Internal friction angle model of particles
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008407
Innovative and additive manufacturing technology-new technological solutions for 3D printing of metals and composite materials
PubMed
35132121
PubMed Central
PMC8821719
DOI
10.1038/s41598-022-05891-8
PII: 10.1038/s41598-022-05891-8
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Currently, pressure from industry to streamline processes by creating their simulation models, and thus to gradual digitization is increasing. The essence of representative simulation models of bulk materials is to understand the principles and laws of the real behavior of particles. The aim of this study is therefore to find and quantify the possibilities and principles of how particles can change their position relative to other particles. The possibilities of particle displacements were expressed using their specific trajectories and work ratios, or internal friction angle values. This created a new comprehensive model of the internal friction angle of particles independent of particle size. It enables the interpretation of the determined values of the angles of internal friction of particles and its application in the field of simulations of mass and process models. The model can be used to determine the basic composition of particles in volume and the dominant ways of their mutual displacements.
Zobrazit více v PubMed
Schwedes J. Review on testers for measuring flow properties of bulk solids. Granul. Matter. 2003;5:1–43. doi: 10.1007/s10035-002-0124-4. DOI
McGlinchey D. Characterisation of Bulk Solids. Blackwell; 2005.
Schulze D. Powders and Bulk Solids. Springer; 2008.
Rhodes MJ. Introduction to Particle Technology. Wiley; 2008.
Feda J. Mechanics of Particulate Materials. Elsevier; 1982.
Jenike AW. Storage and Flow of Solids. University of Utah; 1964.
Schulze, D. Ring Shear Tester RST-01.pc Operating Instructions v2.0 (Dietmar Schulze, Wolfenbüttel, 1999–2011)
Janssen RJM. Structure and Shear in a Cohesive Powder. Delft University of Technology; 2001.
Suhr B, Six K. Simple particle shapes for DEM simulations of railway ballast: Influence of shape descriptors on packing behaviour. Granul. Matter. 2020;22:1–17. doi: 10.1007/s10035-020-1009-0. PubMed DOI PMC
Pourtavakoli H, Parteli EJ, Pöschel T. Granular dampers: Does particle shape matter? New J. Phys. 2016;18:073049. doi: 10.1088/1367-2630/18/7/073049. DOI
Kozicki J, Tejchman J, Mróz Z. Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM. Granul. Matter. 2012;14:457–468. doi: 10.1007/s10035-012-0352-1. DOI
Tykhoniuk, R., Jürgen, T. & Luding, S. Shear dynamics simulations of high-disperse cohesive powder. In Particulate Systems Analysis, 1–5 (2003).
Salazar A, Sáez E, Pardo G. Modeling the direct shear test of a coarse sand using the 3D Discrete Element Method with a rolling friction model. Comput. Geotech. 2015;67:83–93. doi: 10.1016/j.compgeo.2015.02.017. DOI
Kozicki J, Niedostatkiewicz M, Tejchman J, Muhlhaus HB. Discrete modelling results of a direct shear test for granular materials versus FE results. Granul. Matter. 2013;15:607–627. doi: 10.1007/s10035-013-0423-y. DOI
Reynolds O. LVII. On the dilatancy of media composed of rigid particles in contact. With experimental illustrations. Philos. Mag. J. Sci. 1885;20:469–481. doi: 10.1080/14786448508627791. DOI
Kruyt NP, Rothenburg L. A micromechanical study of dilatancy of granular materials. J. Mech. Phys. Solids. 2016;95:411–427. doi: 10.1016/j.jmps.2016.01.019. DOI
Skinner AE. A note on the influence of interparticle friction on the shearing strength of a random assembly of spherical particles. Geotechnique. 1969;19:150–157. doi: 10.1680/geot.1969.19.1.150. DOI
Rowe PW. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1962;269:500–527.
Metcalf JR. Angle of repose and internal friction. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1966;3:155–161. doi: 10.1016/0148-9062(66)90005-2. DOI
Shi, H., Luding, S. & Magnanimo, V. Limestone powders yielding and steady state resistance under shearing with different testers. In 2nd International Conference on Powder, Granule and Bulk 1–6 (2016).
Shinohara K, Golman B. Dynamic shear properties of particle mixture by rotational shear test. Powder Technol. 2002;122:255–258. doi: 10.1016/S0032-5910(01)00422-3. DOI
Zegzulka J. The angle of internal friction as a measure of work loss in granular material flow. Powder Technol. 2013;233:347–353. doi: 10.1016/j.powtec.2012.06.047. DOI