Cell Viability Assessment Using Fluorescence Vital Dyes and Confocal Microscopy in Evaluating Freezing and Thawing Protocols Used in Cryopreservation of Allogeneic Venous Grafts
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Supported by MH CZ - DRO "General University Hospital in Prague - VFN, 00064165"
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
34638994
PubMed Central
PMC8509073
DOI
10.3390/ijms221910653
PII: ijms221910653
Knihovny.cz E-zdroje
- Klíčová slova
- Thawing method, cell viability, confocal microscopy, cryopreservation, fluorescence vital dyes, vascular allograft,
- MeSH
- alografty diagnostické zobrazování účinky léků MeSH
- apoptóza účinky léků MeSH
- dárci tkání MeSH
- dimethylsulfoxid farmakologie MeSH
- fluorescenční barviva * MeSH
- konfokální mikroskopie metody MeSH
- kryoprezervace metody MeSH
- kryoprotektivní látky farmakologie MeSH
- lidé MeSH
- optické zobrazování metody MeSH
- transplantace cév metody MeSH
- vena femoralis diagnostické zobrazování účinky léků MeSH
- vena saphena diagnostické zobrazování účinky léků MeSH
- viabilita buněk účinky léků MeSH
- zmrazování * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dimethylsulfoxid MeSH
- fluorescenční barviva * MeSH
- kryoprotektivní látky MeSH
The authors present their contribution to the improvement of methods suitable for the detection of the freezing and thawing damage of cells of cryopreserved venous grafts used for lower limb revascularization procedures. They studied the post-thaw viability of cells of the wall of cryopreserved venous grafts (CVG) immediately after thawing and after 24 and 48 h culture at +37 °C in two groups of six CVG selected randomly for slow thawing in the refrigerator and rapid thawing in a water bath at +37 °C. The grafts were collected from multi-organ and tissue brain-dead donors, cryopreserved, and stored in a liquid nitrogen vapor phase for five years. The viability was assessed from tissue slices obtained by perpendicular and longitudinal cuts of the thawed graft samples using in situ staining with fluorescence vital dyes. The mean and median immediate post-thaw viability values above 70% were found in using both thawing protocols and both types of cutting. The statistically significant decline in viability after the 48-h culture was observed only when using the slow thawing protocol and perpendicular cutting. The possible explanation might be the "solution effect damage" during slow thawing, which caused a gentle reduction in the graft cellularity. The possible influence of this phenomenon on the immunogenicity of CVG should be the subject of further investigations.
Department of Cell Biology Charles University Viničná 7 128 00 Prague Czech Republic
Technology Centre of the Czech Academy of Sciences 160 00 Prague Czech Republic
Tissue Bank University Hospital 500 05 Hradec Králové Czech Republic
Zobrazit více v PubMed
Berz D., McCormack E.M., Winer E.S., Colvin G.A., Quesenberry P.J. Cryopreservation of hematopoietic stem cells. Am. J. Hematol. 2007;82:463–472. doi: 10.1002/ajh.20707. PubMed DOI PMC
Baust J.M., Corwin W., Snyder K.K., Van Buskirk R., Baust J.G. Cryopreservation: Evolution of Molecular Based Strategies. Adv. Exp. Med. Biol. 2016;951:13–29. doi: 10.1007/978-3-319-45457-3_2. PubMed DOI
Cosentino L., Corwin W., Baust J., Diaz-Mayoral N., Cooley H., Shao W., van Buskirk R. Preliminary Report: Evaluation of Storage Conditions and Cryococktails during Peripheral Blood Mononuclear Cell Cryopreservation. Cell Preserv. Technol. 2007;5:189–204. doi: 10.1089/cpt.2007.9987. DOI
Jandova M., Sponer P., Vokurkova D., Bauer P.O., Filipova A., Filip S., Mericka P. New Cryopreservation Technology of hMSCs: First Preclinical Results Using DMSO-containing Medium. Cryoletters. 2020;41:50–56. PubMed
Johnson S., Rabinovitch P.S. Ex Vivo Imaging of Excised Tissue Using Vital Dyes and Confocal Microscopy. Curr. Protoc. Cytom. 2012;61 doi: 10.1002/0471142956.cy0939s61. PubMed DOI PMC
Baust J.M., Snyder K.K., VanBuskirk R.G., Baust J.G. Changing Paradigms in Biopreservation. Biopreserv. Biobank. 2009;7:3–12. doi: 10.1089/bio.2009.0701.jmb. PubMed DOI
Baust J.M., Campbell L.H., Harbell J. Best practices for cryopreserving, thawing, recovering, and assessing cells. In Vitro Cell. Dev. Biol.-Anim. 2017;53:855–871. doi: 10.1007/s11626-017-0201-y. PubMed DOI
Baust J.M., Vogel M.J., Van Buskirk R. A Molecular Basis of Cryopreservation Failure and Its Modulation to Improve Cell Survival. Cell Transplant. 2001;10:561–571. doi: 10.3727/000000001783986413. PubMed DOI
Heng B.C., Clément M.V., Cao T. Caspase Inhibitor Z-VAD-FMK Enhances the Freeze-Thaw Survival Rate of Human Embryonic Stem Cells. Biosci. Rep. 2007;27:257–264. doi: 10.1007/s10540-007-9051-2. PubMed DOI
Savitskaya M.A., Onishchenko G.E. Apoptosis in cryopreserved eukaryotic cells. Biochemistry. 2016;81:445–452. doi: 10.1134/S0006297916050023. PubMed DOI
Searle J., Kerr J.F., Bishop C.J. Necrosis and apoptosis: Distinct modes of cell death with fundamentally different significance. Pathol. Annu. 1982;17:229–259. PubMed
Měřička P., Straková H., Lánská M., Vokurková D., Pecka M., Bláha M., Žák P., Jebavý L. Testing of cryopreserved concentrates at infusion leads to standardization of engraftment in autologous blood progenitor cell transplantation. In: Čermák R., editor. Proceedings of the 23th IIR International Congress of Refrigeration; Prague, Czech Republic. 20–26 August 2011; p. 3609.
Morgenstern D.A., Ahsan G., Brocklesby M., Ings S., Balsa C., Veys P., Brock P., Anderson J., Amrolia P., Goulden N., et al. Post-thaw viability of cryopreserved peripheral blood stem cells (PBSC) does not guarantee functional activity: Important implications for quality assurance of stem cell transplant programmes. Br. J. Haematol. 2016;174:942–951. doi: 10.1111/bjh.14160. PubMed DOI
Wats M., Ings S., Balsa C. Failure of cryopreserved peripheral blood stem cells to ensure engraftment resolved by functional assays but not by post-thaw viability. Cryoletters. 2020;41:158–159.
Schneider M., Stamm C., Brockbank K.G.M., Stock U.A., Seifert M. The choice of cryopreservation method affects immune compatibility of human cardiovascular matrices. Sci. Rep. 2017;7:17027. doi: 10.1038/s41598-017-17288-z. PubMed DOI PMC
Matia I., Lodererova A., Adamec M. Delayed administration of FK 506 is sufficient to suppress acute rejection changes after aortal transplantation in rats. Transpl. Int. 2007;20:371–380. doi: 10.1111/j.1432-2277.2006.00446.x. PubMed DOI
Jonas S., Matia I., Fellmer P., Splith K., Varga M., Adamec M., Kämmerer I., Feldbrügge L., Krenzien F., Hau H.-M., et al. Immunosuppressive protocol with delayed use of low-dose tacrolimus after aortic transplantation suppresses donor-specific anti-MHC class I and class II antibody production in rats. Ann. Transplant. 2014;19:225–232. doi: 10.12659/AOT.889870. PubMed DOI
Spunda R., Hruby J., Mericka P., Mlcek M., Pecha O., Splith K., Schmelzle M., Krenzien F., Lindner J., Matia I., et al. Immunosuppressive protocols with tacrolimus after cryopreserved aortal allotransplantation in rats. PLoS ONE. 2018;13:e0201984. doi: 10.1371/journal.pone.0201984. PubMed DOI PMC
Hruby J., Spunda R., Mericka P., Mlcek M., Pecha O., Splith K., Schmelzle M., Krenzien F., Lindner J., Spacek M., et al. Influence of the new standardized clinical cryopreservation/slow thawing protocol on immunogenicity of arterial allografts in rats. PLoS ONE. 2020;15:e0230234. doi: 10.1371/journal.pone.0230234. PubMed DOI PMC
Spacek M., Měřička P., Janoušek L., Štádler P., Adamec M., Vlachovský R., Guňka I., Navrátil P., Thieme F., Špunda R., et al. Current vascular allograft procurement, cryopreservation and transplantation techniques in the Czech Republic. Adv. Clin. Exp. Med. 2019;28:529–534. doi: 10.17219/acem/90037. PubMed DOI
Taylor M.J., Weegman B.P., Baicu S.C., Giwa S.E. New Approaches to Cryopreservation of Cells, Tissues, and Organs. Transfus. Med. Hemother. 2019;46:197–215. doi: 10.1159/000499453. PubMed DOI PMC
Pegg D.E., Wusteman M.C., Boylan S. Fractures in Cryopreserved Elastic Arteries. Cryobiology. 1997;34:183–192. doi: 10.1006/cryo.1996.1997. PubMed DOI
Hunt C., Song Y., Bateson E., Pegg D. Fractures in Cryopreserved Arteries. Cryobiology. 1994;31:506–515. doi: 10.1006/cryo.1994.1061. PubMed DOI
Novotny R., Slizova D., Hlubocký J., Krs O., Spatenka J., Burkert J., Fiala R., Mitas P., Mericka P., Spacek M., et al. Cryopreserved human aortic root allografts arterial wall: Structural changes occurring during thawing. PLoS ONE. 2017;12:e0175007. doi: 10.1371/journal.pone.0175007. PubMed DOI PMC
Fellmer P.T., Matia I., Jonas S. Arterielle Homografts in der Gefäßchirurgie—Idealer Gefäßersatz bei aortalen Gefäßprotheseninfektionen?! [Arterial allografts in vascular surgery—Best choice in cases of aortic graft infection?!] Zent. Chir. 2013;138:530–535. doi: 10.1055/s-0032-1328624. PubMed DOI
Hwang S., Bae J.H., Kim I.-O., Hong J.-J. Current vascular allograft procurement, cryopreservation and transplantation techniques in the Asan Medical Center Tissue Bank. Ann. Liver Transplant. 2021;1:79–85. doi: 10.52604/alt.21.0016. DOI
Goffin Y.A., Van Hoeck B., Jashari R., Soots G., Kalmar P. Banking of cryopreserved heart valves in Europe: Assessment of a 10-year operation in the European Homograft Bank (EHB) J. Heart Valve Dis. 2000;9:207–214. PubMed
Jashari R., Van Hoeck B., Ngakam R., Goffin Y., Fan Y. Banking of cryopreserved arterial allografts in Europe: 20 years of operation in the European Homograft Bank (EHB) in Brussels. Cell Tissue Bank. 2013;14:589–599. doi: 10.1007/s10561-012-9359-4. PubMed DOI
Awan M., Buriak I., Fleck R., Fuller B., Goltsev A., Kerby J., Lowdell M., Mericka P., Petrenko A., Petrenko Y., et al. Dimethyl sulfoxide: A central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regen. Med. 2020;15:1463–1491. doi: 10.2217/rme-2019-0145. PubMed DOI
European Commission EU Tissue and Cell Product Compendium. [(accessed on 8 April 2015)]. Available online: webgate.ec.europa.eu/eucoding/reports/te/index.xhtml.
Měřička P., Špaček M., Janoušek L., Dvořáček L., Štádler P., Vlachovský R., Guňka I., Honegrová B., Brandejs D., Štěrba L., et al. Cryopreservation of vascular grafts for clinical use: Retrospective analysis of pre-freezing factors with potential impact on the quality and safety of vascular transplantations. Cryobiology. 2015;71:546–547. doi: 10.1016/j.cryobiol.2015.10.041. DOI
Van Kats J.P., Van Tricht C., Van Dijk A., Van Der Schans M., Bogaerdt A.V.D., Petit P.L., Bogers A.J. Microbiological examination of donated human cardiac tissue in heart valve banking. Eur. J. Cardio-Thorac. Surg. 2010;37:163–169. doi: 10.1016/j.ejcts.2009.07.011. PubMed DOI
Špaček M., Měřička P., Janoušek L., Dalecká M., Benda A., Krs O., Slížová D., Špunda R., Hrubý J., Matia I., et al. Comparison of Different Thawing Protocols in Human Cryopreserved Venous Grafts. Ann. Vasc. Surg. 2020;64:347–354. doi: 10.1016/j.avsg.2019.11.026. PubMed DOI
Viability of Human Arterial Grafts Monitored by Comet Assay