3D printed laboratory equipment to measure bulk materials in extreme conditions

. 2022 Oct 15 ; 12 (1) : 17331. [epub] 20221015

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36243828

Grantová podpora
CZ.02.2.69/0.0/0.0/19_073/0016945 Doctoral grant competition VSB-Technical University of Ostrava
CZ.02.1.01/0.0/0.0/17_049/0008407 Innovative and additive manufacturing technology -new technological solutions for 3D printing of metals and composite materials
CZ.02.1.01/0.0/0.0/17_049/0008407 Innovative and additive manufacturing technology -new technological solutions for 3D printing of metals and composite materials
CZ.02.1.01/0.0/0.0/17_049/0008407 Innovative and additive manufacturing technology -new technological solutions for 3D printing of metals and composite materials

Odkazy

PubMed 36243828
PubMed Central PMC9569391
DOI 10.1038/s41598-022-22114-2
PII: 10.1038/s41598-022-22114-2
Knihovny.cz E-zdroje

Due to relatively new solutions in the field of 3D printing, there are few studies on the possibility of using printed elements in measuring devices. The aim of this study was to investigate the possibility of using instruments made by material extrusion 3D printing method for measurement of selected mechanical-physical properties of bulk materials. Study explores the feasibility of measuring bulk material mechanical-physical properties when there are obstacles for printing original or modified measuring instruments in common practice. To achieve the goals a series of experiments such as Schulze's ring shear tests, Freeman's FT4 shear tests, compressibility tests, and Flow Rate and Stability tests were performed with use of original aluminium or steel made instruments and 3D printed instruments from polylactic acid and acrylic styrene acrylonitrile materials, using lunar regolith simulants LHS-1 and LMS-1 produced by CLASS Exolith Lab as a sample material. The results obtained from tests with original and printed instruments were then compared. The compared values of tests showed applicability of the 3D printed measuring instruments in a 5% range of measurement deviation. The biggest advantages of the 3D printed measuring instruments were the lower weight, the ability to print on the spot, to replace a damaged part with a new 3D printed part on-demand if extremely fast results are needed or due to the logistical unavailability, customization of the standardized tests for better understanding the behaviour of the particulate materials, and cheaper manufacturing costs.

Zobrazit více v PubMed

Just GH, Smith K, Joy KH, Roy MJ. Parametric review of existing regolith excavation techniques for lunar in situ resource utilisation (ISRU) and recommendations for future excavation experiments. Planet. Space Sci. 2020;180:104746. doi: 10.1016/j.pss.2019.104746. DOI

Corrias G, Licheri R, Orrù R, Cao G. Optimization of the self-propagating high-temperature process for the fabrication in situ of lunar construction materials. Chem. Eng. J. 2012;193–194:410–421. doi: 10.1016/j.cej.2012.04.032. DOI

Howell, J.T., Fikes, J.C., McLemore, C. A., Good, J. E. On-site fabrication infrastructure to enable efficient exploration and utilization of space. International Astronautical Federation–59th International Astronautical Congress. 12, 7842–7848, (2008).

Meurisse A, Makaya A, Willsch C, Sperl M. Solar 3D printing of lunar regolith. Acta Astronaut. 2018;152:800–810. doi: 10.1016/j.actaastro.2018.06.063. DOI

Tucker, D., Ethridge, E., Toutanji, H. Production of glass fibers for reinforcing Lunar concrete. Collection of Technical Papers. 44th AIAA Aerospace Sciences Meeting. 9, 6335–6343. 10.2514/6.2006-523 (2006)

Faierson EJ, Logan KV, Stewart BK, Hunt MP. Demonstration of concept for fabrication of Lunar physical assets utilizing Lunar regolith simulant and a geothermite reaction. Acta Astronaut. 2010;67:38–45. doi: 10.1016/j.actaastro.2009.12.006. DOI

Corrias G, Licheri R, Orrù R, Cao G. Self-propagating high-temperature reactions for the fabrication of Lunar and Martian physical assets. Acta Astronaut. 2012;70:69–76. doi: 10.1016/j.actaastro.2011.07.022. DOI

Martirosyan, K. S., Luss, D. Combustion synthesis of ceramic composites from Lunar soil simulant. 37th Lunar and Planetary Science Conference. 1896, (2006).

Mitchell JK, Houston WN, Scott RF. Mechanical properties of lunar soil: Density, porosity, cohesion, and angle of internal friction. Proc. Lunar Sci. Conf.. 1972;3:3235–3253.

Rame, E., Wilkinson, A., Elliot, A., Young, C. Flowability of JSC-1A. NASA/TM-2009–215625. (2009).

McKay, D. S., Heiken, G., Basu, A., Blanford, G., Simo, S., Reedy, R., et al. Lunar Sourcebook. Cambridge University Press. 1991.

Snyder, M. P., Dunn, J. J., Gonzalez, E. G. Effects of microgravity on extrusion based additive manufacturing. AIAA SPACE 2013 Conference and Exposition. 5439, 10.2514/6.2013-5439 (2013)

Plaza EG, López PJN, Torija MÁC, Muñoz JMC. Analysis of PLA geometric properties processed by FFF additive manufacturing: Effects of process parameters and plate-extruder precision motion. Polymers. 2019;11:1581. doi: 10.3390/polym11101581. PubMed DOI PMC

Prater TJ, Werkheiser NJ, Ledbetter FE, Timucin D, Wheeler K, Snyder M. 3D printing in zero G technology demonstration mission: complete experimental results and summary of related material modelling efforts. Intl. J. Adv. Manuf. Technol. 2019;101:319–417. doi: 10.1007/s00170-018-2827-7. PubMed DOI PMC

Dunn, J. J., Hutchinson, D. N., Kemmer, A. M., Ellsworth, A. Z., Snyder, M., White, W. B., Blair, B. R. 3D Printing in Space: Enabling new markets and accelerating the growth of orbital infrastructure. Space Manufacturing 14: Critical Technologies for Space Settlement. Space Studies Institute. (2010).

Prater, T. J., Bean, Q. A., Beshears, R. D., Rolin, T. D., Werkheiser, N. J., Ordonez, E. A., et al. Summary Report on Phase I Results From the 3D Printing in Zero-G Technology Demonstration Mission, Volume I. NASA, Marshall Space Flight Center. NASA/TP—2016–219101, (2016).

Traciak J, Fal J, Zyla G. 3D printed measuring device for the determination the surface tension of nanofluids. Appl. Surf. Sci. 2021;561:149878. doi: 10.1016/j.apsusc.2021.149878. DOI

Bernard, P., Mendez., J. D. Low-Cost 3D printed Polarimeter. J. Chem. Educ. 97, 1162–1166 10.1021/acs.jchemed.9b01083 (2020).

Maurizi M, Slavič J, Cianetti F, Jerman M, Valentinič J, Lebar A, Boltežar M. Dynamic measurements using FDM 3D-printed embedded strain sensors. Sensors. 2019;19(12):2661. doi: 10.3390/s19122661. PubMed DOI PMC

Hussain I, Nath P. Design of a 3D printed compact interferometric system and required phone application for small angular measurements. Rev. Sci. Instrum. 2018;89:103111. doi: 10.1063/1.5040189. PubMed DOI

Lu Z, Jianguo L. Shear properties of lunar regolith simulants. Procedia Eng. 2014;73:178–185. doi: 10.1016/j.proeng.2014.06.186. DOI

Li R, Zhou G, Yan K, Chen J, Chen D, Cai S, Mo P. Preparation and characterization of a specialized lunar regolith simulant for use in lunar low gravity simulation. Int. J. Min. Sci. Technol. 2022;32:1–15. doi: 10.1016/j.ijmst.2021.09.003. DOI

Pelech T, Barnett N, Dello-Iacovo M, Oh J, Saydam S. Analysis of the stability of micro-tunnels in lunar regolith with the discrete element method. Acta Astronaut. 2022;196:1–12. doi: 10.1016/j.actaastro.2022.03.037. DOI

Raam Kumar S, Sridhar SR, Venkatraman R, Venkatesan M. Polymer additive manufacturing of ASA structure: Influence of printing parameters on mechanical properties. Mater. Today: Proc. 2021;39:1316–1319. doi: 10.1016/j.matpr.2020.04.500. DOI

Li P, Yvonnet J, Wu Y. Improved fracture resistance of 3D-printed elastoplastic structures with respect to their topology and orientation of deposited layers. Int. J. Mech. Sci. Despite. 2020 doi: 10.1016/j.ijmecsci.2022.107147. DOI

Huynh NU, Smilo J, Blourchian A, Karapetian AV, Youssef G. Property-map of epoxy-treated and as-printed polymeric additively manufactured materials. Int. J. Mech. Sci. 2020;181:105767. doi: 10.1016/j.ijmecsci.2020.105767. DOI

Somireddy M, Czekanski A. Anisotropic material behavior of 3D printed composite structures–material extrusion additive manufacturing. Mater. Design. 2020;195:108953. doi: 10.1016/j.matdes.2020.108953. DOI

Nurizada A, Kirane K. Induced anisotropy in the fracturing behavior of 3D printed parts analyzed by the size effect method. Eng. Fract. Mech. 2020;239:107304. doi: 10.1016/j.engfracmech.2020.107304. DOI

Khosravani MR, Zolfagharian A, Jennings A, Reinicke T. Structural performance of 3D-printed composites under various loads and environmental conditions. Polym. Testing. 2020;91:106770. doi: 10.1016/j.polymertesting.2020.106770. DOI

Hikmat M, Rostam S, Ahmed YM. Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology. Results Eng. 2021;11:100264. doi: 10.1016/j.rineng.2021.100264. DOI

Khosravani MR, Reinicke T. Effects of raster layup and printing speed on strength of 3D-printed structural components. Procedia Struct. Integr. 2020;28:720–725. doi: 10.1016/j.prostr.2020.10.083. DOI

Schulze, D. Ring Shear Tester RST-01.pc - Operating Instructions. Second ed. Wolfenbüttel, Germany. 2010.

Markandeya SA, Dhiman N, Shukla SP, Kisku GC. Statistical optimization of process parameters for removal of dyes from wastewater on chitosan cenospheres nanocomposite using response surface methodology. J. Clean. Prod. 2017;149:597–606. doi: 10.1016/j.jclepro.2017.02.078. DOI

Engeli R, Etter T, Hovel S, Wegener K. Processability of different IN738LC powder batches by selective laser melting. J. Mater. Process. Technol. 2016;229:484–491. doi: 10.1016/j.jmatprotec.2015.09.046. DOI

Bowen P. Particle size distribution measurement from millimeters to nanometers and from rods to platelets. J. Dispers. Sci. Technol. 2002;23:631–662. doi: 10.1081/DIS-120015368. DOI

Peciar, P., Kluka, M., Briss, L., Peciar, M. Determination of stress in particulate matter with DEM method. 39th International Conference of Slovak Sociaty of Chemical Engineering. 106–115, (2021).

Schwedes J. Review on testers for measuring flow properties of bulk solids. Granul. Matter. 2003;5:1–43. doi: 10.1007/s10035-002-0124-4. DOI

Schulze, D. Powder and bulk solids: Behaviour, charakterization, storage and flow. (Springer Berlin, Heidelberg, 2008). 10.1007/978-3-540-73768-1.

Zegzulka J, Gelnar D, Jezerska L, Ramirez-Gomez A, Necas J, Rozbroj J. Internal friction angle of metal powders. Metals. 2018;8:255. doi: 10.3390/met8040255. PubMed DOI PMC

Mihlbachler K, Kollmann T, Seidel-Morgenstern S, Jurgen T, Guiochon G. Measurement of the degree of internal friction of two native silica packing materials. J. Chromatogr. 1998;818:155–168. doi: 10.1016/S0021-9673(98)00546-9. DOI

Hlosta, J., Zurovec, D., Jezerska, L., Zegzulka, J., Necas, J. Effect of particle shape and size on the compressibility and bulk properties of powders in powder metallurgy. Metal. 2016.

Freeman R. Measuring the flow properties of consolidated, conditioned, and aerated powders–a comparative study using a powder rheometer and a rotational shear cell. Powder Technol. 2007;174:25–33. doi: 10.1016/j.powtec.2006.10.016. DOI

Davis CB, Potter GM. Walker, Downstream processing of a ternary amorphous solid dispersion: The impacts of spray drying and hot melt extrusion on powder flow, compression and dissolution. Int. J. Pharm. 2018;544:242–253. doi: 10.1016/j.ijpharm.2018.04.038. PubMed DOI

Zegzulka J, Gelnar D, Jezerska L, Prokes R, Rozbroj J. Characterization and flowability methods for metal powders. Sci. Rep. 2020;10:21004. doi: 10.1038/s41598-020-77974-3. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...