Influence of vision on gait initiation and first step kinematics in young and older adults
Language English Country Czech Republic Media print
Document type Comparative Study, Journal Article
PubMed
35099259
PubMed Central
PMC8884387
DOI
10.33549/physiolres.934813
PII: 934813
Knihovny.cz E-resources
- MeSH
- Gait Analysis MeSH
- Biomechanical Phenomena MeSH
- Time Factors MeSH
- Gait * MeSH
- Adult MeSH
- Adaptation, Physiological MeSH
- Humans MeSH
- Cues MeSH
- Posture * MeSH
- Postural Balance * MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Aging MeSH
- Age Factors MeSH
- Vision, Ocular * MeSH
- Visual Perception * MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
The study investigated whether anticipatory postural adjustments (APAs) of gait initiation and kinematics of the first step are modified with absence of vision in relation to age. Twenty-two young and twenty-two older subjects initiated a self-paced gait with the vision available and deprived. APAs were measured by: (1) force platform and evaluated by maximal amplitude of the center of pressure (CoP) displacements; (2) two inertial sensors attached to the trunk and evaluated by maximal accelerations. Step kinematics was recorded using a motion capture system and evaluated by duration, length and maximal velocity of the first step. Visual deprivation led to a significant reduction of forward trunk accelerations during the anticipatory phase of stepping in older adults. Moreover, they significantly reduced first step length and maximal velocity and prolonged duration of the first step. Contrary, young adults did not respond to absence of vision by significant changes of neither APAs, nor first step kinematics. These findings suggest that gait initiation is strongly associated with increased reliance on vision in older adults. We further indicate that trunk accelerations during the anticipatory phase of stepping may be a more sensitive measure to detect age-related changes of APAs due to absent visual information compared to CoP.
See more in PubMed
ALBERTS B, SELEN L, MEDENDORP W. Age-related reweighting of visual and vestibular cues for vertical perception. J Neurophysiol. 2019;121:1279–1288. doi: 10.1152/jn.00481.2018. PubMed DOI PMC
BERARD JR, VALLIS LA. Characteristics of single and double obstacle avoidance strategies: a comparison between adults and children. Exp Brain Res. 2006;175:21–31. doi: 10.1007/s00221-006-0529-0. PubMed DOI
BOUISSET S, DO MC. Posture, dynamic stability, and voluntary movement. Neurophysiol Clin. 2008;38:345–362. doi: 10.1016/j.neucli.2008.10.001. PubMed DOI
CROMWELL RL, NEWTON RA, FORREST G. Influence of vision on head stabilization strategies in older adults during walking. J Gerontol. 2002;57A:M442–M448. doi: 10.1093/gerona/57.7.M442. PubMed DOI
CUEVAS-TRISAN R. Balance problems and fall risks in the elderly. Phys Med Rehabil Clin N Am. 2017;28:727–737. doi: 10.1016/j.pmr.2017.06.006. PubMed DOI
HALLEMANS A, BECCU S, Van LOOCK K, ORTIBUS E, TRUIJEN S, AERTS P. Visual deprivation leads to gait adaptations that are age- and context-specific: I. Step Time parameters. Gait Posture. 2009a;30:55–59. doi: 10.1016/j.gaitpost.2009.02.018. PubMed DOI
HALLEMANS A, BECCU S, Van LOOCK K, ORTIBUS E, TRUIJEN S, AERTS P. Visual deprivation leads to gait adaptations that are age- and context-specific: II. Kinematic parameters. Gait Posture. 2009b;30:307–311. doi: 10.1016/j.gaitpost.2009.05.017. PubMed DOI
HALLEMANS A, ORTIBUS E, MEIRE F, AERTS P. Low vision affects dynamic stability of gait. Gait Posture. 2010;32:547–551. doi: 10.1016/j.gaitpost.2010.07.018. PubMed DOI
HANSEN C, LARUE J, DO MC, LATASH ML. Postural preparation to stepping: Coupled centre of pressure shifts in the anterior-posterior and medio-lateral directions. J Hum Kinet. 2016;54:5–14. doi: 10.1515/hukin-2016-0030. PubMed DOI PMC
HENRIKSSON M, HIRSCHFELD H. Physically active older adults display alterations in gait initiation. Gait Posture. 2005;21:289–296. doi: 10.1016/j.gaitpost.2004.03.001. PubMed DOI
HIRJAKOVA Z, NEUMANNOVA K, KIMIJANOVA J, SUTTOVA K, JANURA M, HLAVACKA F. Breathing changes accompanying balance improvement during biofeedback. Neurosci Lett. 2017;651:30–35. doi: 10.1016/j.neulet.2017.04.051. PubMed DOI
IOSA M, FUSCO A, MORONE G, PAOLUCCI S. Effects of visual deprivation on gait dynamic stability. ScientificWorldJournal. 2012;2012 doi: 10.1100/2012/974560. Article ID 974560. PubMed DOI PMC
JAHN K, STRUPP M, SCHNEIDER E, DIETERICH M, BRANDT T. Visually induced gait deviations during different locomotion speeds. Exp Brain Res. 2001;141:370–374. doi: 10.1007/s002210100884. PubMed DOI
JEKA KK, ALLISON LK, KIEMEL T. The dynamics of visual reweighting in healthy and fall-prone older adults. J Mot Behav. 2010;42:197–208. doi: 10.1080/00222895.2010.481693. PubMed DOI
JIAN Y, WINTER DA, ISHAC MG, GILCHRIST L. Trajectory of the body cog and cop during initiation and termination of gait. Gait Posture. 1993;1:9–22. doi: 10.1016/0966-6362(93)90038-3. DOI
JONSSON E, HENRIKSSON M, HIRSCHFELD H. Age-related differences in postural adjustments in connection with different tasks involving weight transfer while standing. Gait Posture. 2007;26:508–515. doi: 10.1016/j.gaitpost.2006.11.206. PubMed DOI
KANEKAR N, ARUIN AS. Aging and balance control in response to external perturbations: role of anticipatory and compensatory postural mechanisms. Age. 2014;36:1067–1077. doi: 10.1007/s11357-014-9621-8. PubMed DOI PMC
LU C, AMUNDSEN HUFFMASTER SL, HARVEY JC, MacKINNON CD. Anticipatory postural adjustment patterns during gait initiation across the adult lifespan. Gait Posture. 2017a;57:182–187. doi: 10.1016/j.gaitpost.2017.06.010. PubMed DOI PMC
LU C, AMUNDSEN HUFFMASTER SL, TUITE PJ, VACHON JM, MacKINNON CD. Effect of cue timing and modality on gait initiation in Parkinson disease with freezing of gait. Arch Phys Med Rehabil. 2017b;98:1291–1299. doi: 10.1016/j.apmr.2017.01.009. PubMed DOI PMC
MANCINI M, ZAMPIERI C, CARSLON-KUHTA P, CHIARI L, HORAK FB. Anticipatory postural adjustments prior to step initiation are hypometric in untreated Parkinson’s disease: an accelerometer-based approach. Eur J Neurol. 2009;16:1028–1034. doi: 10.1111/j.1468-1331.2009.02641.x. PubMed DOI PMC
MANCINI M, CHIARI L, HOLMSTROM L, SALARIAN A, HORAK FB. Validity and reliability of an IMU-based method to detect APAs prior to gait initiation. Gait Posture. 2016;43:125–131. doi: 10.1016/j.gaitpost.2015.08.015. PubMed DOI PMC
MUIR BC, RIETDYK S, HADDAD JM. Gait initiation: The first four steps in adults aged 20–25 years, 65–79 years, and 80–91 years. Gait Posture. 2014;39:490–494. doi: 10.1016/j.gaitpost.2013.08.037. PubMed DOI
O’MALLEY MJ. Normalization of temporal-distance parameters in pediatric gait. J Biomech. 1996;29:619–625. doi: 10.1016/0021-9290(95)00088-7. PubMed DOI
PATLA AE. Understanding the roles of vision in the control of human locomotion. Gait Posture. 1997;5:54–69. doi: 10.1016/S0966-6362(96)01109-5. DOI
PLATE A, KLEIN K, PELYKH O, SINGH A, BÖTZEL K. Anticipatory postural adjustments are unaffected by age and are not absent in patients with the freezing of gait phenomenon. Exp Brain Res. 2016;234:2609–2618. doi: 10.1007/s00221-016-4665-x. PubMed DOI
REYNARD F, TERRIER P. Role of visual input in the control of dynamic balance: variability and instability of gait in treadmill walking while blindfolded. Exp Brain Res. 2015;233:1031–1040. doi: 10.1007/s00221-014-4177-5. PubMed DOI
RIETDYK S, RHEA CK. Control of adaptive locomotion: effect of visual obstruction and visual cues in the environment. Exp Brain Res. 2006;169:272–278. doi: 10.1007/s00221-005-0345-y. PubMed DOI
ROCCHI L, CHIARI L, MANCINI M, CARLSON-KUHTA P, GROSS A, HORAK FB. Step initiation in Parkinson’s disease: Influence of initial stance conditions. Neurosci Lett. 2006;406:128–132. doi: 10.1016/j.neulet.2006.07.027. PubMed DOI
RUBENSTEIN L. Falls in older people: epidemiology, risk factors and strategies for prevention. Age Aging. 2006;35:37–41. doi: 10.1093/ageing/afl084. PubMed DOI
SAFTARI LN, KWON OS. Ageing vision and falls: A review. J Physiol Anthropol. 2018;37:11. doi: 10.1186/s40101-018-0170-1. PubMed DOI PMC
SAUCEDO F, YANG F. Effects of visual deprivation on stability among young and older adults during treadmill walking. Gait Posture. 2017;54:106–111. doi: 10.1016/j.gaitpost.2017.03.001. PubMed DOI
SMITH PF. Age-related neurochemical changes in the vestibular nuclei. Front Neurol. 2016;7:20. doi: 10.3389/fneur.2016.00020. PubMed DOI PMC
TERRIER P, REYNARD F. Effect of age on the variability and stability of gait: a cross-sectional treadmill study in healthy individuals between 20 and 69 years of age. Gait Posture. 2015;41:170–174. doi: 10.1016/j.gaitpost.2014.09.024. PubMed DOI
Van MELICK N, MEDDELER BM, HOOGEBOOM TJ, NIJHUIS-Van der SANDEN MWG, Van CINGEL REH. How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults. PLoS One. 2017;12:e0189876. doi: 10.1371/journal.pone.0189876. PubMed DOI PMC
WATT RJ, FRANZ JR, JACKSON K, DICHARRY J, RILEY PO, KERRIGAN DC. A three-dimensional kinematic and kinetic comparison of overground and treadmill walking in healthy elderly subjects. Clin Biomech. 2010;25:444–449. doi: 10.1016/j.clinbiomech.2009.09.002. PubMed DOI
WINTER DA. A.B.C (Anatomy, Biomechanics, Control) of Balance during Standing and Walking. Waterloo Biomechanics; Waterloo: 1995. p. 56.
WUEHR M, SCHNIEPP R, PRADHAN C, ILMBERGER J, STRUPP M, BRANDT T, JAHN K. Differential effects of absent visual feedback control on gait variability during different locomotion speeds. Exp Brain Res. 2013;224:287–294. doi: 10.1007/s00221-012-3310-6. PubMed DOI
ZHOU J, LIPSITZ L, HABTEMARIAM D, MANOR B. Sub-sensory vibratory noise augments the physiologic complexity of postural control in older adults. J Neuroeng Rehabil. 2016;13:44. doi: 10.1186/s12984-016-0152-7. PubMed DOI PMC