Internal friction angle model of particles

. 2022 Feb 07 ; 12 (1) : 2036. [epub] 20220207

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35132121

Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008407 Innovative and additive manufacturing technology-new technological solutions for 3D printing of metals and composite materials

Odkazy

PubMed 35132121
PubMed Central PMC8821719
DOI 10.1038/s41598-022-05891-8
PII: 10.1038/s41598-022-05891-8
Knihovny.cz E-zdroje

Currently, pressure from industry to streamline processes by creating their simulation models, and thus to gradual digitization is increasing. The essence of representative simulation models of bulk materials is to understand the principles and laws of the real behavior of particles. The aim of this study is therefore to find and quantify the possibilities and principles of how particles can change their position relative to other particles. The possibilities of particle displacements were expressed using their specific trajectories and work ratios, or internal friction angle values. This created a new comprehensive model of the internal friction angle of particles independent of particle size. It enables the interpretation of the determined values of the angles of internal friction of particles and its application in the field of simulations of mass and process models. The model can be used to determine the basic composition of particles in volume and the dominant ways of their mutual displacements.

Zobrazit více v PubMed

Schwedes J. Review on testers for measuring flow properties of bulk solids. Granul. Matter. 2003;5:1–43. doi: 10.1007/s10035-002-0124-4. DOI

McGlinchey D. Characterisation of Bulk Solids. Blackwell; 2005.

Schulze D. Powders and Bulk Solids. Springer; 2008.

Rhodes MJ. Introduction to Particle Technology. Wiley; 2008.

Feda J. Mechanics of Particulate Materials. Elsevier; 1982.

Jenike AW. Storage and Flow of Solids. University of Utah; 1964.

Schulze, D. Ring Shear Tester RST-01.pc Operating Instructions v2.0 (Dietmar Schulze, Wolfenbüttel, 1999–2011)

Janssen RJM. Structure and Shear in a Cohesive Powder. Delft University of Technology; 2001.

Suhr B, Six K. Simple particle shapes for DEM simulations of railway ballast: Influence of shape descriptors on packing behaviour. Granul. Matter. 2020;22:1–17. doi: 10.1007/s10035-020-1009-0. PubMed DOI PMC

Pourtavakoli H, Parteli EJ, Pöschel T. Granular dampers: Does particle shape matter? New J. Phys. 2016;18:073049. doi: 10.1088/1367-2630/18/7/073049. DOI

Kozicki J, Tejchman J, Mróz Z. Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM. Granul. Matter. 2012;14:457–468. doi: 10.1007/s10035-012-0352-1. DOI

Tykhoniuk, R., Jürgen, T. & Luding, S. Shear dynamics simulations of high-disperse cohesive powder. In Particulate Systems Analysis, 1–5 (2003).

Salazar A, Sáez E, Pardo G. Modeling the direct shear test of a coarse sand using the 3D Discrete Element Method with a rolling friction model. Comput. Geotech. 2015;67:83–93. doi: 10.1016/j.compgeo.2015.02.017. DOI

Kozicki J, Niedostatkiewicz M, Tejchman J, Muhlhaus HB. Discrete modelling results of a direct shear test for granular materials versus FE results. Granul. Matter. 2013;15:607–627. doi: 10.1007/s10035-013-0423-y. DOI

Reynolds O. LVII. On the dilatancy of media composed of rigid particles in contact. With experimental illustrations. Philos. Mag. J. Sci. 1885;20:469–481. doi: 10.1080/14786448508627791. DOI

Kruyt NP, Rothenburg L. A micromechanical study of dilatancy of granular materials. J. Mech. Phys. Solids. 2016;95:411–427. doi: 10.1016/j.jmps.2016.01.019. DOI

Skinner AE. A note on the influence of interparticle friction on the shearing strength of a random assembly of spherical particles. Geotechnique. 1969;19:150–157. doi: 10.1680/geot.1969.19.1.150. DOI

Rowe PW. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1962;269:500–527.

Metcalf JR. Angle of repose and internal friction. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1966;3:155–161. doi: 10.1016/0148-9062(66)90005-2. DOI

Shi, H., Luding, S. & Magnanimo, V. Limestone powders yielding and steady state resistance under shearing with different testers. In 2nd International Conference on Powder, Granule and Bulk 1–6 (2016).

Shinohara K, Golman B. Dynamic shear properties of particle mixture by rotational shear test. Powder Technol. 2002;122:255–258. doi: 10.1016/S0032-5910(01)00422-3. DOI

Zegzulka J. The angle of internal friction as a measure of work loss in granular material flow. Powder Technol. 2013;233:347–353. doi: 10.1016/j.powtec.2012.06.047. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

3D printed laboratory equipment to measure bulk materials in extreme conditions

. 2022 Oct 15 ; 12 (1) : 17331. [epub] 20221015

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...