Impaired Dopamine Release and Latent Learning in Alzheimer's Disease Model Zebrafish

. 2022 Oct 05 ; 13 (19) : 2924-2931. [epub] 20220916

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid36113115

Grantová podpora
P20 GM103638 NIGMS NIH HHS - United States
P30 GM145499 NIGMS NIH HHS - United States
R21 NS109659 NINDS NIH HHS - United States

Alzheimer's disease (AD) is a progressive, fatal, neurodegenerative disorder for which only treatments of limited efficacy are available. Despite early mentions of dementia in the ancient literature and the first patient diagnosed in 1906, the underlying causes of AD are not well understood. This study examined the possible role of dopamine, a neurotransmitter that is involved in cognitive and motor function, in AD. We treated adult zebrafish (Danio rerio) with okadaic acid (OKA) to model AD and assessed the resulting behavioral and neurochemical changes. We then employed a latent learning paradigm to assess cognitive and motor function followed by neurochemical analysis with fast-scan cyclic voltammetry (FSCV) at carbon fiber microelectrodes to measure the electrically stimulated dopamine release. The behavioral assay showed that OKA treatment caused fish to have lower motivation to reach the goal chamber, resulting in impeded learning and decreased locomotor activity compared to controls. Our voltammetric measurements revealed that the peak dopamine overflow in OKA-treated fish was about one-third of that measured in controls. These findings highlight the profound neurochemical changes that may occur in AD. Furthermore, they demonstrate that applying the latent learning paradigm and FSCV to zebrafish is a promising tool for future neurochemical studies and may be useful for screening drugs for the treatment of AD.

Zobrazit více v PubMed

Atri A The Alzheimer’s Disease Clinical Spectrum: Diagnosis and Management. Med. Clin. North Am 2019, 103, 263–293. PubMed

Arvanitakis Z; Shah RC; Bennett DA Diagnosis and Management of Dementia: Review. JAMA - J. Am. Med. Assoc 2019, 322, 1589–1599. PubMed PMC

Livingston G; Sommerlad A; Orgeta V; Costafreda SG; Huntley J; Ames D; Ballard C; Banerjee S; Burns A; Cohen-Mansfield J; Cooper C; Fox N; Gitlin LN; Howard R; Kales HC; Larson EB; Ritchie K; Rockwood K; Sampson EL; Samus Q; Schneider LS; Selbæk G; Teri L; Mukadam N Dementia Prevention, Intervention, and Care. Lancet 2017, 390, 2673–2734. PubMed

Hebert LE; Weuve J; Scherr PA; Evans DA Alzheimer Disease in the United States (2010–2050) Estimated Using the 2010 Census. Neurology 2013, 80, 1778–1783. PubMed PMC

Weuve J; Hebert LE; Scherr PA; Evans DA Deaths in the United States among Persons with Alzheimer’s Disease (2010–2050). Alzheimers. Dement 2014, 10. PubMed PMC

No Author. Fact sheet. Alzheimer’s association. https://act.alz.org/site/DocServer/2012_Costs_Fact_Sheet_version_2.pdf;jsessionid=00000000.app20004a?docID=7161&NONCE_TOKEN=F667F4CA3909631883502F4EE4F316E2 (accessed 2022-01-07).

Briggs R; Kennelly SP; O’Neill D Drug Treatments in Alzheimer’s Disease. Clin. Med. J. R. Coll. Physicians London 2016, 16, 247–253. PubMed PMC

Eratne D; Loi SM; Farrand S; Kelso W; Velakoulis D; Looi JCL Alzheimer’s Disease: Clinical Update on Epidemiology, Pathophysiology and Diagnosis. Australas. Psychiatry 2018, 26, 347–357. PubMed

Scheltens P; Blennow K; Breteler MMB; de Strooper B; Frisoni GB; Salloway S; Van der Flier WM Alzheimer’s Disease. Lancet (London, England) 2016, 388, 505–517. PubMed

Esquerda-Canals G; Montoliu-Gaya L; Güell-Bosch J; Villegas S Mouse Models of Alzheimer’s Disease. J. Alzheimer’s Dis 2017, 57, 1171–1183. PubMed

Nazem A; Sankowski R; Bacher M; Al-Abed Y Rodent Models of Neuroinflammation for Alzheimer’s Disease. J. Neuroinflammation 2015, 12. PubMed PMC

Koehler D; Williams FE Utilizing Zebrafish and Okadaic Acid to Study Alzheimer’s Disease. Neural Regen. Res 2018, 13, 1538–1541. PubMed PMC

Kodera K; Matsui H Zebrafish, Medaka and Turquoise Killifish for Understanding Human Neurodegenerative/Neurodevelopmental Disorders. Int. J. Mol. Sci 2022, 23. PubMed PMC

Xi Y; Noble S; Ekker M Modeling Neurodegeneration in Zebrafish. Curr. Neurol. Neurosci. Rep 2011, 11, 274–282. PubMed PMC

Wang J; Cao H Zebrafish and Medaka: Important Animal Models for Human Neurodegenerative Diseases. Int. J. Mol. Sci 2021, 22. PubMed PMC

Kalueff AV; Stewart AM; Gerlai R Zebrafish as an Emerging Model for Studying Complex Brain Disorders. Trends Pharmacol. Sci 2014, 35, 63–75. PubMed PMC

Vieira AC; Rubiolo JA; López-Alonso H; Cifuentes JM; Alfonso A; Bermúdez R; Otero P; Vieytes MR; Vega FV; Botana LM Oral Toxicity of Okadaic Acid in Mice: Study of Lethality, Organ Damage, Distribution and Effects on Detoxifying Gene Expression. Toxins (Basel). 2013, 5, 2093. PubMed PMC

Emery H; Traves W; Rowley AF; Coates CJ The Diarrhetic Shellfish-Poisoning Toxin, Okadaic Acid, Provokes Gastropathy, Dysbiosis and Susceptibility to Bacterial Infection in a Non-Rodent Bioassay, Galleria Mellonella. Arch. Toxicol 2021, 95, 3361–3376. PubMed PMC

Tubaro A; Sosa S; Altinier G; Soranzo MR; Satake M; Della Loggia R; Yasumoto T Short-Term Oral Toxicity of Homoyessotoxins, Yessotoxin and Okadaic Acid in Mice. Toxicon 2004, 43, 439–445. PubMed

Kamat PK; Rai S; Swarnkar S; Shukla R; Nath C Molecular and Cellular Mechanism of Okadaic Acid (OKA)-Induced Neurotoxicity: A Novel Tool for Alzheimer’s Disease Therapeutic Application. Mol. Neurobiol 2014, 50, 852–865. PubMed

Cohen P; Holmes CFB; Tsukitani Y Okadaic Acid: A New Probe for the Study of Cellular Regulation. Trends Biochem. Sci 1990, 15, 98–102. PubMed

Choi JY; Ryoo HM; Lee BH; Kim HJ; Sohn KY; Jo JS Okadaic Acid Inhibits Alkaline Phosphatase Activity in MC3T3-E1 Cells. Biochem. Mol. Biol. Int 1995, 37, 943–947. PubMed

Meštrović V; Pavela-Vrančič M Inhibition of Alkaline Phosphatase Activity by Okadaic Acid, a Protein Phosphatase Inhibitor. Biochimie 2003, 85, 647–650. PubMed

Murata T; Shirakawa S; Takehara T; Kobayashi S; Haneji T Protein Phosphatase Inhibitors, Okadaic Acid and Calyculin A, Induce Alkaline Phosphatase Activity in Osteoblastic Cells Derived from Newborn Mouse Calvaria. Biochem. Mol. Biol. Int 1995, 36, 365–372. PubMed

E. Nada S; E. Williams F; A. Shah Z Development of a Novel and Robust Pharmacological Model of Okadaic Acid-Induced Alzheimer’s Disease in Zebrafish. CNS Neurol. Disord. - Drug Targets 2016, 15, 86–94. PubMed

Schallert T; Fleming SM Dopamine and Motor Function in Rat and Mouse Models of Parkinson’s Disease. Dopamine Handb. 2010.

Cools R Dopaminergic Modulation of Flexible Cognitive Control in Humans. Dopamine Handb. 2009, 14, 249–261.

Lelos MJ; Dunnett SB Aberrant Dopamine Transmission and Cognitive Dysfunction in Animal Models of Parkinson’s Disease. J. Parkinsons. Dis 2011, 1, 151–165. PubMed

Masoud ST; Vecchio LM; Bergeron Y; Hossain MM; Nguyen LT; Bermejo MK; Kile B; Sotnikova TD; Siesser WB; Gainetdinov RR; Wightman RM; Caron MG; Richardson JR; Miller GW; Ramsey AJ; Cyr M; Salahpour A Increased Expression of the Dopamine Transporter Leads to Loss of Dopamine Neurons, Oxidative Stress and l-DOPA Reversible Motor Deficits. Neurobiol. Dis 2015, 74, 66–75. PubMed PMC

Masato A; Plotegher N; Boassa D; Bubacco L Impaired Dopamine Metabolism in Parkinson’s Disease Pathogenesis. Mol. Neurodegener 2019, 14. PubMed PMC

Latif S; Jahangeer M; Maknoon Razia D; Ashiq M; Ghaffar A; Akram M; El Allam A; Bouyahya A; Garipova L; Ali Shariati M; Thiruvengadam M; Azam Ansari M Dopamine in Parkinson’s Disease. Clin. Chim. Acta 2021, 522, 114–126. PubMed

Segura-Aguilar J; Paris I; Muñoz P; Ferrari E; Zecca L; Zucca FA Protective and Toxic Roles of Dopamine in Parkinson’s Disease. J. Neurochem 2014, 129, 898–915. PubMed

Warren N; O’Gorman C; Lehn A; Siskind D Dopamine Dysregulation Syndrome in Parkinson’s Disease: A Systematic Review of Published Cases. J. Neurol. Neurosurg. Psychiatry 2017, 88, 1060–1064. PubMed

Ortiz AN; Kurth BJ; Osterhaus GL; Johnson MA Dysregulation of Intracellular Dopamine Stores Revealed in the R6/2 Mouse Striatum. J. Neurochem 2010, 112, 755–761. PubMed PMC

Ortiz AN; Osterhaus GL; Lauderdale K; Mahoney L; Fowler SC; Von Hörsten S; Riess O; Johnson MA Motor Function and Dopamine Release Measurements in Transgenic Huntington’s Disease Model Rats. Brain Res. 2012, 1450, 148–156. PubMed PMC

Ortiz AN; Kurth BJ; Osterhaus GL; Johnson MA Impaired Dopamine Release and Uptake in R6/1 Huntington’s Disease Model Mice. Neurosci. Lett 2011, 492, 11–14. PubMed PMC

Howes OD; Williams M; Ibrahim K; Leung G; Egerton A; McGuire PK; Turkheimer F Midbrain Dopamine Function in Schizophrenia and Depression: A Post-Mortem and Positron Emission Tomographic Imaging Study. Brain 2013, 136, 3242–3251. PubMed PMC

Martorana A; Koch G “Is Dopamine Involved in Alzheimer’s Disease?”. Front. Aging Neurosci 2014, 6, 252. PubMed PMC

Venton BJ; Wightman RM Psychoanalytical Electrochemistry: Dopamine and Behavior. Anal. Chem 2003, 75.

Hermans A; Keithley RB; Kita JM; Sombers LA; Wightman RM Dopamine Detection with Fast-Scan Cyclic Voltammetry Used with Analog Background Subtraction. Anal. Chem 2008, 80, 4040–4048. PubMed

Wightman RM Probing Cellular Chemistry in Biological Systems with Microelectrodes. Science (80-.) 2006, 311, 1570–1574. PubMed

Field TM; Shin M; Stucky CS; Loomis J; Johnson MA Electrochemical Measurement of Dopamine Release and Uptake in Zebrafish Following Treatment with Carboplatin. ChemPhysChem 2018, 19, 1192–1196. PubMed PMC

Shin M; Field TM; Stucky CS; Furgurson MN; Johnson MA Ex Vivo Measurement of Electrically Evoked Dopamine Release in Zebrafish Whole Brain. ACS Chem. Neurosci 2017, 8, 1880–1888. PubMed PMC

Parker MO; Cammarota M; Wanat M; Young AMJ; Norton WHJ; Jones LJ; Mccutcheon JE Neurochemical Measurements in the Zebrafish Brain. Front. Behav. Neurosci. | www.frontiersin.org 2015, 9, 246. PubMed PMC

Gómez-Laplaza LM; Gerlai R Latent Learning in Zebrafish (Danio Rerio). Behav. Brain Res 2010, 208, 509–515. PubMed PMC

Luchiari AC; Salajan DC; Gerlai R Acute and Chronic Alcohol Administration: Effects on Performance of Zebrafish in a Latent Learning Task. Behav. Brain Res 2015, 282, 76–83. PubMed PMC

Wong K; Elegante M; Bartels B; Elkhayat S; Tien D; Roy S; Goodspeed J; Suciu C; Tan J; Grimes C; Chung A; Rosenberg M; Gaikwad S; Denmark A; Jackson A; Kadri F; Chung KM; Stewart A; Gilder T; Beeson E; Zapolsky I; Wu N; Cachat J; Kalueff AV Analyzing Habituation Responses to Novelty in Zebrafish (Danio Rerio). Behav. Brain Res 2010, 208, 450–457. PubMed

Stewart A; Cachat J; Wong K; Gaikwad S; Gilder T; DiLeo J; Chang K; Utterback E; Kalueff AV Homebase Behavior of Zebrafish in Novelty-Based Paradigms. Behav. Processes 2010, 85, 198–203. PubMed

Ogi A; Licitra R; Naef V; Marchese M; Fronte B; Gazzano A; Santorelli FM Social Preference Tests in Zebrafish: A Systematic Review. Front. Vet. Sci 2021, 7, 590057. PubMed PMC

Saverino C; Gerlai R The Social Zebrafish: Behavioral Responses to Conspecific, Heterospecific, and Computer Animated Fish. Behav. Brain Res 2008, 191, 77–87. PubMed PMC

Geng Y; Peterson RT The Zebrafish Subcortical Social Brain as a Model for Studying Social Behavior Disorders. DMM Dis. Model. Mech 2019, 12. PubMed PMC

Wolinsky D; Drake K; Bostwick J Diagnosis and Management of Neuropsychiatric Symptoms in Alzheimer’s Disease. Curr. Psychiatry Rep 2018, 20. PubMed

Buchman AS; Bennett DA Loss of Motor Function in Preclinical Alzheimer’s Disease. Expert Rev. Neurother 2011, 11, 665–676. PubMed PMC

Zhang Z; Simpkins JW An Okadaic Acid-Induced Model of Tauopathy and Cognitive Deficiency. Brain Res. 2010, 1359, 233–246. PubMed PMC

Chen T; Shou L; Guo X; Wei M; Zheng H; Tao T Magnolol Attenuates the Locomotor Impairment, Cognitive Deficit, and Neuroinflammation in Alzheimer’s Disease Mice with Brain Insulin Resistance via up-Regulating MiR-200c. Bioengineered 2022, 13, 531–543. PubMed PMC

Das TK; Jana P; Chakrabarti SK; Hamid MRWA Curcumin Downregulates GSK3 and Cdk5 in Scopolamine-Induced Alzheimer’s Disease Rats Abrogating A 40/42 and Tau Hyperphosphorylation. J. Alzheimer’s Dis. Reports 2019, 3, 257–267. PubMed PMC

Gloria Y; Ceyzériat K; Tsartsalis S; Millet P; Tournier BB Dopaminergic Dysfunction in the 3xTg-AD Mice Model of Alzheimer’s Disease. Sci. Reports 2021 111 2021, 11, 1–11. PubMed PMC

Naderi M; Jamwal A; Ferrari MCO; Niyogi S; Chivers DP Dopamine Receptors Participate in Acquisition and Consolidation of Latent Learning of Spatial Information in Zebrafish (Danio Rerio). Prog. Neuro-Psychopharmacology Biol. Psychiatry 2016, 67, 21–30. PubMed

Hamidi N; Nozad A; Sheikhkanloui Milan H; Amani M Okadaic Acid Attenuates Short-Term and Long-Term Synaptic Plasticity of Hippocampal Dentate Gyrus Neurons in Rats. Neurobiol. Learn. Mem 2019, 158, 24–31. PubMed

Kamat PK; Tota S; Saxena G; Shukla R; Nath C Okadaic Acid (ICV) Induced Memory Impairment in Rats: A Suitable Experimental Model to Test Anti-Dementia Activity. Brain Res. 2010, 1309, 66–74. PubMed

Kaushal A; Wani WY; Bal A; Gill KD; Kaur J Okadaic Acid and Hypoxia Induced Dementia Model of Alzheimer’s Type in Rats. Neurotox. Res 2019, 35, 621–634. PubMed

Garcia L; Garcia F; Llorens F; Unzeta M; Itarte E; Gómez N PP1/PP2A Phosphatases Inhibitors Okadaic Acid and Calyculin A Block ERK5 Activation by Growth Factors and Oxidative Stress. FEBS Lett. 2002, 523, 90–94. PubMed

Facciol A; Gerlai R Zebrafish Shoaling, Its Behavioral and Neurobiological Mechanisms, and Its Alteration by Embryonic Alcohol Exposure: A Review. Front. Behav. Neurosci 2020, 14, 174. PubMed PMC

Gerlai R; Ahmad F; Prajapati S Differences in Acute Alcohol-Induced Behavioral Responses Among Zebrafish Populations. 2008. PubMed PMC

Faustino AI; Tacão-Monteiro A; Oliveira RF Mechanisms of Social Buffering of Fear in Zebrafish OPEN. 2017. PubMed PMC

Agetsuma M; Aoki T; Aoki R; Okamoto H Cued Fear Conditioning in Zebra Fi Sh (Danio Rerio). 66.

Oei TPS; King MG Catecholamines and Aversive Learning: A Review. Neurosci. Biobehav. Rev 1980, 4, 161–173. PubMed

Millan MJ The Neurobiology and Control of Anxious States. Prog. Neurobiol 2003, 70, 83–244. PubMed

Pezze MA; Feldon J Mesolimbic Dopaminergic Pathways in Fear Conditioning. Prog. Neurobiol 2004, 74, 301–320. PubMed

Johnson MA; Rajan V; Miller CE; Wightman RM Dopamine Release Is Severely Compromised in the R6/2 Mouse Model of Huntington’s Disease. J. Neurochem 2006, 97, 737–746. PubMed

Phillips PEM; Stuber GD; Helen MLAV; Wightman RM; Carelli RM Subsecond Dopamine Release Promotes Cocaine Seeking. Nature 2003, 422, 614–618. PubMed

Betz WJ; Henkel AW Okadaic Acid Disrupts Clusters of Synaptic Vesicles in Frog Motor Nerve Terminals. J. Cell Biol 1994, 124, 843–853. PubMed PMC

Jarosova R; Kaplan SV; Field TM; Givens RS; Senadheera SN; Johnson MA In Situ Electrochemical Monitoring of Caged Compound Photochemistry: An Internal Actinometer for Substrate Release. Anal. Chem 2021, 93, 2776–2784. PubMed PMC

Jarosova R; Douglass AD; Johnson MA Optimized Sawhorse Waveform for the Measurement of Oxytocin Release in Zebrafish. Anal. Chem 2022, 94, 2942–2949. PubMed PMC

Kraft JC; Osterhaus GL; Ortiz AN; Garris PA; Johnson MA In Vivo Dopamine Release and Uptake Impairments in Rats Treated with 3-Nitropropionic Acid. Neuroscience 2009, 161, 940–949. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...