Physico-Chemical Properties of MgGa Mixed Oxides and Reconstructed Layered Double Hydroxides and Their Performance in Aldol Condensation of Furfural and Acetone

. 2018 ; 6 () : 176. [epub] 20180524

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29881721

MgGa layered double hydroxides (Mg/Ga = 2-4) were synthesized and used for the preparation of MgGa mixed oxides and reconstructed hydrotalcites. The properties of the prepared materials were examined by physico-chemical methods (XRD, TGA, NH3-TPD, CO2-TPD, SEM, and DRIFT) and tested in aldol condensation of furfural and acetone. The as-prepared phase-pure MgGa samples possessed hydrotalcite structure, and their calcination resulted in mixed oxides with MgO structure with a small admixture phase characterized by a reflection at 2θ ≈ 36.0°. The interaction of MgGa mixed oxides with pure water resulted in reconstruction of the HTC structure already after 15 s of the rehydration with maximum crystallinity achieved after 60 s. TGA-MS experiments proved a substantial decrease in carbonates in all rehydrated samples compared with their as-prepared counterparts. This allowed suggesting presence of interlayer hydroxyls in the samples. Acido-basic properties of MgGa mixed oxides determined by TPD technique did not correlate with Mg/Ga ratio which was explained by the specific distribution of Ga atoms on the external surface of the samples. CO2-TPD method was also used to evaluate the basic properties of the reconstructed MgGa samples. In these experiments, an intensive peak at T = 450°C on CO2-TPD curve was attributed to the decomposition of carbonates newly formed by CO2 interaction with interlayer carbonates rather than to CO2 desorption from basic sites. Accordingly, CO2-TPD method quantitatively characterized the interlayer hydroxyls only indirectly. Furfural conversion on reconstructed MgGa materials was much larger compared with MgGa mixed oxides confirming that Brønsted basic sites in MgGa catalysts, like MgAl catalysts, were active in the reaction. Mg/Ga ratio in mixed oxides influenced product selectivity which was explained by the difference in textural properties of the samples. In contrast, Mg/Ga ratio in reconstructed catalysts had practically no effect on the composition of reaction products suggesting that the basic sites in these catalysts acted similarly in aldol condensation of acetone with furfural. It was concluded that the properties of MgGa samples resembled in a great extent those of MgAl hydrotalcite-based materials and demonstrated their potential as catalysts for base-catalyzed reactions.

Zobrazit více v PubMed

Abelló S., Medina F., Tichit D., Pérez-Ramírez J., Groen J. C., Sueiras J. E., et al. . (2005). Aldol condensations over reconstructed Mg–Al hydrotalcites: structure-activity relationships related to the rehydration method. Chem. Eur. J. 11, 728–739. 10.1002/chem.200400409 PubMed DOI

Allegra G., Ronca G. (1978). Crystal powder statistics. II. Line profiles in diffraction spectra of identical crystals and of Gaussian samples. Crystal size distributions. Acta Crystallogr. Sect. A 34, 1006–1013. 10.1107/S0567739478002053 DOI

Aramenda M. A., Borau V., Jimenez C., Marinas J. M., Ruiz J. R., Urbano F. J. (2003). Catalytic hydrogen transfer from 2-propanol to cyclohexanone over basic Mg–Al oxides. Appl. Catal. A Gen. 255, 301–308. 10.1016/S0926-860X(03)00569-6 DOI

Aramendía M. A., Avilés Y., Benítez J. A., Borau V., Jiménez C., Marinas J. M., et al. (1999a). Comparative study of Mg/Al and Mg/Ga layered double hydroxides. Micropor. Mesopor. Mater. 29, 319–328. 10.1016/S1387-1811(98)00345-X DOI

Aramendía M. A., Avilés Y., Borau V., Luque J. M., Marinas J. M., Ruiz J. R., et al. (1999b). Thermal decomposition of Mg/Al and Mg/Ga layered-double hydroxides: a spectroscopic study. J. Mater. Chem. 9, 1603–1607. 10.1039/a900535h DOI

Aramendía M. A., Borau V., Jiménez C., Marinas J. M., Ruiz J. R., Urbano F. J. (2000). XRD and 1H MAS NMR spectroscopic study of mixed oxides obtained by calcination of layered-double hydroxides. Mater. Lett. 46, 309–314. 10.1016/S0167-577X(00)00193-2 DOI

Cavani F., Maselli L., Scagliarini D., Flego C., Perego C. (2005). How basic properties of MgO-based mixed oxides affect the catalytic performance in gas-phase and liquid-phase methylation of m-cresol. Stud. Surf. Sci. Catal. 155, 167–177. 10.1016/S0167-2991(05)80146-6 DOI

Cavani F., Trifirò F., Vaccari A. (1991). Hydrotalcite-type anionic clays: preparation, properties and applications. Catal. Today 11, 173–301. 10.1016/0920-5861(91)80068-K DOI

Chao K.-J., Liu P.-H. (2005). Gallium-containing zeolites: characterization of catalytic role of gallium species in converting light paraffins to aromatics. Catal. Surveys Asia 9, 11–15. 10.1007/s10563-005-3332-1 DOI

Choudary B. M., Kantam M. L., Rahman A., Reddy C. V., Rao K. K. (2001). The first example of activation of molecular oxygen by nickel in Ni-Al hydrotalcite: a novel protocol for the selective oxidation of alcohols. Angew. Chem. 113, 785–788. 10.1002/1521-3773(20010216)40:4<763::AID-ANIE7630>3.0.CO;2-T PubMed DOI

Choudary B. M., Kantam M. L., Reddy C. R. V., Rao K. K., Figueras F. (1999). The first example of Michael addition catalysed by modified Mg–Al hydrotalcite. J. Mol. Catal. A Chem. 146, 279–284. 10.1016/S1381-1169(99)00099-0 DOI

Climent M. J., Corma A., Fornés V., Guil-Lopez R., Iborra S. (2002a). Aldol condensations on solid catalysts: a cooperative effect between weak acid and base sites. Adv. Synth. Catal. 344, 1090–1096. 10.1002/1615-4169(200212)344:10<1090::AID-ADSC1090>3.0.CO;2-X DOI

Climent M. J., Corma A., Iborra S., Primo J. (1995). Base catalysis for fine chemicals production: Claisen-Schmidt condensation on zeolites and hydrotalcites for the production of chalcones and flavanones of pharmaceutical interest. J. Catal. 151, 60–66. 10.1006/jcat.1995.1008 DOI

Climent M. J., Corma A., Iborra S., Velty A. (2002b). Synthesis of methylpseudoionones by activated hydrotalcites as solid base catalysts. Green Chem. 4, 474–480. 10.1039/b205532p DOI

Debecker D. P., Gaigneaux E. M., Busca G. (2009). Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chem. Eur. J. 15, 3920–3935. 10.1002/chem.200900060 PubMed DOI

Di Cosimo J. I., Apestegua C. R., Gines M. J. L., Iglesia E. (2000). Structural requirements and reaction pathways in condensation reactions of alcohols on MgyAlOx catalysts. J. Catal. 190, 261–275. 10.1006/jcat.1999.2734 DOI

Di Cosimo J. I., Díez V. K., Xu M., Iglesia E., Apesteguía C. R. (1998). Structure and surface and catalytic properties of Mg-Al basic oxides. J. Catal. 178, 499–510. 10.1006/jcat.1998.2161 DOI

Faba L., Díaz E., Ordóñez S. (2012). Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides. App. Catal. B Environ. 113–114, 201–211. 10.1016/j.apcatb.2011.11.039 DOI

Fricke R., Kosslick H., Lischke G., Richter M. (2000). Incorporation of gallium into zeolites: syntheses, properties and catalytic application. Chem. Rev. 100, 2303–2406. 10.1021/cr9411637 PubMed DOI

Gámez S., González-Cabriales J. J., Ramírez J. A., Garrote G., Vázquez M. (2006). Study of the hydrolysis of sugar cane bagasse using phosphoric acid. J. Food Eng. 74, 78–88. 10.1016/j.jfoodeng.2005.02.005 DOI

Grand L.-M., Palmer S. J., Frost R. L. (2010). Synthesis and thermal stability of hydrotalcites based upon gallium. J. Therm. Anal. Calorim. 101, 195–198. 10.1007/s10973-009-0456-y DOI

Guida A., Lhouty M. H., Tichit D., Figueras F., Geneste P. (1997). Hydrotalcites as base catalysts. Kinetics of Claisen-Schmidt condensation, intramolecular condensation of acetonylacetone and synthesis of chalcone. Appl. Catal. A Gen. 164, 251–264. 10.1016/S0926-860X(97)00175-0 DOI

Hora L., Kikhtyanin O., Čapek L., Bortnovskiy O., Kubička D. (2015). Comparative study of physico-chemical properties of laboratory and industrially prepared layered double hydroxides and their behavior in aldol condensation of furfural and acetone. Catal. Today 241, 221–230. 10.1016/j.cattod.2014.03.010 DOI

Kikhtyanin O., Chlubná P., Jindrová T., Kubička D. (2014). Peculiar behavior of MWW materials in aldol condensation of furfural and acetone. Dalton Trans. 43, 10628–10641. 10.1039/c4dt00184b PubMed DOI

Kikhtyanin O., Kubička D., Cejka J. (2015). Toward understanding of the role of Lewis acidity in aldol condensation of acetone and furfural using MOF and zeolite catalysts. Catal. Today 243, 158–162. 10.1016/j.cattod.2014.08.016 DOI

Kikhtyanin O., Čapek L., Smoláková L., Tišler Z., Kadlec D., Lhotka M., et al. (2017a). Influence of Mg-Al mixed oxide compositions on their properties and performance in aldol condensation. Ind. Eng. Chem. Res. 56, 13411–13422. 10.1021/acs.iecr.7b03367 DOI

Kikhtyanin O., Tišler Z., Velvarská R., Kubička D. (2017b). Reconstructed Mg-Al hydrotalcites prepared by using different rehydration and drying time: physico-chemical properties and catalytic performance in aldol condensation. Appl. Catal. A Gen. 536, 85–96. 10.1016/j.apcata.2017.02.020 DOI

Kustrowski P., Sulkowska D., Chmielarz L., Dziembaj R. (2006). Aldol condensation of citral and acetone over mesoporous catalysts obtained by thermal and chemical activation of magnesium-aluminum hydrotalcite-like precursors. Appl. Catal. A Gen. 302, 317–324. 10.1016/j.apcata.2006.02.003 DOI

López-Salinas E., García-Sánchez M., Ramon-Garcia Ma L., Schifter I. (1996). New gallium-substituted hydrotalcites: [Mg1−xGax(OH)2](CO3)x/2·mH2O. J. Porous Mater. 3, 169–174. 10.1007/BF01134028 DOI

López-Salinas E., García-Sánchez M., Llanos-Serrano Ma E., Navarrete-Bolañoz J. (1997). Formation of base sites on calcined Mg-Ga hydrotalcite-like [Mg1−xGax(OH)2](CO3)x/2·mH2O. J. Phys. Chem. B 101, 5112–5117. 10.1021/jp9702558 DOI

Mäki-Arvela P., Salmi T., Holmbom B., Willfor S., Murzin D. Y. (2011). Synthesis of sugars by hydrolysis of hemicelluloses - a review. Chem. Rev. 111, 5638–5666. 10.1021/cr2000042 PubMed DOI

Miyata S. (1980). Physico-chemical properties of synthetic hydrotalcites in relation to composition. Clay Clay Miner. 28, 50–56. 10.1346/CCMN.1980.0280107 DOI

Motokura K., Fujita N., Mori K., Mizugaki T., Ebitani K., Htsukawa K., et al. . (2006). Environmentally friendly one-pot synthesis of α-alkylated nitriles using hydrotalcite-supported metal species as multifunctional solid catalysts. Chem. Eur. J. 12, 8228–8239. 10.1002/chem.200600317 PubMed DOI

Perez C. N., Monteiro J. L. F., Nieto J. M. L., Henriques C. A. (2009). Influence of basic properties of Mg,Al-mixed oxides on their catalytic activity in knoevenagel condensation between benzaldehyde and phenylsulfonylacetonitrile. Quim. Nova 32, 2341–2346. 10.1590/S0100-40422009000900020 DOI

Pérez-Ramírez J., Abelló S., van der Pers N. M. (2007a). Influence of the divalent cation on the thermal activation and reconstruction of hydrotalcite-like compounds. J. Phys. Chem. C 111, 3642–3650. 10.1021/jp064972q DOI

Pérez-Ramírez J., Abelló S., van der Pers N. M. (2007b). Memory effect of activated Mg-Al hydrotalcite: in situ XRD studies during decomposition and gas-phase reconstruction. Chem. Eur. J. 13, 870–878. 10.1002/chem.200600767 PubMed DOI

Prescott H. A., Li Z. J., Kemnitz E., Trunschke A., Deutsch J., Lieske H., et al. (2005). Application of calcined Mg-Al hydrotalcites for Michael additions: an investigation of catalytic activity-and acid-base properties. J. Catal. 234, 119–130. 10.1016/j.jcat.2005.06.004 DOI

Prinetto F., Tichit D., Teissier R., Coq B. (2000). Mg- and Ni-containing layered double hydroxides as soda substitutes in the aldol condensation of acetone. Catal. Today 55, 103–116. 10.1016/S0920-5861(99)00230-8 DOI

Ramos R., Tišler Z., Kikhtyanin O., Kubička D. (2016). Towards understanding the hydrodeoxygenation pathways of furfural–acetone aldol condensation products over supported Pt catalysts. Catal. Sci. Technol. 6, 1829–1841. 10.1039/C5CY01422K DOI

Rebours B., d'Espinose de la Caillerie J.-B., Clause O. (1994). Decoration of nickel and magnesium oxide crystallites with spinel-type phases. J. Am. Chem. Soc. 116, 1707–1717. 10.1021/ja00084a011 DOI

Rousselot I., Taviot-Gueho C., Besse J. P. (1999). Synthesis and characterization of mixed Ga/Al-containing layered double hydroxides: study of their basic properties through the Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate, and comparison to other LDHs. Int. J. Inorg. Mater. 1, 165–174. 10.1016/S1466-6049(99)00025-2 DOI

Roy D., Roy R., Osborn E. (1953). The system MgO-Al2O3-H2O and influence of carbonate and nitrate ions on the phase equilibria. Am. J. Sci. 251, 337–361. 10.2475/ajs.251.5.337 DOI

Sádaba I., Ojeda M., Mariscal R., Richards R., López Granados M. (2011). Mg–Zr mixed oxides for aqueous aldol condensation of furfural with acetone: effect of preparation method and activation temperature. Catal. Today 167, 77–83. 10.1016/j.cattod.2010.11.059 DOI

Sels B. F., De Vos D. E., Jacobs P. A. (2001). Hydrotalcite-like anionic clays in catalytic organic reactions. Catal. Rev. Sci. Eng. 43, 443–488. 10.1081/CR-120001809 DOI

Smoláková L., Frolich K., Kocík J., Kikhtyanin O., Čapek L. (2017). Influence of acido-basic properties of Zn(Mg)Al mixed oxides on its catalytic activity in aldol condensation of furfural with acetone. Ind. Eng. Chem. Res. 56, 4638–4648. 10.1021/acs.iecr.6b04927 DOI

Tabanellia T., Cocchi S., Gumina B., Izzo L., Mella M., Passeri S., et al. (2018). Mg/Ga mixed-oxide catalysts for phenol methylation: outstanding performance in 2,4,6-trimethylphenol synthesis with co-feeding of water. Appl. Catal. A Gen. 552, 86–97. 10.1016/j.apcata.2018.01.001 DOI

Takehira K. (2017). Recent development of layered double hydroxide-derived catalysts – Rehydration, reconstitution, and supporting, aiming at commercial application. Appl. Clay Sci. 136, 112–141. 10.1016/j.clay.2016.11.012 DOI

Thanh D. N., Kikhtyanin O., Ramos R., Kothari M., Ulbrich P., Munshi T., et al. (2016). Nanosized TiO2 - A promising catalyst for the aldol condensation offurfural with acetone in biomass upgrading. Catal. Today 277, 97–107. 10.1016/j.cattod.2015.11.027 DOI

Thomas G. S., Vishnu Kamath P. (2005). Reversible thermal behavior of the layered double hydroxides (LDHs) of Mg with Ga and In. Mater. Res. Bull. 40, 671–681. 10.1016/j.materresbull.2004.12.011 DOI

Tichit D., Bennani M. N., Figueras F., Tessier R., Kervennal J. (1998). Aldol condensation of acetone over layered double hydroxides of the meixnerite type. Appl. Clay Sci. 13, 401–415. 10.1016/S0169-1317(98)00035-0 DOI

Tichit D., Coq B. (2003). Catalysis by hydrotalcites and related materials. Cat. Tech. 7, 206–217. 10.1023/B:CATT.0000007166.65577.34 DOI

Tichit D., Coq B., Cerneaux S., Durand R. (2002). Condensation of aldehydes for environmentally friendly synthesis of 2-methyl-3-phenyl-propanal by heterogeneous catalysis. Catal. Today 75, 197–202. 10.1016/S0920-5861(02)00069-X DOI

Wu W., Wu W., Kikhtyanin O. V., Li L., Toktarev A. V., Ayupov A. B., et al. (2010). Methylation of naphthalene on MTW-type zeolites. Influence of template origin and substitution of Al by Ga. Appl. Catal. A Gen. 375, 279–288. 10.1016/j.apcata.2010.01.003 DOI

Yun S. K., Pinnavaia T. J. (1995). Water-content and particle texture of synthetic hydrotalcite-like layered double hydroxides. Chem. Mater. 7, 348–354. 10.1021/cm00050a017 DOI

Zapata A., Faria J., Pilar Ruiz M., Resasco D. E. (2012). Condensation/hydrogenation of biomass-derived oxygenates in water/oil emulsions stabilized by nanohybrid catalysts. Top. Catal. 55, 38–52. 10.1007/s11244-012-9768-4 DOI

Zeng H. Y., Feng Z., Deng X., Li Y. Q. (2008). Activation of Mg-Al hydrotalcite catalysts for transesterification of rape oil. Fuel 87, 3071–3076. 10.1016/j.fuel.2008.04.001 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...