• This record comes from PubMed

Molecular Characterization of Candida auris Isolates at a Major Tertiary Care Center in Lebanon

. 2021 ; 12 () : 770635. [epub] 20220125

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

BACKGROUND: The globally emerging Candida auris pathogens poses heavy burden to the healthcare system. Their molecular analyses assist in understanding their epidemiology, dissemination, treatment, and control. This study was warranted to describe the genomic features and drug resistance profiles using whole genome sequencing (WGS) among C. auris isolates from Lebanon. METHODS: A total of 28 C. auris clinical isolates, from different hospital units, were phenotypically identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and tested for antifungal resistance using Vitek-2 system and E test. The complete genomes were determined by WGS using long reads sequencing (PacBio) to reveal the clade distribution and antifungal resistance genes. RESULTS: Candida auris revealed uniform resistance to fluconazole and amphotericin B, with full susceptibility to echinocandins. Among key resistance genes studied, only two mutations were detected: Y132F in ERG11 gene and a novel mutation, D709E, found in CDR1 gene encoding for an ABC efflux pump. Phylogenetically, C. auris genomes belonged to South Asian clade I and showed limited genetic diversity, suggesting person to person transmission. CONCLUSION: This characterization of C. auris isolates from Lebanon revealed the exclusivity of clade I lineage together with uniform resistance to fluconazole and amphotericin B. The control of such highly resistant pathogen necessitates an appropriate and rapid recovery and identification to contain spread and outbreaks.

See more in PubMed

Al Maani A., Paul H., Al-Rashdi A., Wahaibi A. A., Al-Jardani A., Al Abri A. M. A., et al. (2019). Ongoing challenges with healthcare-associated Candida auris outbreaks in Oman. J. Fungi 5:101. 10.3390/jof5040101 PubMed DOI PMC

Alatoom A., Sartawi M., Lawlor K., AbdelWareth L., Thomsen J., Nusair A., et al. (2018). Persistent candidemia despite appropriate fungal therapy: first case of Candida auris from the United Arab emirates. Int. J. Infect. Dis. 70 36–37. 10.1016/j.ijid.2018.02.005 PubMed DOI

Alfouzan W., Ahmad S., Dhar R., Asadzadeh M., Almerdasi N., Abdo N. M., et al. (2020). Molecular epidemiology of Candida auris outbreak in a major secondary-care hospital in Kuwait. J. Fungi 6:307. 10.3390/jof6040307 PubMed DOI PMC

Alfouzan W., Dhar R., Albarrag A., Al-Abdely H. (2019). The emerging pathogen Candida auris: a focus on the middle-eastern countries. J. Infect. Public Health 12 451–459. 10.1016/j.jiph.2019.03.009 PubMed DOI

Allaw F., Kara Zahreddine N., Ibrahim A., Tannous J., Taleb H., Bizri A. R., et al. (2021). First Candida auris outbreak during a COVID-19 pandemic in a tertiary-care center in Lebanon. Pathogens 10:157. 10.3390/pathogens10020157 PubMed DOI PMC

Almaghrabi R. S., Albalawi R., Mutabagani M., Atienza E., Aljumaah S., Gade L., et al. (2020). Molecular characterisation and clinical outcomes of Candida auris infection: single-centre experience in Saudi Arabia. Mycoses 63 452–460. 10.1111/myc.13065 PubMed DOI

Almagro Armenteros J. J., Tsirigos K. D., Sonderby C. K., Petersen T. N., Winther O., Brunak S., et al. (2019). SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37 420–423. 10.1038/s41587-019-0036-z PubMed DOI

Al-Siyabi T., Al Busaidi I., Balkhair A., Al-Muharrmi Z., Al-Salti M., Al’Adawi B. (2017). First report of Candida auris in Oman: clinical and microbiological description of five candidemia cases. J. Infect. 75 373–376. 10.1016/j.jinf.2017.05.016 PubMed DOI

Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215 403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI

Araj G. F., Asmar R. G., Avedissian A. Z. (2015). Candida profiles and antifungal resistance evolution over a decade in Lebanon. J. Infect. Dev. Ctries 9 997–1003. 10.3855/jidc.6550 PubMed DOI

Awada B., Alam W., Chalfoun M., Araj G., Bizri A. R. (2021). COVID-19 and Candida duobushaemulonii superinfection: a case report. J. Mycol. Med. 31:101168. 10.1016/j.mycmed.2021.101168 PubMed DOI PMC

Biswas C., Wang Q., van Hal S. J., Eyre D. W., Hudson B., Halliday C. L., et al. (2020). Genetic heterogeneity of Australian Candida auris isolates: insights from a nonoutbreak setting using whole-genome sequencing. Open Forum Infect. Dis. 7:ofaa158. 10.1093/ofid/ofaa158 PubMed DOI PMC

Blachowicz A., Chiang A. J., Elsaesser A., Kalkum M., Ehrenfreund P., Stajich J. E., et al. (2019). Proteomic and metabolomic characteristics of extremophilic fungi under simulated mars conditions. Front. Microbiol. 10:1013. 10.3389/fmicb.2019.01013 PubMed DOI PMC

Bruna T., Hoff K. J., Lomsadze A., Stanke M., Borodovsky M. (2021). BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genom. Bioinform. 3:lqaa108. 10.1093/nargab/lqaa108 PubMed DOI PMC

Buchfink B., Xie C., Huson D. H. (2015). Fast and sensitive protein alignment using diamond. Nat. Methods 12 59–60. 10.1038/nmeth.3176 PubMed DOI

Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., et al. (2009). BLAST+: architecture and applications. BMC Bioinform. 10:421. 10.1186/1471-2105-10-421 PubMed DOI PMC

Cernakova L., Roudbary M., Bras S., Tafaj S., Rodrigues C. F. (2021). Candida auris: a quick review on identification, current treatments, and challenges. Int. J. Mol. Sci. 22:4470. 10.3390/ijms22094470 PubMed DOI PMC

Chow N. A., de Groot T., Badali H., Abastabar M., Chiller T. M., Meis J. F. (2019). Potential fifth clade of Candida auris, Iran, 2018. Emerg. Infect. Dis. 25 1780–1781. 10.3201/eid2509.190686 PubMed DOI PMC

Chow N. A., Munoz J. F., Gade L., Berkow E. L., Li X., Welsh R. M., et al. (2020). Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses. mBio 11:e03364-19. 10.1128/mBio.03364-19 PubMed DOI PMC

Chowdhary A., Prakash A., Sharma C., Kordalewska M., Kumar A., Sarma S., et al. (2018). A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009-17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J. Antimicrob. Chemother. 73 891–899. 10.1093/jac/dkx480 PubMed DOI

Emara M., Ahmad S., Khan Z., Joseph L., Al-Obaid I., Purohit P., et al. (2015). Candida auris candidemia in Kuwait, 2014. Emerg. Infect. Dis. 21 1091–1092. 10.3201/eid2106.150270 PubMed DOI PMC

Forsberg K., Lyman M., Chaturvedi S., Schneider E. C. (2020). Public health action-based system for tracking and responding to U.S. Candida drug resistance: AR Lab Network, 2016-2019. Open Forum Infect. Dis. 7(Suppl. 1), S206–S207. 10.1093/ofid/ofaa439.465 DOI

Forsberg K., Woodworth K., Walters M., Berkow E. L., Jackson B., Chiller T., et al. (2019). Candida auris: the recent emergence of a multidrug-resistant fungal pathogen. Med. Mycol. 57 1–12. 10.1093/mmy/myy054 PubMed DOI

Frias-De-Leon M. G., Hernandez-Castro R., Vite-Garin T., Arenas R., Bonifaz A., Castanon-Olivares L., et al. (2020). Antifungal resistance in Candida auris: molecular determinants. Antibiotics 9:568. 10.3390/antibiotics9090568 PubMed DOI PMC

Hoff K. J., Lange S., Lomsadze A., Borodovsky M., Stanke M. (2016). BRAKER1: unsupervised RNA-seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32 767–769. 10.1093/bioinformatics/btv661 PubMed DOI PMC

Hoff K. J., Lomsadze A., Borodovsky M., Stanke M. (2019). Whole-genome annotation with BRAKER. Methods Mol. Biol. 1962 65–95. 10.1007/978-1-4939-9173-0_5 PubMed DOI PMC

Huerta-Cepas J., Forslund K., Coelho L. P., Szklarczyk D., Jensen L. J., von Mering C., et al. (2017). Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34 2115–2122. 10.1093/molbev/msx148 PubMed DOI PMC

Huerta-Cepas J., Szklarczyk D., Heller D., Hernandez-Plaza A., Forslund S. K., Cook H., et al. (2019). eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47 D309–D314. 10.1093/nar/gky1085 PubMed DOI PMC

Iguchi S., Itakura Y., Yoshida A., Kamada K., Mizushima R., Arai Y., et al. (2019). Candida auris: a pathogen difficult to identify, treat, and eradicate and its characteristics in Japanese strains. J. Infect. Chemother. 25 743–749. 10.1016/j.jiac.2019.05.034 PubMed DOI

Jones P., Binns D., Chang H. Y., Fraser M., Li W., McAnulla C., et al. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics 30 1236–1240. 10.1093/bioinformatics/btu031 PubMed DOI PMC

Khan Z., Ahmad S., Al-Sweih N., Joseph L., Alfouzan W., Asadzadeh M. (2018). Increasing prevalence, molecular characterization and antifungal drug susceptibility of serial Candida auris isolates in Kuwait. PLoS One 13:e0195743. 10.1371/journal.pone.0195743 PubMed DOI PMC

Kim S. H., Iyer K. R., Pardeshi L., Munoz J. F., Robbins N., Cuomo C. A., et al. (2019). Erratum for Kim et al., “genetic analysis of Candida auris implicates Hsp90 in morphogenesis and azole tolerance and Cdr1 in azole resistance”. mBio 10:e00346-19. 10.1128/mBio.00346-19 PubMed DOI PMC

Kingsbury J. M., McCusker J. H. (2008). Threonine biosynthetic genes are essential in Cryptococcus neoformans. Microbiology 154(Pt. 9), 2767–2775. 10.1099/mic.0.2008/019729-0 PubMed DOI PMC

Kingsbury J. M., McCusker J. H. (2010a). Cytocidal amino acid starvation of Saccharomyces cerevisiae and Candida albicans acetolactate synthase (ilv2Δ) mutants is influenced by the carbon source and rapamycin. Microbiology 156, 929–939. 10.1099/mic.0.034348-0 PubMed DOI PMC

Kingsbury J. M., McCusker J. H. (2010b). Fungal homoserine kinase (thr1Δ) mutants are attenuated in virulence and die rapidly upon threonine starvation and serum incubation. Eukaryot. cell 9, 729–737. 10.1128/EC.00045-10 PubMed DOI PMC

Laslett D., Canback B. (2004). ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32 11–16. 10.1093/nar/gkh152 PubMed DOI PMC

Lee Y. T., Fang Y. Y., Sun Y. W., Hsu H. C., Weng S. M., Tseng T. L., et al. (2018). THR1 mediates GCN4 and CDC4 to link morphogenesis with nutrient sensing and the stress response in Candida albicans. Int. J. Mol. Med. 42 3193–3208. 10.3892/ijmm.2018.3930 PubMed DOI PMC

Letunic I., Bork P. (2019). Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47 W256–W259. 10.1093/nar/gkz239 PubMed DOI PMC

Lockhart S. R., Etienne K. A., Vallabhaneni S., Farooqi J., Chowdhary A., Govender N. P., et al. (2017). Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis. 64 134–140. 10.1093/cid/ciw691 PubMed DOI PMC

Looi C. Y., Ec D. S., Seow H. F., Rosli R., Ng K. P., Chong P. P. (2005). Increased expression and hotspot mutations of the multidrug efflux transporter, CDR1 in azole-resistant Candida albicans isolates from vaginitis patients. FEMS Microbiol. Lett. 249 283–289. 10.1016/j.femsle.2005.06.036 PubMed DOI

Lyman M., Forsberg K., Reuben J., Dang T., Free R., Seagle E. E., et al. (2021). Notes from the field: transmission of pan-resistant and echinocandin-resistant Candida auris in health care facilities - Texas and the District of Columbia, January-April 2021. MMWR Morb. Mortal. Wkly Rep. 70 1022–1023. 10.15585/mmwr.mm7029a2 PubMed DOI PMC

Manni M., Berkeley M. R., Seppey M., Zdobnov E. M. (2021). BUSCO: assessing genomic data quality and beyond. Curr. Protoc. 1:e323. 10.1002/cpz1.323 PubMed DOI

Mohsin J., Hagen F., Al-Balushi Z. A. M., de Hoog G. S., Chowdhary A., Meis J. F., et al. (2017). The first cases of Candida auris candidaemia in Oman. Mycoses 60 569–575. 10.1111/myc.12647 PubMed DOI

Patel R. (2019). A moldy application of MALDI: MALDI-ToF Mass Spectrometry for Fungal Identification. J Fungi 5:4. 10.3390/jof5010004 PubMed DOI PMC

Prakash A., Sharma C., Singh A., Kumar Singh P., Kumar A., Hagen F., et al. (2016). Evidence of genotypic diversity among Candida auris isolates by multilocus sequence typing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and amplified fragment length polymorphism. Clin. Microbiol. Infect. 22 277.e1–9. 10.1016/j.cmi.2015.10.022 PubMed DOI

Price M. N., Dehal P. S., Arkin A. P. (2010). FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. 10.1371/journal.pone.0009490 PubMed DOI PMC

Roberts S. C., Zembower T. R., Ozer E. A., Qi C. (2021). Genetic evaluation of nosocomial Candida auris transmission. J. Clin. Microbiol. 59 e02252–20. 10.1128/JCM.02252-20 PubMed DOI PMC

Rybak J. M., Doorley L. A., Nishimoto A. T., Barker K. S., Palmer G. E., Rogers P. D. (2019). Abrogation of triazole resistance upon deletion of CDR1 in a clinical isolate of Candida auris. Antimicrob. Agents Chemother. 63 e00057–19. 10.1128/AAC.00057-19 PubMed DOI PMC

Rychert J., Slechta E. S., Barker A. P., Miranda E., Babady N. E., Tang Y. W., et al. (2018). Multicenter evaluation of the Vitek MS v3.0 system for the identification of filamentous fungi. J. Clin. Microbiol. 56 e01353–17. 10.1128/JCM.01353-17 PubMed DOI PMC

Salah H., Sundararaju S., Dalil L., Salameh S., Al-Wali W., Tang P., et al. (2021). Genomic epidemiology of Candida auris in qatar reveals hospital transmission dynamics and a South Asian origin. J. Fungi 7:240. 10.3390/jof7030240 PubMed DOI PMC

Schelenz S., Hagen F., Rhodes J. L., Abdolrasouli A., Chowdhary A., Hall A., et al. (2016). First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob. Resist. Infect. Control 5:35. 10.1186/s13756-016-0132-5 PubMed DOI PMC

Schoch C. L., Seifert K. A., Huhndorf S., Robert V., Spouge J. L., Levesque C. A., et al. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. U.S.A. 109 6241–6246. 10.1073/pnas.1117018109 PubMed DOI PMC

Seemann T. (2015). Snippy: Fast Bacterial Variant Calling From NGS Reads [Internet]. San Francisco, CA: github.

Smith C. A. (2021). Macrosynteny analysis between lentinula edodes and lentinula novae-zelandiae reveals signals of domestication in lentinula edodes. Sci. Rep. 11:9845. 10.1038/s41598-021-89146-y PubMed DOI PMC

Stanke M., Diekhans M., Baertsch R., Haussler D. (2008). Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24 637–644. 10.1093/bioinformatics/btn013 PubMed DOI

Stanke M., Schoffmann O., Morgenstern B., Waack S. (2006). Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinform. 7:62. 10.1186/1471-2105-7-62 PubMed DOI PMC

Ter-Hovhannisyan V., Lomsadze A., Chernoff Y. O., Borodovsky M. (2008). Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res. 18 1979–1990. 10.1101/gr.081612.108 PubMed DOI PMC

Treangen T. J., Ondov B. D., Koren S., Phillippy A. M. (2014). The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 15:524. 10.1186/s13059-014-0524-x PubMed DOI PMC

Vasquez-Gross H., Kaur S., Epstein L., Dubcovsky J. (2020). A haplotype-phased genome of wheat stripe rust pathogen Puccinia striiformis f. sp. tritici, race PST-130 from the Western USA. PLoS One 15:e0238611. 10.1371/journal.pone.0238611 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...