MagnetoShield: A Novel Open-Source Magnetic Levitation Benchmark Device for Mechatronics Education and Research

. 2024 Jan 15 ; 24 (2) : . [epub] 20240115

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38257629

Grantová podpora
APVV-18-0023 Slovak Research and Development Agency
APVV-22-0436 Slovak Research and Development Agency
012STU-4/2021 Cultural and Educational Agency of the Ministry of Education of Slovak Republic
101079342 European Union
SP2023/009 Student Grant System at VSB-TU Ostrava

This article presents an open-source device illustrating the well-known magnetic levitation experiment. The uniqueness of this particular device lies in its exceptionally small dimensions, affordability and availability, which makes it a perfect design for take-home experiments for education but it can also serve as a referential design for testing various control algorithms in research. In addition, this paper provides a comprehensive hardware design for reproducibility along with the detailed derivation of the mathematical model, system identification and validation. Moreover, the introduced hardware comes with an easy-to-use open-source application programming interface in C/C++ for the Arduino IDE, Simulink and CircuitPython. REXYGEN, another environment similar to Simulink, had also been used to demonstrate the capabilities of the MagnetoShield.

Zobrazit více v PubMed

Murray R. Control in an Information Rich World: Report of the Panel on Future Directions in Control, Dynamics, and Systems. SIAM Publications Library; Philadelphia, PA, USA: 2003.

Rossiter J. Future Trends for a First Course in Control Engineering. Front. Control. Eng. 2022;3:956665. doi: 10.3389/fcteg.2022.956665. DOI

Brown M., McCormack M., Reeves J., Brook D.C., Grajek S., Alexander B., Bali M., Bulger S., Dark S., Engelbert N., et al. 2020 Educause Horizon Report Teaching and Learning Edition. Online. 2020. [(accessed on 20 September 2023)]. Available online: https://library.educause.edu/resources/2020/3/2020-educause-horizon-report-teaching-and-learning-edition.

Rezapour Sarabi M., Yetisen A., Tasoglu S. Magnetic levitation for space exploration. Trends Biotechnol. 2022;40:915–917. doi: 10.1016/j.tibtech.2022.03.010. PubMed DOI

Zhang K., Xu F., Xu X. Observer-based fast nonlinear MPC for multi-DOF maglev positioning system: Theory and experiment. Control. Eng. Pract. 2021;114:104860. doi: 10.1016/j.conengprac.2021.104860. DOI

Yu W., Li X. A Magnetic Levitation System for Advanced Control Education. IFAC Proc. Vol. 2014;47:9032–9037. doi: 10.3182/20140824-6-ZA-1003.00147. DOI

Asato K., Teruya K., Nagado T., Tamaki S. Development of Magnetic Levitation System for Science and Technology Education: Magnetic Levitation Control by Using a Hall Element Displacement Sensor with Neural Network. Electr. Eng. Jpn. 2017;200:51–60. doi: 10.1002/eej.22975. DOI

Truong T.N., Anh Tuan V., Kang H.J. Implementation of an Adaptive Neural Terminal Sliding Mode for Tracking Control of Magnetic Levitation Systems. IEEE Access. 2020;8:206931–206941. doi: 10.1109/ACCESS.2020.3036010. DOI

Artal-Sevil J., Bernal-Ruiz C., Bono-Nuez A., Penas M. Design of a Fuzzy-Controller for a Magnetic Levitation System using Hall-Effect sensors; Proceedings of the 2020 XIV Technologies Applied to Electronics Teaching Conference (TAEE); Porto, Portugal. 8–10 July 2020; pp. 1–9.

Kalúz M., Čirka Ľ., Valo R., Fikar M. ArPi Lab: A Low-Cost Remote Laboratory for Control Education. IFAC Proc. Vol. 2014;7:9057–9062. doi: 10.3182/20140824-6-ZA-1003.00963. DOI

Dormido S., Martin C., Pastor Vargas R., Sanchez J., Esquembre F. Magnetic levitation system: A virtual lab in easy Java simulation; Proceedings of the 2004 American Control Conference; Boston, MA, USA. 30 June–2 July 2004; pp. 3215–3220.

AutomationShield. Online. 2023. GitHub Wiki Page. [(accessed on 2 October 2023)]. Available online: https://github.com/gergelytakacs/AutomationShield/wiki.

Takács G., Mikuláš E., Gulan M., Vargová A., Boldocký J. AutomationShield: An Open-Source Hardware and Software Initiative for Control Engineering Education. IFAC-PapersOnLine. 2023;56:9594–9599. doi: 10.1016/j.ifacol.2023.10.263. DOI

Zhou L., Yoon J.Y., Andriën A., Nejad M.I., Allison B.T., Trumper D.L. FlexLab and LevLab: A Portable Control and Mechatronics Educational System. IEEE/ASME Trans. Mechatronics. 2020;25:305–315. doi: 10.1109/TMECH.2019.2951308. DOI

Lilienkamp K. Low-cost magnetic levitation project kits for teaching feedback system design; Proceedings of the 2004 American Control Conference; Boston, MA, USA. 30 June–2 July 2004; pp. 1308–1313.

Takács G., Mihalík J., Mikuláš E., Gulan M. MagnetoShield: Prototype of a Low-Cost Magnetic Levitation Device for Control Education; Proceedings of the 2020 IEEE Global Engineering Education Conference; Porto, Portugal. 27–30 April 2020.

Takács G., Mihalík J., Gulan M. MagnetoShield. Online. 2023. [(accessed on 14 September 2023)]. Available online: https://github.com/gergelytakacs/AutomationShield/wiki/MagnetoShield.

Mihalík J. Master’s Thesis. Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering; Bratislava, Slovak: 2018. Miniaturizácia Experimentu “Magnetická Levitácia” (Miniaturizing the “Magnetic Levitation” Experiment, in Slovak Language)

lady ada Arduino IDE Setup. Online. 2017. [(accessed on 28 August 2023)]. Available online: https://learn.adafruit.com/adafruit-metro-m0-express/arduino-ide-setup.

Plamauer S., Langer M. Evaluation of MicroPython as Application Layer Programming Language on CubeSats; Proceedings of the 30th International Conference on Architecture of Computing Systems; Vienna, Austria. 3–6 April 2017; pp. 1–9.

George D.P., Sokolovsky P. MicroPython Documentation. Online. 2021. [(accessed on 3 August 2023)]. Available online: http://docs.micropython.org/en/latest/

MicroPython & CircuitPython Contributors CircuitPython. Online. 2023. [(accessed on 3 August 2023)]. Available online: https://circuitpython.readthedocs.io.

Ionescu V.M., Enescu F.M. Investigating the performance of MicroPython and C on ESP32 and STM32 microcontrollers; Proceedings of the 2020 IEEE 26th International Symposium for Design and Technology in Electronic Packaging (SIITME); Craiova, Romania. 21–24 October 2020; pp. 234–237.

Elsevier B.V. ScienceDirect Search Query for “CircuitPython”. Online. 2023. [(accessed on 3 August 2023)]. Available online: https://www.sciencedirect.com/search?qs=CircuitPython.

IEEE IEEEXplore Search Query for “CircuitPython”. Online. 2023. [(accessed on 3 August 2023)]. Available online: https://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=CircuitPython.

REX Controls REXYGEN: Programming Automation Devices without Hand Coding. Online. 2023. [(accessed on 29 September 2023)]. Available online: http://www.rexygen.com.

Sobota J. REXduino (REXYGEN Master and Arduino Slave). Online. 2023. [(accessed on 29 September 2023)]. Available online: https://github.com/jaroslavs/REXduino.

Nayfeh M.H. B.M. Electricity and Magnetism. Wiley; Hoboken, NJ, USA: 1985.

Bird J. Electrical Circuit Theory and Technology. Taylor & Francis; London, UK: 2017.

Ling S.J., Moebs J.S.W. University Physics Volume 2. Wiley; Hoboken, NJ, USA: 2016.

Denny D., Tang Y.J.L. Magnetic Memory: Fundamentals and Technology. 1st ed. Cambridge University Press; Cambridge, UK: 2010.

Tewari K.K. Electricity and Magnetism. 2nd ed. S Chand & Co.; New Delhi, India: 1995.

Cullity B., Graham C. Introduction to Magnetic Materials. Wiley; Hoboken, NJ, USA: 2009.

Carlo A. Gonano, R.E.Z.; Mussetta, M. Definition for Polarization P and Magnetization M Fully Consistent. Prog. Electromagn. Res. B. 2015;64:83–101.

Yung K., Landecker P., Villani D.D. An Analytic Solution for the Force Between Two Magnetic Dipoles. Phys. Sep. Sci. Eng. 1998;9:39–52. doi: 10.1155/1998/79537. DOI

Gayetsky L.E., Caylor C.L. Measuring the Forces Between Magnetic Dipoles. Phys. Teach. 2007;45:348–351. doi: 10.1119/1.2768690. DOI

Furlani E.P. Permanent Magnet & Electromechanical Devices: Materials, Analysis, and Applications (Electromagnetism) 1st ed. Academic Press; Cambridge, MA, USA: 2001.

Sadek U., Sarjaš A., Chowdhury A., Svečko R. Improved adaptive fuzzy backstepping control of a magnetic levitation system based on Symbiotic Organism Search. Appl. Soft Comput. 2017;56:19–33. doi: 10.1016/j.asoc.2017.02.032. DOI

Yaseen M.H., Abd H.J. Modeling and control for a magnetic levitation system based on SIMLAB platform in real time. Results Phys. 2018;8:153–159. doi: 10.1016/j.rinp.2017.11.026. DOI

Wong T.H. Design of a Magnetic Levitation Control System: An Undergraduate Project. IEEE Trans. Educ. 1986;E-29:196–200. doi: 10.1109/TE.1986.5570565. DOI

de Jesús Rubio J., Zhang L., Lughofer E., Cruz P., Alsaedi A., Hayat T. Modeling and control with neural networks for a magnetic levitation system. Neurocomputing. 2017;227:113–121. doi: 10.1016/j.neucom.2016.09.101. DOI

Hurley W., Wolfle W. Electromagnetic design of a magnetic suspension system. IEEE Trans. Educ. 1997;40:124–130. doi: 10.1109/13.572325. DOI

Morales R., Feliu V., Sira-Ramirez H. Nonlinear Control for Magnetic Levitation Systems Based on Fast Online Algebraic Identification of the Input Gain. IEEE Trans. Control. Syst. Technol. 2011;19:757–771. doi: 10.1109/TCST.2010.2057511. DOI

Griffiths D.J. Introduction to Electrodynamics. 3rd ed. Prentice-Hall; Saddle River, NJ, USA: 1999.

Camacho J.M., Sosaa V. Alternative method to calculate the magnetic field of permanent magnets with azimuthal symmetry. Rev. Mex. Física E. 2013;59:8–17.

Seleznyova K., Strugatsky M., Kliava J. Modelling the magnetic dipole. Eur. J. Phys. 2016;37:025203. doi: 10.1088/0143-0807/37/2/025203. DOI

Jackson J.D. Classical Electrodynamics. 3rd ed. Wiley; Hoboken, NJ, USA: 1999.

Rossiter J.A. Model-Based Predictive Control: A Practical Approach. 1st ed. CRC Press; Boca Raton, FL, USA: 2003.

Maciejowski J.M. Predictive Control with Constraints. Prentice Hall; Upper Saddle River, NJ, USA: 2000.

Zometa P., Kögel M., Findeisen R. muAO-MPC: A Free Code Generation Tool for Embedded Real-Time Linear Model Predictive Control; Proceedings of the 2013 American Control Conference; Washington, DC, USA. 17–19 June 2013; pp. 5340–5345.

Herceg M., Kvasnica M., Jones C., Morari M. Multi-Parametric Toolbox 3.0; Proceedings of the European Control Conference; Zurich, Switzerland. 17–19 July 2013; [(accessed on 12 May 2023)]. pp. 502–510. Available online: http://control.ee.ethz.ch/~mpt.

Takács G., Zometa P., Findeisen R., Rohaľ-Ilkiv B. Embedded model predictive vibration control on low-end 8-bit microcontrollers via automatic code generation; Proceedings of the 23rd International Congress on Sound and Vibration; Athens, Greece. 10–14 July 2016; pp. 266/1–266/8.

Gulan M., Takács G., Nguyen N.A., Olaru S., Rodriguez-Ayerbe P., Rohaľ-Ilkiv B. Embedded linear model predictive control for 8-bit microcontrollers via convex lifting. IFAC-PapersOnLine. 2017;50:10697–10704. doi: 10.1016/j.ifacol.2017.08.2220. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...