Optimized Sawhorse Waveform for the Measurement of Oxytocin Release in Zebrafish
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
P20 GM103638
NIGMS NIH HHS - United States
R01 NS111067
NINDS NIH HHS - United States
R21 NS109659
NINDS NIH HHS - United States
PubMed
35107979
PubMed Central
PMC9087480
DOI
10.1021/acs.analchem.1c04879
Knihovny.cz E-zdroje
- MeSH
- dánio pruhované * MeSH
- karbonové vlákno MeSH
- mikroelektrody MeSH
- neurony MeSH
- oxytocin * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- karbonové vlákno MeSH
- oxytocin * MeSH
Oxytocin is a nonapeptide hormone involved in numerous physiological functions. Real-time electrochemical measurements of oxytocin in living tissue are challenging due to electrode fouling and the large potentials needed to oxidize the tyrosine residue. Here, we used fast-scan cyclic voltammetry at carbon-fiber microelectrodes and flow injection analysis to optimize a waveform for the measurement of oxytocin. This optimized waveform employed an accumulation potential of -0.6 V, multiple scan rates, and a 3 ms holding potential at a positive, oxidizing potential of +1.4 V before linearly scanning the potential back to -0.6 V (versus Ag/AgCl). We obtained a limit of quantitation of 0.34 ± 0.02 μM, and our electrodes did not foul upon multiple injections. Moreover, to demonstrate the utility of our method, we measured the release of oxytocin, evoked by light application and mechanical perturbation, in whole brains from genetically engineered adult zebrafish that express channelrhodopsin-2 selectively on oxytocinergic neurons. Collectively, this work expands the toolkit for the measurement of peptides in living tissue preparations.
Zobrazit více v PubMed
Mauri A, Argiolas A, Ticconi C, and Piccione E (1995) Oxytocin in human intrauterine tissues at parturition, Reprod Fertil Dev 7, 1481–1484. PubMed
Drewett RF, Bowen-Jones A, and Dogterom J (1982) Oxytocin levels during breast-feeding in established lactation, Horm Behav 16, 245–248. PubMed
Liu Y, and Wang ZX (2003) Nucleus accumbens oxytocin and dopamine interact to regulate pair bond formation in female prairie voles, Neuroscience 121, 537–544. PubMed
Ogi A, Mariti C, Pirrone F, Baragli P, and Gazzano A (2021) The Influence of Oxytocin on Maternal Care in Lactating Dogs, Animals (Basel) 11. PubMed PMC
Oti T, Sakamoto T, and Sakamoto H (2021) Systemic effects of oxytocin on male sexual activity via the spinal ejaculation generator in rats, Commun Integr Biol 14, 55–60. PubMed PMC
Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, and Fehr E (2005) Oxytocin increases trust in humans, Nature 435, 673–676. PubMed
Smith AS, and Wang Z (2014) Hypothalamic oxytocin mediates social buffering of the stress response, Biol Psychiatry 76, 281–288. PubMed PMC
Zimmerman EA, Nilaver G, Hou-Yu A, and Silverman AJ (1984) Vasopressinergic and oxytocinergic pathways in the central nervous system, Fed Proc 43, 91–96. PubMed
Gimpl G, and Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation, Physiol Rev 81, 629–683. PubMed
Rossoni E, Feng J, Tirozzi B, Brown D, Leng G, and Moos F (2008) Emergent synchronous bursting of oxytocin neuronal network, PLoS Comput Biol 4, e1000123. PubMed PMC
Love TM (2014) Oxytocin, motivation and the role of dopamine, Pharmacol Biochem Behav 119, 49–60. PubMed PMC
Flight MH (2013) Cognitive neuroscience: oxytocin and serotonin make it worthwhile, Nat Rev Neurosci 14, 740–741. PubMed
Tyzio R, Nardou R, Ferrari DC, Tsintsadze T, Shahrokhi A, Eftekhari S, Khalilov I, Tsintsadze V, Brouchoud C, Chazal G, Lemonnier E, Lozovaya N, Burnashev N, and Ben-Ari Y (2014) Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring, Science 343, 675–679. PubMed
Yoshimura R, Kiyama H, Kimura T, Araki T, Maeno H, Tanizawa O, and Tohyama M (1993) Localization of oxytocin receptor messenger ribonucleic acid in the rat brain, Endocrinology 133, 1239–1246. PubMed
Oliveira VEM, Lukas M, Wolf HN, Durante E, Lorenz A, Mayer AL, Bludau A, Bosch OJ, Grinevich V, Egger V, de Jong TR, and Neumann ID (2021) Oxytocin and vasopressin within the ventral and dorsal lateral septum modulate aggression in female rats, Nat Commun 12, 2900. PubMed PMC
Landgraf R, Neumann I, Russell JA, and Pittman QJ (1992) Push-pull perfusion and microdialysis studies of central oxytocin and vasopressin release in freely moving rats during pregnancy, parturition, and lactation, Ann N Y Acad Sci 652, 326–339. PubMed
Gozdowska M, and Kulczykowska E (2004) Determination of arginine-vasotocin and isotocin in fish plasma with solid-phase extraction and fluorescence derivatization followed by high-performance liquid chromatography, J Chromatogr B Analyt Technol Biomed Life Sci 807, 229–233. PubMed
Mabrouk OS, and Kennedy RT (2012) Simultaneous oxytocin and arg-vasopressin measurements in microdialysates using capillary liquid chromatography-mass spectrometry, J Neurosci Methods 209, 127–133. PubMed PMC
Wang L, Marti DW, and Anderson RE (2019) Development and Validation of a Simple LC-MS Method for the Quantification of Oxytocin in Dog Saliva, Molecules 24. PubMed PMC
Kendrick KM (1990) Microdialysis measurement of in vivo neuropeptide release, J Neurosci Methods 34, 35–46. PubMed
Lin CY, Tsai SH, and Tai DF (2019) Detection of oxytocin, atrial natriuretic peptide, and brain natriuretic peptide using novel imprinted polymers produced with amphiphilic monomers, J Pept Sci 25, e3150. PubMed
Lane RF, and Hubbard AT (1976) Differential double pulse voltammetry at chemically modified platinum electrodes for in vivo determination of catecholamines, Anal Chem 48, 1287–1292. PubMed
Schmidt AC, Dunaway LE, Roberts JG, McCarty GS, and Sombers LA (2014) Multiple scan rate voltammetry for selective quantification of real-time enkephalin dynamics, Anal Chem 86, 7806–7812. PubMed
Shen H, Lada MW, and Kennedy RT (1997) Monitoring of met-enkephalin in vivo with 5-min temporal resolution using microdialysis sampling and capillary liquid chromatography with electrochemical detection, J Chromatogr B Biomed Sci Appl 704, 43–52. PubMed
Calhoun SE, Meunier CJ, Lee CA, McCarty GS, and Sombers LA (2019) Characterization of a Multiple-Scan-Rate Voltammetric Waveform for Real-Time Detection of Met-Enkephalin, ACS Chem Neurosci 10, 2022–2032. PubMed PMC
Kraft JC, Osterhaus GL, Ortiz AN, Garris PA, and Johnson MA (2009) In vivo dopamine release and uptake impairments in rats treated with 3-nitropropionic acid, Neuroscience 161, 940–949. PubMed
Landin J, Hovey D, Xu B, Lagman D, Zettergren A, Larhammar D, Kettunen P, and Westberg L (2020) Oxytocin Receptors Regulate Social Preference in Zebrafish, Sci Rep 10, 5435. PubMed PMC
Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, and Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses, Curr Biol 15, 2279–2284. PubMed
Wee CL, Nikitchenko M, Wang WC, Luks-Morgan SJ, Song E, Gagnon JA, Randlett O, Bianco IH, Lacoste AMB, Glushenkova E, Barrios JP, Schier AF, Kunes S, Engert F, and Douglass AD (2019) Zebrafish oxytocin neurons drive nocifensive behavior via brainstem premotor targets, Nat Neurosci 22, 1477–1492. PubMed PMC
Asai K, Ivandini TA, and Einaga Y (2016) Continuous and selective measurement of oxytocin and vasopressin using boron-doped diamond electrodes, Sci Rep 6, 32429. PubMed PMC
Jackson BP, Dietz SM, and Wightman RM (1995) Fast-scan cyclic voltammetry of 5-hydroxytryptamine, Anal Chem 67, 1115–1120. PubMed
Cooper SE, and Venton BJ (2009) Fast-scan cyclic voltammetry for the detection of tyramine and octopamine, Anal Bioanal Chem 394, 329–336. PubMed
Ogura K, Kobayashi M, Nakayama M, and Miho Y (1999) In-situ FTIR studies on the electrochemical oxidation of histidine and tyrosine, J Electroanal Chem 463, 218–223.
Bard AJ, and Faulkner LR (2000) Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley & Sons, Ltd.
Wang Y, and Venton BJ (2019) Comparison of spontaneous and mechanically-stimulated adenosine release in mice, Neurochem Int 124, 46–50. PubMed PMC
Wee CL, Nikitchenko M, Wang WC, Luks-Morgan SJ, Song E, Gagnon JA, Randlett O, Bianco IH, Lacoste AMB, Glushenkova E, Barrios JP, Schier AF, Kunes S, Engert F, and Douglass AD (2019) Zebrafish oxytocin neurons drive nocifensive behavior via brainstem premotor targets, Nat Neurosci 22, 1477-+. PubMed PMC
Althammer F, Eliava M, and Grinevich V (2021) Central and peripheral release of oxytocin: Relevance of neuroendocrine and neurotransmitter actions for physiology and behavior, Handb Clin Neurol 180, 25–44. PubMed
Ludwig M, and Stern J (2015) Multiple signalling modalities mediated by dendritic exocytosis of oxytocin and vasopressin, Philos Trans R Soc Lond B Biol Sci 370. PubMed PMC
Pow DV, and Morris JF (1989) Dendrites of hypothalamic magnocellular neurons release neurohypophysial peptides by exocytosis, Neuroscience 32, 435–439. PubMed
Impaired Dopamine Release and Latent Learning in Alzheimer's Disease Model Zebrafish