez R., et al. (2020). Efficient ZnS-ZnO/ZnAl-LDH Composite for H2 Production by Photocatalysis. Renew. Energ. 145, 124–132. 10.1016/j.renene.2019.06.001 DOI
Grabowska H., Miśta W., Trawczyński J., Wrzyszcz J., Zawadzki M. (2001). A Method for Obtaining Thymol by Gas Phase Catalytic Alkylation of M-Cresol over Zinc Aluminate Spinel. Appl. Catal. A: Gen. 220 (1-2), 207–213. 10.1016/s0926-860x(01)00722-0 DOI
Hammoud D., Gennequin C., Aboukaïs A., Aad E. A. (2015). Steam Reforming of Methanol over X% Cu/Zn–Al 400 500 Based Catalysts for Production of Hydrogen: Preparation by Adopting Memory Effect of Hydrotalcite and Behavior Evaluation. Int. J. Hydrogen Energ. 40 (2), 1283–1297. 10.1016/j.ijhydene.2014.09.080 DOI
Hernández W. Y., Aliç F., Verberckmoes A., Van Der Voort P. (2017). Tuning the Acidic-Basic Properties by Zn-Substitution in Mg-Al Hydrotalcites as Optimal Catalysts for the Aldol Condensation Reaction. J. Mater. Sci. 52 (1), 628–642. 10.1007/s10853-016-0360-3 DOI
Hora L., Kikhtyanin O., Čapek L., Bortnovskiy O., Kubička D. (2015). Comparative Study of Physico-Chemical Properties of Laboratory and Industrially Prepared Layered Double Hydroxides and Their Behavior in Aldol Condensation of Furfural and Acetone. Catal. Today 241, 221–230. 10.1016/j.cattod.2014.03.010 DOI
Horáček J., Tišler Z., Akhmetzyanova U., Chirila P. G., de Paz Carmona H. (2021). The Long-Term Performance of Reconstructed MgAl Hydrotalcite in the Aldol Condensation of Furfural and Acetone. React. Kinetics, Mech. Catal. 133, 341–353. 10.1007/s11144-021-01976-z DOI
Jadhav A. L., Malkar R. S., Yadav G. D. (2020). Zn- and Ti-Modified Hydrotalcites for Transesterification of Dimethyl Terephthalate with Ethylene Glycol: Effect of the Metal Oxide and Catalyst Synthesis Method. ACS Omega 5 (5), 2088–2096. 10.1021/acsomega.9b02230 PubMed DOI PMC
Jiang W., Lu H.-f., Qi T., Yan S.-l., Liang B. (2010). Preparation, Application, and Optimization of Zn/Al Complex Oxides for Biodiesel Production under Sub-critical Conditions. Biotechnol. Adv. 28 (5), 620–627. 10.1016/j.biotechadv.2010.05.011 PubMed DOI
Kang G.-H., Park I.-K. (2022). Reconstruction and Intercalating Anion Exchange of ZnAl-Layered Double Hydroxide. Ceramics Int. 48 (2022), 3030–3036. 10.1016/j.ceramint.2021.10.078 DOI
Kikhtyanin O., Čapek L., Tišler Z., Velvarská R., Panasewicz A., Diblíková P., et al. (2018). Physico-chemical Properties of MgGa Mixed Oxides and Reconstructed Layered Double Hydroxides and Their Performance in Aldol Condensation of Furfural and Acetone. Front. Chem. 6, 176. 10.3389/fchem.2018.00176 PubMed DOI PMC
Korošec R. C., Miljević B., Umek P., van der Bergh J. M., Vučetić S., Ranogajec J. (2020). Photocatalytic Self-Cleaning Properties of Mo: TiO2 Loaded Zn–Al Layered Double Hydroxide Synthesised at Optimised pH Value for the Application on Mineral Substrates. Ceramics Int. 46 (5), 6756–6766. 10.1016/j.ceramint.2019.11.166 DOI
Kovanda F., Jindová E., Lang K., Kubát P., Sedláková Z. (2010). Preparation of Layered Double Hydroxides Intercalated with Organic Anions and Their Application in LDH/poly (Butyl Methacrylate) Nanocomposites. Appl. Clay Sci. 48 (1-2), 260–270. 10.1016/j.clay.2009.11.012 DOI
Kumar R., Pant K. K. (2020). Promotional Effects of Cu and Zn in Hydrotalcite-Derived Methane Tri-reforming Catalyst. Appl. Surf. Sci. 515, 146010. 10.1016/j.apsusc.2020.146010 DOI
Kwon D., Kang J. Y., An S., Yang I., Jung J. C. (2020). Tuning the Base Properties of Mg-Al Hydrotalcite Catalysts Using Their Memory Effect. J. Energ. Chem. 46, 229–236. 10.1016/j.jechem.2019.11.013 DOI
Liu L., Yang Z. (2018). The Composite of ZnSn(OH)6 and Zn-Al Layered Double Hydroxides Used as Negative Material for Zinc-Nickel Alkaline Batteries. Ionics 24 (7), 2035–2045. 10.1007/s11581-018-2446-1 DOI
Liu J., Song J., Xiao H., Zhang L., Qin Y., Liu D., et al. (2014). Synthesis and thermal Properties of ZnAl Layered Double Hydroxide by Urea Hydrolysis. Powder Technol. 253, 41–45. 10.1016/j.powtec.2013.11.007 DOI
Marcus Y. (2012). Volumes of Aqueous Hydrogen and Hydroxide Ions at 0 to 200 °C. J. Chem. Phys. 137 (15), 154501. 10.1063/1.4758071 PubMed DOI
Mishra G., Dash B., Sethi D., Pandey S., Mishra B. K. (2017). Orientation of Organic Anions in Zn-Al Layered Double Hydroxides with Enhanced Antibacterial Property. Environ. Eng. Sci. 34 (7), 516–527. 10.1089/ees.2016.0531 DOI
Montanari T., Sisani M., Nocchetti M., Vivani R., Delgado M. C. H., Ramis G., et al. (2010). Zinc–aluminum Hydrotalcites as Precursors of Basic Catalysts: Preparation, Characterization and Study of the Activation of Methanol. Catal. Today 152 (1-4), 104–109. 10.1016/j.cattod.2009.09.012 DOI
Navajas A., Campo I., Moral A., Echave J., Sanz O., Montes M., et al. (2018). Outstanding Performance of Rehydrated Mg-Al Hydrotalcites as Heterogeneous Methanolysis Catalysts for the Synthesis of Biodiesel. Fuel 211, 173–181. 10.1016/j.fuel.2017.09.061 DOI
Nishimura S., Takagaki A., Ebitani K. (2013). Characterization, Synthesis and Catalysis of Hydrotalcite-Related Materials for Highly Efficient Materials Transformations. Green. Chem. 15 (8), 2026–2042. 10.1039/c3gc40405f DOI
Palmer S. J., Frost R. L., Grand L.-M. (2011). Raman Spectroscopy of Gallium- and Zinc-Based Hydrotalcites. J. Raman Spectrosc. 42 (5), 1168–1173. 10.1002/jrs.2831 DOI
Rosset M., Féris L. A., Perez-Lopez O. W. (2021). Biogas Dry Reforming Using Ni-Al-LDH Catalysts Reconstructed with Mg and Zn. Int. J. Hydrogen Energ. 46 (39), 20359–20376. 10.1016/j.ijhydene.2021.03.150 DOI
Rossi T. M., Campos J. C., Souza M. M. V. M. (2016). CO2 Capture by Mg-Al and Zn-Al Hydrotalcite-Like Compounds. Adsorption 22 (2), 151–158. 10.1007/s10450-015-9732-2 DOI
Sádaba I., Ojeda M., Mariscal R., Fierro J., Granados M. L. (2011). Catalytic and Structural Properties of Co-precipitated Mg–Zr Mixed Oxides for Furfural Valorization via Aqueous Aldol Condensation with Acetone. Appl. Catal. B: Environ. 101 (3-4), 638–648. 10.1016/j.apcatb.2010.11.005 DOI
Sakr A. A.-E., Zaki T., Saber O., Hassan S. A., Aboul-Gheit A. K., Faramawy S. (2013). Synthesis of Zn-Al LDHs Intercalated with Urea Derived Anions for Capturing Carbon Dioxide from Natural Gas. J. Taiwan Inst. Chem. Eng. 44 (6), 957–962. 10.1016/j.jtice.2013.02.003 DOI
Sakr A. A., Zaki T., Elgabry O., Ebiad M. A., El-Sabagh S. M., Emara M. M. (2021). Enhanced CO2 Capture from Methane-Stream Using MII-Al LDH Prepared by Microwave-Assisted Urea Hydrolysis. Adv. Powder Technol. 32 (11), 4096–4109. 10.1016/j.apt.2021.09.016 DOI
Santamaría L., López-Aizpún M., García-Padial M., Vicente M. A., Korili S. A., Gil A. (2020). Zn-Ti-Al Layered Double Hydroxides Synthesized from Aluminum saline Slag Wastes as Efficient Drug Adsorbents. Appl. Clay Sci. 187, 105486. 10.1016/j.clay.2020.105486 DOI
Sescu A. M., Harja M., Favier L., Berthou L. O., Gomez de Castro C., Pui A., et al. (2020). Zn/La Mixed Oxides Prepared by Coprecipitation: Synthesis, Characterization and Photocatalytic Studies. Materials 13 (21), 4916. 10.3390/ma13214916 PubMed DOI PMC
Sikander U., Sufian S., Salam M. A. (2017). A Review of Hydrotalcite Based Catalysts for Hydrogen Production Systems. Int. J. Hydrogen Energ. 42 (31), 19851–19868. 10.1016/j.ijhydene.2017.06.089 DOI
Smoláková L., Čapek L., Botková Š., Kovanda F., Bulánek R., Pouzar M. (2011). Activity of the Ni–Al Mixed Oxides Prepared from Hydrotalcite-like Precursors in the Oxidative Dehydrogenation of Ethane and Propane. Top. Catal. 54 (16-18), 1151. 10.1007/s11244-011-9737-3 DOI
Smoláková L., Frolich K., Kocík J., Kikhtyanin O., Čapek L. (2017a). Surface Properties of Hydrotalcite-Based Zn(Mg)Al Oxides and Their Catalytic Activity in Aldol Condensation of Furfural with Acetone. Ind. Eng. Chem. Res. 56 (16), 4638–4648. 10.1021/acs.iecr.6b04927 DOI
Smoláková L., Pöpperle L., Kocík J., Dubnová L., Horáček J., Čapek L. (2017b). Catalytic Behavior of Mg-Al and Zn-Al Mixed Oxides in the Transesterification of Rapeseed Oil: Comparison of Batch and Fixed Bed Reactors. Reac Kinet Mech. Cat 121 (1), 209–224. 10.1007/s11144-017-1156-4 DOI
Smoláková L., Dubnová L., Kocík J., Endres J., Daniš S., Priecel P., et al. (2018). In-situ Characterization of the thermal Treatment of Zn-Al Hydrotalcites with Respect to the Formation of Zn/Al Mixed Oxide Active in Aldol Condensation of Furfural. Appl. Clay Sci. 157, 8–18. 10.1016/j.clay.2018.02.024 DOI
Suárez-Quezada M., Romero-Ortiz G., Samaniego-Benítez J. E., Suárez V., Mantilla A. (2019). H2 Production by the Water Splitting Reaction Using Photocatalysts Derived from Calcined ZnAl LDH. Fuel 240, 262–269. 10.1016/j.fuel.2018.11.155 DOI
Szabados M., Adél Ádám A., Traj P., Muráth S., Baán K., Bélteky P., et al. (2020). Mechanochemical and Wet Chemical Syntheses of CaIn-Layered Double Hydroxide and its Performance in a Transesterification Reaction Compared to Those of Other Ca2M(III) Hydrocalumites (M: Al, Sc, V, Cr, Fe, Ga) and Mg(II)-, Ni(II)-, Co(II)- or Zn(II)-based Hydrotalcites. J. Catal. 391, 282–297. 10.1016/j.jcat.2020.07.038 DOI
Tajuddin N., Saleh R., Manayil J., Isaacs M., Parlett C., Lee A., et al. (2019). “Hydrothermal Reconstructing Routes of Alkali-Free ZnAl Layered Double Hydroxide: A Characterisation Study,” in Solid State Phenomena (Trans Tech Publ; ), 168–176.
Tang Y., Wu F., Fang L., Guan T., Hu J., Zhang S. (2019). A Comparative Study and Optimization of Corrosion Resistance of ZnAl Layered Double Hydroxides Films Intercalated with Different Anions on AZ31 Mg Alloys. Surf. Coat. Technol. 358, 594–603. 10.1016/j.surfcoat.2018.11.070 DOI
Teodorescu F., Slabu A. I., Pavel O. D., Zăvoianu R. (2020). A Comparative Study on the Catalytic Activity of ZnAl, NiAl, and CoAl Mixed Oxides Derived from LDH Obtained by Mechanochemical Method in the Synthesis of 2-methylpyrazine. Catal. Commun. 133, 105829. 10.1016/j.catcom.2019.105829 DOI
Teruel L., Bouizi Y., Atienzar P., Fornes V., Garcia H. (2010). Hydrotalcites of Zinc and Titanium as Precursors of Finely Dispersed Mixed Oxide Semiconductors for Dye-Sensitized Solar Cells. Energy Environ. Sci. 3 (1), 154–159. 10.1039/b916515k DOI
Tu M., Shen J., Chen Y. (1999). Microcalorimetric Studies of Zn—Al Mixed Oxides Obtained From Hydrotalcite-type Precursors. J. Therm. Anal. Calorim. 58 (2), 441–446. 10.1023/a:1010171725592 DOI
Valeikiene L., Paitian R., Grigoraviciute-Puroniene I., Ishikawa K., Kareiva A. (2019). Transition Metal Substitution Effects in Sol-Gel Derived Mg3-xMx/Al1 (M = Mn, Co, Ni, Cu, Zn) Layered Double Hydroxides. Mater. Chem. Phys. 237, 121863. 10.1016/j.matchemphys.2019.121863 DOI
Wan G. Q., Li D. X., Li C. F., Xu J., Hou W. G. (2012). From Zn-Al Layered Double Hydroxide to ZnO Nanostructure: Gradually Etching by Sodium Hydroxide. Chin. Chem. Lett. 23 (12), 1415–1418. 10.1016/j.cclet.2012.10.020 DOI
Wang D. F., Zhang X. L. (2012). “Synthesis of Diethyl Carbonate from Ethyl Carbamate and Ethanol Catalyzed by ZnO-Fe2O3 from Zn/Fe Hydrotalcite-like Compounds,” in Advanced Materials Research (Trans Tech Publ; ), 1768–1771.
Xu C., Gao Y., Liu X., Xin R., Wang Z. (2013). Hydrotalcite Reconstructed by In Situ Rehydration as a Highly Active Solid Base Catalyst and its Application in Aldol Condensations. RSC Adv. 3 (3), 793–801. 10.1039/c2ra21762g DOI
Zeng H.-Y., Xu S., Liao M.-C., Zhang Z.-Q., Zhao C. (2014). Activation of Reconstructed Mg/Al Hydrotalcites in the Transesterification of Microalgae Oil. Appl. Clay Sci. 91-92, 16–24. 10.1016/j.clay.2014.02.003 DOI
Zeng X., Yang Z., Liu F., Long J., Feng Z., Fan M. (2017). An In Situ Recovery Method to Prepare Carbon-Coated Zn-Al-Hydrotalcite as the Anode Material for Nickel-Zinc Secondary Batteries. RSC Adv. 7 (70), 44514–44522. 10.1039/c7ra08622a DOI
Zhang Y., Li X. (2014). Preparation of Zn-Al CLDH to Remove Bromate from Drinking Water. J. Environ. Eng. 140 (7), 04014018. 10.1061/(asce)ee.1943-7870.0000835 DOI
Zhao X., Zhang F., Xu S., Evans D. G., Duan X. (2010). From Layered Double Hydroxides to ZnO-Based Mixed Metal Oxides by thermal Decomposition: Transformation Mechanism and UV-Blocking Properties of the Product. Chem. Mater. 22 (13), 3933–3942. 10.1021/cm100383d DOI