Cryopreserved human aortic root allografts arterial wall: Structural changes occurring during thawing
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28414740
PubMed Central
PMC5393551
DOI
10.1371/journal.pone.0175007
PII: PONE-D-16-39005
Knihovny.cz E-zdroje
- MeSH
- alografty * patologie MeSH
- aorta patologie transplantace MeSH
- aortální chlopeň patologie transplantace MeSH
- chirurgická náhrada chlopně škodlivé účinky metody MeSH
- dárci tkání MeSH
- dospělí MeSH
- homologní transplantace škodlivé účinky metody MeSH
- kryoprezervace metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- srdeční chlopně umělé škodlivé účinky MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The aim of our experimental work was to assess morphological changes of arterial wall that arise during different thawing protocols of a cryopreserved human aortic root allograft (CHARA) arterial wall. METHODS: The experiment was performed on CHARAs. Two thawing protocols were tested: 1, CHARAs were thawed at a room temperature at +23°C; 2, CHARAs were placed directly into a water bath at +37°C. MICROSCOPIC SAMPLES PREPARATION: After fixation, all samples were washed in distilled water for 5 min, and dehydrated in a graded ethanol series (70, 85, 95, and 100%) for 5 min at each level. The tissue samples were then immersed in 100% hexamethyldisilazane for 10 minutes and air dried in an exhaust hood at room temperature. Processed samples were mounted on stainless steel stubs, coated with gold. RESULTS: Thawing protocol 1: All 6 (100%) samples showed loss of the endothelium and damage to the subendothelial layers with randomly dispersed circular defects and micro-fractures without smooth muscle cells contractions in the tunica media. Thawing protocol 2: All 6 (100%) samples showed loss of endothelium from the luminal surface, longitudinal corrugations in the direction of blood flow caused by smooth muscle cells contractions in the tunica media with frequent fractures in the subendothelial layer. CONCLUSION: All the samples thawed at the room temperature showed smaller structural damage to the CHARA arterial wall with no smooth muscle cell contraction in tunica media when compared to the samples thawed in a water bath.
Zobrazit více v PubMed
El-Hamamsy I, Eryigit Z, Stevens LM, Sarang Z, George R, Clark L, et al. Long-term outcomes after autograft versus homograft aortic root replacement in adults with aortic valve disease: a randomised controlled trial. Lancet. 2010. August 14; 376(9740):524–31. Epub 2010 Aug 3. 10.1016/S0140-6736(10)60828-8 PubMed DOI
Jashari R, Van Hoeck B, Ngakam R, Goffin Y, Fan Y. Banking of cryopreserved arterial allografts in Europe: 20 years of operation in the European Homograft Bank (EHB) in Brussels. Cell Tissue Bank. 2013. December; 14(4):589–99. Epub 2013 Jan 11 10.1007/s10561-012-9359-4 PubMed DOI
Perrotta S, Aljassim O, Jeppsson A, Bech-Hanssen O, Svensson G. Survival and quality of life after aortic root replacement with homografts in acute endocarditis. Ann Thorac Surg. 2010. December; 90(6):1862–7. 10.1016/j.athoracsur.2010.06.100 PubMed DOI
Ross DN. Homograft replacement of the aortic valve. Lancet 1962; 2:487 PubMed
Brewin EG. The use of tissue transplants in the surgery of cardiac valve disease- an experimental study. Guy’s Hospital Reports 1956; 105:328–329. PubMed
Merin G, McGoon DC. Reoperation after insertion of aortic homograft as a right ventricular outflow tract. Ann Thorac Surg. 1973. August; 16(2):122–6. PubMed
Brockbank KG, Schenke-Layland K, Greene ED, Chen Z, Fritze O, Schleicher M, et al. Ice-free cryopreservation of heart valve allografts: better extracellular matrix preservation in vivo and preclinical results. Cell Tissue Bank. 2012. December; 13(4):663–71. Epub 2012 Jan 3. 10.1007/s10561-011-9288-7 PubMed DOI
Gerson CJ, Elkins RC, Goldstein S, Heacox AE. Structural integrity of collagen and elastin in SynerGraft decellularized-cryopreserved human heart valves. Cryobiology. 2012. February; 64(1):33–42. Epub 2011 Nov 19. 10.1016/j.cryobiol.2011.11.001 PubMed DOI
Moussa M, Dumont F, Perrier-Cornet JM, Gervais P. Cell inactivation and membrane damage after long-term treatments at sub-zero temperature in the supercooled and frozen states. Biotechnol Bioeng. 2008. December 15; 101(6):1245–55. 10.1002/bit.21981 PubMed DOI
Shahmansouri N, Cartier R, Mongrain R. Characterization of the toughness and elastic properties of fresh and cryopreserved arteries. J Biomech. 2015. July 16; 48(10):2205–9. Epub 2015 Apr 7. 10.1016/j.jbiomech.2015.03.033 PubMed DOI
Krs O, Burkert J, Slízová D, Kobylka P, Spatenka J. Allograft semilunar cardiac valves processing and cryopreservation—morphology inscanning electron microscope. Cell Tissue Bank. 2006; 7(3):167–73. 10.1007/s10561-004-1889-y PubMed DOI
M'Bengue-Gaye A, Fleury JP, Gerota J, Gueye L, Eugene M, Cisse F. Transplantation of cryopreserved carotids in the rabbit: effect of cryoprotective agents. Dakar Med. 1999; 44(2):180–5. PubMed
Huber AJ, Brockbank KG, Riemann I, Schleicher M, Schenke-Layland K, Fritze O, et al. Preclinical evaluation of ice-free cryopreserved arteries: structural integrity and hemocompatibility. 2012;196(3):262–70. Epub 2012 Mar 13. PubMed
Manaa J, Sraieb T, Khayat O, Ben Romdhane N, Hamida J, Amor A. The effect of cryopreservation on the structural and functional properties of human vascular allografts. Tunis Med. 2003; 81 Suppl 8:645–51. PubMed
Pasquinelli G, Pistillo MP, Ricci F, Buzzi M, Tazzari PL, Foroni L, et al. The "in situ" expression of human leukocyte antigen class I antigens is not altered by cryopreservation in human arterial allografts. Cell Tissue Bank. 2007; 8(3):195–203. Epub 2006 Oct 25. PubMed
Verghese S, Cherian KM. HLA expression in aortic and pulmonary homografts: effects of cryopreservation. Indian Heart J. 2002. Jul-Aug; 54(4):394–8. PubMed
Rodríguez M, Pascual G, Pérez-Köhler B, Cifuentes A, Garcia-Honduvilla N, Bellón JM, et al. Immune response to the long-term grafting of cryopreserved small-diameter arterial allografts. Histol Histopathol. 2012. July; 27(7):873–84. 10.14670/HH-27.873 PubMed DOI
Takkenberg JJ, Eijkemans MJ, van Herwerden LA, Steyerberg EW, Lane MM, Elkins RC, et al. Prognosis after aortic root replacement with cryopreserved allografts in adults. Ann Thorac Surg. 2003. May; 75(5):1482–9. PubMed
Preventza O, Mohamed AS, Cooley DA, Rodriguez V, Bakaeen FG, Cornwell LD, et al. Homograft use in reoperative aortic root and proximal aortic surgery for endocarditis: A 12-year experience in high-risk patients. J Thorac Cardiovasc Surg. 2014. September; 148(3):989–94. Epub 2014 Jun 14. 10.1016/j.jtcvs.2014.06.025 PubMed DOI
Jassar AS, Bavaria JE, Szeto WY, Moeller PJ, Maniaci J, Milewski RK, et al. Graft selection for aortic root replacement in complex active endocarditis: does it matter? Ann Thorac Surg. 2012. February; 93(2):480–7. Epub 2011 Dec 22. 10.1016/j.athoracsur.2011.09.074 PubMed DOI
Von Rossum A, Laher I, Choy JC. Immune-mediated vascular injury and dysfunction in transplant arteriosclerosis. Front Immunol. 2015; 5:684 10.3389/fimmu.2014.00684 PubMed DOI PMC
Qin L, Yu L, Min W. Mouse models for graft arteriosclerosis. J Vis Exp.2013:e50290–e50290. 10.3791/50290 PubMed DOI PMC
Ziqiang X, Jingjun W, Jianjian Z, Yong L, Peng X. Tadalafil attenuates graft arteriosclerosis of aortic transplant in a rat model. Iran J Basic Med Sci. 2015. September; 18(9): 927–931. PubMed PMC
Vrtik M, Tesar PJ. Re-do aortic root replacement after an allograft aortic root replacement. Ann Thorac Surg. 2009. October; 88(4):1365–6. 10.1016/j.athoracsur.2008.12.100 PubMed DOI
Preventza O, Mohamed AS, Cooley DA, Rodriguez V, Bakaeen FG, Cornwell LD, et al. Homograft use in reoperative aortic root and proximal aortic surgery for endocarditis: A 12-year experience in high-risk patients. J Thorac Cardiovasc Surg. 2014. September; 148(3):989–94. Epub 2014 Jun 14. 10.1016/j.jtcvs.2014.06.025 PubMed DOI
Weymann A, Radovits T, Schmack B, Korkmaz S, Li S, Chaimow N, et al. Total aortic arch replacement: superior ventriculo-arterial coupling with decellularized allografts compared with conventional prostheses. PLoS One. 2014. July 31; 9(7):e103588 eCollection 2014. 10.1371/journal.pone.0103588 PubMed DOI PMC
Matia I, Fellmer P, Splith K, Varga M, Adamec M, Kämmerer I, et al. Immunosuppressive protocol with delayed use of low-dose tacrolimus after aortic transplantation suppresses donor-specific anti-MHC class I and class II antibody production in rats. Ann Transplant. 2014. May 12; 19:225–32. 10.12659/AOT.889870 PubMed DOI
Nakanishi T, Xu X, Wynn C, Yamada T, Pan F, Erickson L, et al. Absence of Activation-induced Cytidine Deaminase, a Regulator of Class SwitchRecombination and Hypermutation in B Cells, Suppresses Aorta Allograft Vasculopathy in Mice. Transplantation. 2015. August; 99(8):1598–605. 10.1097/TP.0000000000000688 PubMed DOI
Buzzi M, Guarino A, Gatto C, Manara S, Dainese L, Polvani G, et al. Residual antibiotics in decontaminated human cardiovascular tissues intended for transplantation and risk of falsely negative microbiological analyses. PLoS One. 2014. November 14; 9(11):e112679 eCollection 2014. 10.1371/journal.pone.0112679 PubMed DOI PMC