Cell Viability Assessment Using Fluorescence Vital Dyes and Confocal Microscopy in Evaluating Freezing and Thawing Protocols Used in Cryopreservation of Allogeneic Venous Grafts

. 2021 Sep 30 ; 22 (19) : . [epub] 20210930

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34638994

Grantová podpora
Supported by MH CZ - DRO "General University Hospital in Prague - VFN, 00064165" Ministerstvo Zdravotnictví Ceské Republiky

The authors present their contribution to the improvement of methods suitable for the detection of the freezing and thawing damage of cells of cryopreserved venous grafts used for lower limb revascularization procedures. They studied the post-thaw viability of cells of the wall of cryopreserved venous grafts (CVG) immediately after thawing and after 24 and 48 h culture at +37 °C in two groups of six CVG selected randomly for slow thawing in the refrigerator and rapid thawing in a water bath at +37 °C. The grafts were collected from multi-organ and tissue brain-dead donors, cryopreserved, and stored in a liquid nitrogen vapor phase for five years. The viability was assessed from tissue slices obtained by perpendicular and longitudinal cuts of the thawed graft samples using in situ staining with fluorescence vital dyes. The mean and median immediate post-thaw viability values above 70% were found in using both thawing protocols and both types of cutting. The statistically significant decline in viability after the 48-h culture was observed only when using the slow thawing protocol and perpendicular cutting. The possible explanation might be the "solution effect damage" during slow thawing, which caused a gentle reduction in the graft cellularity. The possible influence of this phenomenon on the immunogenicity of CVG should be the subject of further investigations.

Zobrazit více v PubMed

Berz D., McCormack E.M., Winer E.S., Colvin G.A., Quesenberry P.J. Cryopreservation of hematopoietic stem cells. Am. J. Hematol. 2007;82:463–472. doi: 10.1002/ajh.20707. PubMed DOI PMC

Baust J.M., Corwin W., Snyder K.K., Van Buskirk R., Baust J.G. Cryopreservation: Evolution of Molecular Based Strategies. Adv. Exp. Med. Biol. 2016;951:13–29. doi: 10.1007/978-3-319-45457-3_2. PubMed DOI

Cosentino L., Corwin W., Baust J., Diaz-Mayoral N., Cooley H., Shao W., van Buskirk R. Preliminary Report: Evaluation of Storage Conditions and Cryococktails during Peripheral Blood Mononuclear Cell Cryopreservation. Cell Preserv. Technol. 2007;5:189–204. doi: 10.1089/cpt.2007.9987. DOI

Jandova M., Sponer P., Vokurkova D., Bauer P.O., Filipova A., Filip S., Mericka P. New Cryopreservation Technology of hMSCs: First Preclinical Results Using DMSO-containing Medium. Cryoletters. 2020;41:50–56. PubMed

Johnson S., Rabinovitch P.S. Ex Vivo Imaging of Excised Tissue Using Vital Dyes and Confocal Microscopy. Curr. Protoc. Cytom. 2012;61 doi: 10.1002/0471142956.cy0939s61. PubMed DOI PMC

Baust J.M., Snyder K.K., VanBuskirk R.G., Baust J.G. Changing Paradigms in Biopreservation. Biopreserv. Biobank. 2009;7:3–12. doi: 10.1089/bio.2009.0701.jmb. PubMed DOI

Baust J.M., Campbell L.H., Harbell J. Best practices for cryopreserving, thawing, recovering, and assessing cells. In Vitro Cell. Dev. Biol.-Anim. 2017;53:855–871. doi: 10.1007/s11626-017-0201-y. PubMed DOI

Baust J.M., Vogel M.J., Van Buskirk R. A Molecular Basis of Cryopreservation Failure and Its Modulation to Improve Cell Survival. Cell Transplant. 2001;10:561–571. doi: 10.3727/000000001783986413. PubMed DOI

Heng B.C., Clément M.V., Cao T. Caspase Inhibitor Z-VAD-FMK Enhances the Freeze-Thaw Survival Rate of Human Embryonic Stem Cells. Biosci. Rep. 2007;27:257–264. doi: 10.1007/s10540-007-9051-2. PubMed DOI

Savitskaya M.A., Onishchenko G.E. Apoptosis in cryopreserved eukaryotic cells. Biochemistry. 2016;81:445–452. doi: 10.1134/S0006297916050023. PubMed DOI

Searle J., Kerr J.F., Bishop C.J. Necrosis and apoptosis: Distinct modes of cell death with fundamentally different significance. Pathol. Annu. 1982;17:229–259. PubMed

Měřička P., Straková H., Lánská M., Vokurková D., Pecka M., Bláha M., Žák P., Jebavý L. Testing of cryopreserved concentrates at infusion leads to standardization of engraftment in autologous blood progenitor cell transplantation. In: Čermák R., editor. Proceedings of the 23th IIR International Congress of Refrigeration; Prague, Czech Republic. 20–26 August 2011; p. 3609.

Morgenstern D.A., Ahsan G., Brocklesby M., Ings S., Balsa C., Veys P., Brock P., Anderson J., Amrolia P., Goulden N., et al. Post-thaw viability of cryopreserved peripheral blood stem cells (PBSC) does not guarantee functional activity: Important implications for quality assurance of stem cell transplant programmes. Br. J. Haematol. 2016;174:942–951. doi: 10.1111/bjh.14160. PubMed DOI

Wats M., Ings S., Balsa C. Failure of cryopreserved peripheral blood stem cells to ensure engraftment resolved by functional assays but not by post-thaw viability. Cryoletters. 2020;41:158–159.

Schneider M., Stamm C., Brockbank K.G.M., Stock U.A., Seifert M. The choice of cryopreservation method affects immune compatibility of human cardiovascular matrices. Sci. Rep. 2017;7:17027. doi: 10.1038/s41598-017-17288-z. PubMed DOI PMC

Matia I., Lodererova A., Adamec M. Delayed administration of FK 506 is sufficient to suppress acute rejection changes after aortal transplantation in rats. Transpl. Int. 2007;20:371–380. doi: 10.1111/j.1432-2277.2006.00446.x. PubMed DOI

Jonas S., Matia I., Fellmer P., Splith K., Varga M., Adamec M., Kämmerer I., Feldbrügge L., Krenzien F., Hau H.-M., et al. Immunosuppressive protocol with delayed use of low-dose tacrolimus after aortic transplantation suppresses donor-specific anti-MHC class I and class II antibody production in rats. Ann. Transplant. 2014;19:225–232. doi: 10.12659/AOT.889870. PubMed DOI

Spunda R., Hruby J., Mericka P., Mlcek M., Pecha O., Splith K., Schmelzle M., Krenzien F., Lindner J., Matia I., et al. Immunosuppressive protocols with tacrolimus after cryopreserved aortal allotransplantation in rats. PLoS ONE. 2018;13:e0201984. doi: 10.1371/journal.pone.0201984. PubMed DOI PMC

Hruby J., Spunda R., Mericka P., Mlcek M., Pecha O., Splith K., Schmelzle M., Krenzien F., Lindner J., Spacek M., et al. Influence of the new standardized clinical cryopreservation/slow thawing protocol on immunogenicity of arterial allografts in rats. PLoS ONE. 2020;15:e0230234. doi: 10.1371/journal.pone.0230234. PubMed DOI PMC

Spacek M., Měřička P., Janoušek L., Štádler P., Adamec M., Vlachovský R., Guňka I., Navrátil P., Thieme F., Špunda R., et al. Current vascular allograft procurement, cryopreservation and transplantation techniques in the Czech Republic. Adv. Clin. Exp. Med. 2019;28:529–534. doi: 10.17219/acem/90037. PubMed DOI

Taylor M.J., Weegman B.P., Baicu S.C., Giwa S.E. New Approaches to Cryopreservation of Cells, Tissues, and Organs. Transfus. Med. Hemother. 2019;46:197–215. doi: 10.1159/000499453. PubMed DOI PMC

Pegg D.E., Wusteman M.C., Boylan S. Fractures in Cryopreserved Elastic Arteries. Cryobiology. 1997;34:183–192. doi: 10.1006/cryo.1996.1997. PubMed DOI

Hunt C., Song Y., Bateson E., Pegg D. Fractures in Cryopreserved Arteries. Cryobiology. 1994;31:506–515. doi: 10.1006/cryo.1994.1061. PubMed DOI

Novotny R., Slizova D., Hlubocký J., Krs O., Spatenka J., Burkert J., Fiala R., Mitas P., Mericka P., Spacek M., et al. Cryopreserved human aortic root allografts arterial wall: Structural changes occurring during thawing. PLoS ONE. 2017;12:e0175007. doi: 10.1371/journal.pone.0175007. PubMed DOI PMC

Fellmer P.T., Matia I., Jonas S. Arterielle Homografts in der Gefäßchirurgie—Idealer Gefäßersatz bei aortalen Gefäßprotheseninfektionen?! [Arterial allografts in vascular surgery—Best choice in cases of aortic graft infection?!] Zent. Chir. 2013;138:530–535. doi: 10.1055/s-0032-1328624. PubMed DOI

Hwang S., Bae J.H., Kim I.-O., Hong J.-J. Current vascular allograft procurement, cryopreservation and transplantation techniques in the Asan Medical Center Tissue Bank. Ann. Liver Transplant. 2021;1:79–85. doi: 10.52604/alt.21.0016. DOI

Goffin Y.A., Van Hoeck B., Jashari R., Soots G., Kalmar P. Banking of cryopreserved heart valves in Europe: Assessment of a 10-year operation in the European Homograft Bank (EHB) J. Heart Valve Dis. 2000;9:207–214. PubMed

Jashari R., Van Hoeck B., Ngakam R., Goffin Y., Fan Y. Banking of cryopreserved arterial allografts in Europe: 20 years of operation in the European Homograft Bank (EHB) in Brussels. Cell Tissue Bank. 2013;14:589–599. doi: 10.1007/s10561-012-9359-4. PubMed DOI

Awan M., Buriak I., Fleck R., Fuller B., Goltsev A., Kerby J., Lowdell M., Mericka P., Petrenko A., Petrenko Y., et al. Dimethyl sulfoxide: A central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regen. Med. 2020;15:1463–1491. doi: 10.2217/rme-2019-0145. PubMed DOI

European Commission EU Tissue and Cell Product Compendium. [(accessed on 8 April 2015)]. Available online: webgate.ec.europa.eu/eucoding/reports/te/index.xhtml.

Měřička P., Špaček M., Janoušek L., Dvořáček L., Štádler P., Vlachovský R., Guňka I., Honegrová B., Brandejs D., Štěrba L., et al. Cryopreservation of vascular grafts for clinical use: Retrospective analysis of pre-freezing factors with potential impact on the quality and safety of vascular transplantations. Cryobiology. 2015;71:546–547. doi: 10.1016/j.cryobiol.2015.10.041. DOI

Van Kats J.P., Van Tricht C., Van Dijk A., Van Der Schans M., Bogaerdt A.V.D., Petit P.L., Bogers A.J. Microbiological examination of donated human cardiac tissue in heart valve banking. Eur. J. Cardio-Thorac. Surg. 2010;37:163–169. doi: 10.1016/j.ejcts.2009.07.011. PubMed DOI

Špaček M., Měřička P., Janoušek L., Dalecká M., Benda A., Krs O., Slížová D., Špunda R., Hrubý J., Matia I., et al. Comparison of Different Thawing Protocols in Human Cryopreserved Venous Grafts. Ann. Vasc. Surg. 2020;64:347–354. doi: 10.1016/j.avsg.2019.11.026. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...