Yeasts from temperate forests

. 2022 Jan ; 39 (1-2) : 4-24. [epub] 20220217

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid35146791

Yeasts are ubiquitous in temperate forests. While this broad habitat is well-defined, the yeasts inhabiting it and their life cycles, niches, and contributions to ecosystem functioning are less understood. Yeasts are present on nearly all sampled substrates in temperate forests worldwide. They associate with soils, macroorganisms, and other habitats and no doubt contribute to broader ecosystem-wide processes. Researchers have gathered information leading to hypotheses about yeasts' niches and their life cycles based on physiological observations in the laboratory as well as genomic analyses, but the challenge remains to test these hypotheses in the forests themselves. Here, we summarize the habitat and global patterns of yeast diversity, give some information on a handful of well-studied temperate forest yeast genera, discuss the various strategies to isolate forest yeasts, and explain temperate forest yeasts' contributions to biotechnology. We close with a summary of the many future directions and outstanding questions facing researchers in temperate forest yeast ecology. Yeasts present an exciting opportunity to better understand the hidden world of microbial ecology in this threatened and global habitat.

Big Data Research Center Laval University Quebec City Quebec Canada

Biodiversity Research Center Academia Sinica Taipei 115 Taiwan

Biology Department and Redpath Museum McGill University Montreal Québec Canada

Biology Department Wheaton College Norton Massachusetts USA

Biotechnical Faculty Department of Biology University of Ljubljana Ljubljana Slovenia

Biotechnical Faculty Food Science and Technology Department University of Ljubljana Ljubljana Slovenia

Center for Food Innovation DSM Food Specialties Delft The Netherlands

Centre for Life's Origins and Evolution University College London London UK

CNRS INSERM IRCAN Côte d'Azur University Nice France

Department of Agriculture Food and Environmental Sciences and Industrial Yeasts Collection DBVPG University of Perugia Perugia Italy

Department of Biochemistry Microbiology and Bioinformatics Faculty of Science and Engineering Laval University Quebec City Quebec Canada

Department of Biology Faculty of Science and Engineering Laval University Quebec City Quebec Canada

Department of Biology Villanova University Villanova Pennsylvania USA

Department of Bioresources for Bioeconomy and Health Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures Braunschweig Germany

Department of Food Science and Technology University of California Davis Davis California USA

Department of General Microbiology Institute of Microbiology Bulgarian Academy of Sciences Sofia Bulgaria

Department of Life Sciences Imperial College London Silwood Park Ascot UK

Department of Molecular and Biomedical Sciences Jožef Stefan Institute Ljubljana Slovenia

Department of Plant Biology University of Georgia Georgia USA

Faculty of Chemistry and Biology Department of Biology University of Santiago de Chile Santiago Chile

Institute of Biochemistry Department of Biology ETH Zurich Zurich Switzerland

Institute of Food Technology and Food Chemistry Chair of Brewing and Beverage Technology Technische Universität Berlin Berlin Germany

Institute of Integrative and Systems Biology Laval University Quebec City Quebec Canada

Laboratory of Environmental Microbiology Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic

Laboratory of Genetics Wisconsin Energy Institute DOE Great Lakes Bioenergy Research Center Center for Genomic Science Innovation J F Crow Institute for the Study of Evolution University of Wisconsin Madison Madison Wisconsin USA

Millennium Institute for Integrative Biology Santiago Chile

PROTEO The Quebec Research Group on the Function Engineering and Applications of Proteins Laval University Quebec City Quebec Canada

State Key Laboratory of Mycology Institute of Microbiology Chinese Academy of Sciences Beijing China

State Research Institute of Genetics and Selection of Industrial Microorganisms of National Research Centre Kurchatov Institute Moscow Russia

University of Natural Resources and Life Sciences

Zobrazit více v PubMed

Albarracín, M. V., Six, J., Houlton, B. Z., & Bledsoe, C. S. (2013). A nitrogen fertilization field study of carbon-13 and nitrogen-15 transfers in ectomycorrhizas of Pinus sabiniana. Oecologia, 173(4), 1439-1450. https://doi.org/10.1007/s00442-013-2734-4

Alfaro Reyna, T., Retana, J., & Martínez-Vilalta, J. (2018). Is there a substitution of Pinaceae by Fagaceae in temperate forests at the global scale? Global and Planetary Change, 166, 41-47. https://doi.org/10.1016/j.gloplacha.2018.04.001

Almeida, P., Barbosa, R., Zalar, P., Imanishi, Y., Shimizu, K., Turchetti, B., Legras, J.-L., Serra, M., Dequin, S., Couloux, A., Guy, J., Bensasson, D., Gonçalves, P., & Sampaio, J. P. (2015). A population genomics insight into the Mediterranean origins of wine yeast domestication. Molecular Ecology, 24(21), 5412-5427. https://doi.org/10.1111/mec.13341

Almeida, P., Gonçalves, C., Teixeira, S., Libkind, D., Bontrager, M., Masneuf-Pomarède, I., Albertin, W., Durrens, P., Sherman, D. J., Marullo, P., Todd Hittinger, C., Gonçalves, P., & Sampaio, J. P. (2014). A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum. Nature Communications, 5(1), 4044. https://doi.org/10.1038/ncomms5044

Alonso-Blanco, C., Andrade, J., Becker, C., Bemm, F., Bergelson, J., Borgwardt, K. M., Cao, J., Chae, E., Dezwaan, T. M., Ding, W., Ecker, J. R., Exposito-Alonso, M., Farlow, A., Fitz, J., Gan, X., Grimm, D. G., Hancock, A. M., Henz, S. R., Holm, S., … Zhou, X. (2016). 1,135 Genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell, 166(2), 481-491. https://doi.org/10.1016/j.cell.2016.05.063

Alsammar, H. F., Naseeb, S., Brancia, L. B., Gilman, R. T., Wang, P., & Delneri, D. (2019). Targeted metagenomics approach to capture the biodiversity of Saccharomyces genus in wild environments. Environmental Microbiology Reports, 11(2), 206-214. https://doi.org/10.1111/1758-2229.12724

Anderson, J. B., Kasimer, D., Xia, W., Schröder, N. C. H., Cichowicz, P., Lioniello, S., Chakrabarti, R., Mohan, E., & Kohn, L. M. (2018). Persistence of resident and transplanted genotypes of the undomesticated yeast saccharomyces paradoxus in forest soil. MSphere, 3(3), e00211-e00218. https://doi.org/10.1128/mSphere.00211-18

Aponte, M., & Blaiotta, G. (2016). Potential role of yeast strains isolated from grapes in the production of taurasi DOCG. Frontiers in Microbiology, 7, 809. https://doi.org/10.3389/fmicb.2016.00809

Aquilani, B., Laureti, T., Poponi, S., & Secondi, L. (2015). Beer choice and consumption determinants when craft beers are tasted: An exploratory study of consumer preferences. Food Quality and Preference, 41, 214-224. https://doi.org/10.1016/j.foodqual.2014.12.005

Babjeva, I. P., & Golovleva, L. A. (1963). Yeast flora of the main soil types of the European part of the USSR. Microorganisms in Agriculture (pp. 231-251). Moscow: Moscow State University Press.

Bagheri, B., Bauer, F. F., & Setati, M. E. (2016). The diversity and dynamics of indigenous yeast communities in grape must from vineyards employing different agronomic practices and their influence on wine fermentation. South African Journal of Enology and Viticulture, 36(2), 243-251. https://doi.org/10.21548/36-2-957

Baker, E. P., & Hittinger, C. T. (2019). Evolution of a novel chimeric maltotriose transporter in Saccharomyces eubayanus from parent proteins unable to perform this function. PLOS Genetics, 15(4), e1007786. https://doi.org/10.1371/journal.pgen.1007786

Baleiras Couto, M. M., Reizinho, R. G., & Duarte, F. L. (2005). Partial 26S rDNA restriction analysis as a tool to characterise non-Saccharomyces yeasts present during red wine fermentations. International Journal of Food Microbiology, 102(1), 49-56. https://doi.org/10.1016/j.ijfoodmicro.2005.01.005

Bandara, A., Fraser, S., Chambers, P. J., & Stanley, G. A. (2009). Trehalose promotes the survival of Saccharomyces cerevisiae during lethal ethanol stress, but does not influence growth under sublethal ethanol stress. FEMS Yeast Research, 9(8), 1208-1216. https://doi.org/10.1111/j.1567-1364.2009.00569.x

Banno, I., & Mikata, K. (1981). Ascomycetous yeasts isolated from forest materials in Japan. IFO Research Communication, 10, 10-19.

Barbosa, R., Almeida, P., Safar, S. V. B., Santos, R. O., Morais, P. B., Nielly-Thibault, L., Leducq, J.-B., Landry, C. R., Gonçalves, P., Rosa, C. A., & Sampaio, J. P. (2016). Evidence of natural hybridization in brazilian wild lineages of Saccharomyces cerevisiae. Genome Biology and Evolution, 8(2), 317-329. https://doi.org/10.1093/gbe/evv263

Batschinskaya, A. A. (1914). Saccharomyces paradoxus, a new yeast species; its development and its pure culture. J Microbiol Epidemiol Immunobiol, 1, 231-250.

Beard, J. S. (1990). Temperate forests of the southern hemisphere. Vegetatio, 89(1), 7-10. https://doi.org/10.1007/BF00134430

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5, 180214. https://doi.org/10.1038/sdata.2018.214

Beijerinck, M. W. (1961) Enrichment culture studies with urea bacteria (T. D. Brock, Trans.).

Belda, I., Ruiz, J., Alastruey-Izquierdo, A., Navascués, E., Marquina, D., & Santos, A. (2016). Unraveling the enzymatic basis of wine “flavorome”: A phylo-functional study of wine related yeast species. Frontiers in Microbiology, 7, 12. https://doi.org/10.3389/fmicb.2016.00012

Bendixsen, D. P., Gettle, N., Gilchrist, C., Zhang, Z., & Stelkens, R. (2021). Genomic evidence of an ancient east asian divergence event in wild Saccharomyces cerevisiae. Genome Biology and Evolution, 13(2), evab001. https://doi.org/10.1093/gbe/evab001

Benito, Á., Calderón, F., Palomero, F., & Benito, S. (2015). Combine use of selected Schizosaccharomyces pombe and Lachancea thermotolerans yeast strains as an alternative to the traditional malolactic fermentation in red wine production. Molecules, 20(6), 9510-9523. https://doi.org/10.3390/molecules20069510

Bergström, A., Simpson, J. T., Salinas, F., Barré, B., Parts, L., Zia, A., Nguyen Ba, A. N., Moses, A. M., Louis, E. J., Mustonen, V., Warringer, J., Durbin, R., & Liti, G. (2014). A high-definition view of functional genetic variation from natural yeast genomes. Molecular Biology and Evolution, 31(4), 872-888. https://doi.org/10.1093/molbev/msu037

Bing, J., Han, P.-J., Liu, W.-Q., Wang, Q.-M., & Bai, F.-Y. (2014). Evidence for a Far East Asian origin of lager beer yeast. Current Biology, 24(10), R380-R381. https://doi.org/10.1016/j.cub.2014.04.031

Birkhofer, K., Schöning, I., Alt, F., Herold, N., Klarner, B., Maraun, M., Marhan, S., Oelmann, Y., Wubet, T., Yurkov, A., Begerow, D., Berner, D., Buscot, F., Daniel, R., Diekötter, T., Ehnes, R. B., Erdmann, G., Fischer, C., Foesel, B., … Schrumpf, M. (2012). General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types. PloS One, 7(8), e43292. https://doi.org/10.1371/journal.pone.0043292

Boddy, L., & Hiscox, J. (2016). Fungal ecology: Principles and mechanisms of colonization and competition by saprotrophic fungi. Microbiology Spectrum, 4(6), 1-16. https://doi.org/10.1128/microbiolspec.FUNK-0019-2016

Boekhout, T., Aime, M. C., Begerow, D., Gabaldón, T., Heitman, J., Kemler, M., Khayhan, K., Lachance, M.-A., Louis, E. J., Sun, S., Vu, D., & Yurkov, A. (2021). The evolving species concepts used for yeasts: From phenotypes and genomes to speciation networks. Fungal Diversity, 109(1), 27-55. https://doi.org/10.1007/s13225-021-00475-9

Botha, A. (2006). Yeasts in Soil. In G. Péter & C. Rosa (Eds.), Biodiversity and ecophysiology of yeasts (pp. 221-240). Springer-Verlag. https://doi.org/10.1007/3-540-30985-3_11

Botha, A. (2011). The importance and ecology of yeasts in soil. Soil Biology and Biochemistry, 43(1), 1-8. https://doi.org/10.1016/j.soilbio.2010.10.001

Boundy-Mills, K. L. (2006). Methods for investigating yeast biodiversity. In C. A. Rosa & G. Peter (Eds.), Biodiversity and ecophysiology of yeasts (pp. 67-100). Springer.

Boundy-Mills, K. L., Glantschnig, E., Roberts, I. N., Yurkov, A., Casaregola, S., Daniel, H.-M., Groenewald, M., & Turchetti, B. (2016). Yeast culture collections in the twenty-first century: New opportunities and challenges: Yeast culture collections in the 21st century. Yeast, 33(7), 243-260. https://doi.org/10.1002/yea.3171

Boynton, P. J., Kowallik, V., Landermann, D., & Stukenbrock, E. H. (2019). Quantifying the efficiency and biases of forest Saccharomyces sampling strategies. Yeast, 36(11), 657-668. https://doi.org/10.1002/yea.3435

Boynton, P. J., Wloch-Salamon, D., Landermann, D., & Stukenbrock, E. H. (2021). Forest Saccharomyces paradoxus are robust to seasonal biotic and abiotic changes. Ecology and Evolution, 11(11), 6604-6619. https://doi.org/10.1002/ece3.7515

Brock, J. M. R., Perry, G. L. W., Lee, W. G., & Burns, B. R. (2016). Tree fern ecology in New Zealand: A model for southern temperate rainforests. Forest Ecology and Management, 375, 112-126. https://doi.org/10.1016/j.foreco.2016.05.030

Brouwers, N., Gorter de Vries, A. R., van den Broek, M., Weening, S. M., Elink Schuurman, T. D., Kuijpers, N. G. A., Pronk, J. T., & Daran, J.-M. G. (2019). In vivo recombination of Saccharomyces eubayanus maltose-transporter genes yields a chimeric transporter that enables maltotriose fermentation. PLOS Genetics, 15(4), e1007853. https://doi.org/10.1371/journal.pgen.1007853

Charron, G., Leducq, J.-B., Bertin, C., Dubé, A. K., & Landry, C. R. (2014). Exploring the northern limit of the distribution of Saccharomyces cerevisiae and Saccharomyces paradoxus in North America. FEMS Yeast Research, 14(2), 281-288. https://doi.org/10.1111/1567-1364.12100

Chowdhary, A., Randhawa, H. S., Boekhout, T., Hagen, F., Klaassen, C. H., & Meis, J. F. (2012). Temperate climate niche for Cryptococcus gattii in Northern Europe. Emerging Infectious Diseases, 18(1), 172-174. https://doi.org/10.3201/eid1801.111190

Claudino-Sales, V. (2019). Laurisilva of Madeira, Portugal. In Coastal world heritage sites (Vol. 28) (pp. 243-249). Springer. https://doi.org/10.1007/978-94-024-1528-5_36

Clavijo, A., Calderón, I. L., & Paneque, P. (2010). Diversity of Saccharomyces and non-Saccharomyces yeasts in three red grape varieties cultured in the Serranía de Ronda (Spain) vine-growing region. International Journal of Food Microbiology, 143(3), 241-245. https://doi.org/10.1016/j.ijfoodmicro.2010.08.010

Cogliati, M., D’Amicis, R., Zani, A., Montagna, M. T., Caggiano, G., de Giglio, O., Balbino, S., de Donno, A., Serio, F., Susever, S., Ergin, C., Velegraki, A., Ellabib, M. S., Nardoni, S., Macci, C., Oliveri, S., Trovato, L., Dipineto, L., Rickerts, V., … Colom, M. F. (2016). Environmental distribution of Cryptococcus neoformans and C. gattii around the Mediterranean basin. FEMS Yeast Research, 16(7), fow086. https://doi.org/10.1093/femsyr/fow086

Cordero-Bueso, G., Esteve-Zarzoso, B., Cabellos, J. M., Gil-Díaz, M., & Arroyo, T. (2013). Biotechnological potential of non-Saccharomyces yeasts isolated during spontaneous fermentations of Malvar (Vitis vinifera cv. L.). European Food Research and Technology, 236(1), 193-207. https://doi.org/10.1007/s00217-012-1874-9

Cowling, R. M., Rundel, P. W., Lamont, B. B., Kalin Arroyo, M., & Arianoutsou, M. (1996). Plant diversity in mediterranean-climate regions. Trends in Ecology & Evolution, 11(9), 362-366. https://doi.org/10.1016/0169-5347(96)10044-6

Cregg, J. M., Barringer, K. J., Hessler, A. Y., & Madden, K. R. (1985). Pichia pastoris as a host system for transformations. Molecular and Cellular Biology, 5(12), 3376-3385. https://doi.org/10.1128/mcb.5.12.3376-3385.1985

Cubillos, F. A., Gibson, B., Grijalva-Vallejos, N., Krogerus, K., & Nikulin, J. (2019). Bioprospecting for brewers: Exploiting natural diversity for naturally diverse beers. Yeast, 36(6), 383-398. https://doi.org/10.1002/yea.3380

Dashko, S., Liu, P., Volk, H., Butinar, L., Piškur, J., & Fay, J. C. (2016). Changes in the relative abundance of two saccharomyces species from oak forests to wine fermentations. Frontiers in Microbiology, 7, 215. https://doi.org/10.3389/fmicb.2016.00215

de Chiara, M., Barré, B., Persson, K., Chioma, A. O., Irizar, A., Schacherer, J., Warringer, J., & Liti, G. (2020). Domestication reprogrammed the budding yeast life cycle [Preprint]. bioRxiv. https://doi.org/10.1101/2020.02.08.939314

Diderich, J. A., Weening, S. M., van den Broek, M., Pronk, J. T., & Daran, J.-M. G. (2018). Selection of Pof-Saccharomyces eubayanus variants for the construction of S. cerevisiae × S. eubayanus hybrids with reduced 4-vinyl guaiacol formation. Frontiers in Microbiology, 9, 1640. https://doi.org/10.3389/fmicb.2018.01640

Dlauchy, D., Tornai-Lehoczki, J., Fülöp, L., & Péter, G. (2003). Pichia (Komagataella) pseudopastoris sp. nov., a new yeast species from Hungary. Antonie van Leeuwenhoek, 83(4), 327-332. https://doi.org/10.1023/A:1023318829389

Domizio, P., House, J. F., Joseph, C. M. L., Bisson, L. F., & Bamforth, C. W. (2016). Lachancea thermotolerans as an alternative yeast for the production of beer †. Journal of the Institute of Brewing, 122(4), 599-604. https://doi.org/10.1002/jib.362

Drott, M. T., Satterlee, T. R., Skerker, J. M., Pfannenstiel, B. T., Glass, N. L., Keller, N. P., & Milgroom, M. G. (2020). The frequency of sex: Population genomics reveals differences in recombination and population structure of the aflatoxin-producing fungus Aspergillus flavus. MBio, 11(4), e00963-20. https://doi.org/10.1128/mBio.00963-20

Duan, S.-F., Han, P.-J., Wang, Q.-M., Liu, W.-Q., Shi, J.-Y., Li, K., Zhang, X.-L., & Bai, F.-Y. (2018). The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. Nature Communications, 9(1), 2690. https://doi.org/10.1038/s41467-018-05106-7

Duman-Özdamar, Z. E., & Binay, B. (2021). Production of industrial enzymes via Pichia pastoris as a cell factory in bioreactor: Current status and future aspects. The Protein Journal, 40(3), 367-376. https://doi.org/10.1007/s10930-021-09968-7

Eberlein, C., Hénault, M., Fijarczyk, A., Charron, G., Bouvier, M., Kohn, L. M., Anderson, J. B., & Landry, C. R. (2019). Hybridization is a recurrent evolutionary stimulus in wild yeast speciation. Nature Communications, 10(1), 1-14. https://doi.org/10.1038/s41467-019-08809-7

Eizaguirre, J. I., Peris, D., Rodríguez, M. E., Lopes, C. A., de Los Ríos, P., Hittinger, C. T., & Libkind, D. (2018). Phylogeography of the wild lager-brewing ancestor (Saccharomyces eubayanus) in Patagonia. Environmental Microbiology, 20(10), 3732-3743. https://doi.org/10.1111/1462-2920.14375

Esteve-Zarzoso, B., Peris-Torán, M. J., Garcia-Maiquez, E., Uruburu, F., & Querol, A. (2001). Yeast population dynamics during the fermentation and biological aging of sherry wines. Applied and Environmental Microbiology, 67(5), 2056-2061. https://doi.org/10.1128/AEM.67.5.2056-2061.2001

FAO Global Forest Resources Assessment 2020. (2020). https://doi.org/10.4060/ca9825en

Fernandez, M. T., Ubeda, J. F., & Briones, A. I. (1999). Comparative study of non-Saccharomyces microflora of musts in fermentation, by physiological and molecular methods. FEMS Microbiology Letters, 173(1), 223-229. https://doi.org/10.1111/j.1574-6968.1999.tb13506.x

Fingerman, M. (2002). Recent advances in marine biotechnology ((0 ed.) ed., Vol. 6). CRC Press. https://doi.org/10.1201/9781482279832

Fiori, S., Urgeghe, P. P., Hammami, W., Razzu, S., Jaoua, S., & Migheli, Q. (2014). Biocontrol activity of four non- and low-fermenting yeast strains against Aspergillus carbonarius and their ability to remove ochratoxin A from grape juice. International Journal of Food Microbiology, 189, 45-50. https://doi.org/10.1016/j.ijfoodmicro.2014.07.020

Freese, E. B., Chu, M. I., & Freese, E. (1982). Initiation of yeast sporulation by partial carbon, nitrogen, or phosphate deprivation. Journal of Bacteriology, 149(3), 840-851. https://doi.org/10.1128/jb.149.3.840-851.1982

Friedrich, A., Jung, P., Reisser, C., Fischer, G., & Schacherer, J. (2015). Population genomics reveals chromosome-scale heterogeneous evolution in a protoploid yeast. Molecular Biology and Evolution, 32(1), 184-192. https://doi.org/10.1093/molbev/msu295

Gallone, B., Mertens, S., Gordon, J. L., Maere, S., Verstrepen, K. J., & Steensels, J. (2018). Origins, evolution, domestication and diversity of Saccharomyces beer yeasts. Current Opinion in Biotechnology, 49, 148-155. https://doi.org/10.1016/j.copbio.2017.08.005

Gallone, B., Steensels, J., Mertens, S., Dzialo, M. C., Gordon, J. L., Wauters, R., Theßeling, F. A., Bellinazzo, F., Saels, V., Herrera-Malaver, B., Prahl, T., White, C., Hutzler, M., Meußdoerffer, F., Malcorps, P., Souffriau, B., Daenen, L., Baele, G., Maere, S., & Verstrepen, K. J. (2019). Interspecific hybridization facilitates niche adaptation in beer yeast. Nature Ecology & Evolution, 3(11), 1562-1575. https://doi.org/10.1038/s41559-019-0997-9

Gallone, B., Steensels, J., Prahl, T., Soriaga, L., Saels, V., Herrera-Malaver, B., Merlevede, A., Roncoroni, M., Voordeckers, K., Miraglia, L., Teiling, C., Steffy, B., Taylor, M., Schwartz, A., Richardson, T., White, C., Baele, G., Maere, S., & Verstrepen, K. J. (2016). Domestication and divergence of Saccharomyces cerevisiae beer yeasts. Cell, 166(6), 1397-1410. https://doi.org/10.1016/j.cell.2016.08.020

Gao, J., Jiang, L., & Lian, J. (2021). Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products. Synthetic and Systems Biotechnology, 6(2), 110-119. https://doi.org/10.1016/j.synbio.2021.04.005

Gasser, B., Prielhofer, R., Marx, H., Maurer, M., Nocon, J., Steiger, M., Puxbaum, V., Sauer, M., & Mattanovich, D. (2013). Pichia pastoris: Protein production host and model organism for biomedical research. Future Microbiology, 8(2), 191-208. https://doi.org/10.2217/fmb.12.133

Gayevskiy, V., Lee, S., & Goddard, M. R. (2016). European derived Saccharomyces cerevisiae colonisation of New Zealand vineyards aided by humans. FEMS Yeast Research, 16(7), fow091. https://doi.org/10.1093/femsyr/fow091

Giaever, G., & Nislow, C. (2014). The yeast deletion collection: A decade of functional genomics. Genetics, 197(2), 451-465. https://doi.org/10.1534/genetics.114.161620

Giannakou, K., Visinoni, F., Zhang, P., Nathoo, N., Jones, P., Cotterrell, M., Vrhovsek, U., & Delneri, D. (2021). Biotechnological exploitation of Saccharomyces jurei and its hybrids in craft beer fermentation uncovers new aroma combinations. Food Microbiology, 100, 103838. https://doi.org/10.1016/j.fm.2021.103838

Gibson, B., Dahabieh, M., Krogerus, K., Jouhten, P., Magalhães, F., Pereira, R., Siewers, V., & Vidgren, V. (2020). Adaptive laboratory evolution of ale and lager yeasts for improved brewing efficiency and beer quality. Annual Review of Food Science and Technology, 11(1), 23-44. https://doi.org/10.1146/annurev-food-032519-051715

Gibson, B., Geertman, J.-M. A., Hittinger, C. T., Krogerus, K., Libkind, D., Louis, E. J., Magalhães, F., & Sampaio, J. P. (2017). New yeasts-new brews: Modern approaches to brewing yeast design and development. FEMS Yeast Research, 17(4), fox038. https://doi.org/10.1093/femsyr/fox038

Gibson, B. R., Storgårds, E., Krogerus, K., & Vidgren, V. (2013). Comparative physiology and fermentation performance of Saaz and Frohberg lager yeast strains and the parental species Saccharomyces eubayanus: Fermentaton performance of Saaz and Frohberg yeast. Yeast, 30(7), 255-266. https://doi.org/10.1002/yea.2960

Glushakova, A. M., Ivannikova, Y. V., Naumova, E. S., Chernov, I. Y., & Naumov, G. I. (2007). Massive isolation and identification of Saccharomyces paradoxus yeasts from plant phyllosphere. Microbiology, 76(2), 205-210. https://doi.org/10.1134/S0026261707020129

Glushakova, A. M., Kachalkin, A. V., & Chernov, I. Y. (2011). Specific features of the dynamics of epiphytic and soil yeast communities in the thickets of Indian balsam on mucky gley soil. Eurasian Soil Science, 44(8), 886-892. https://doi.org/10.1134/S1064229311080059

González-Arenzana, L., Garijo, P., Berlanas, C., López-Alfaro, I., López, R., Santamaría, P., & Gutiérrez, A. R. (2017). Genetic and phenotypic intraspecific variability of non-Saccharomyces yeasts populations from La Rioja winegrowing region (Spain). Journal of Applied Microbiology, 122(2), 378-388. https://doi.org/10.1111/jam.13341

Gouliamova, D., & Dimitrov, R. (2020). Kazachstania chrysolinae and Kazachstania bozae two new yeast species of the genus Kazachstania. Transfer of four Kazachstania species to Grigorovia Gen. Nov. As New Combinations. ‘Prof. Marin Drinovrsquo; Publishing House of Bulgarian Academy of Sciences. 73, 48-57. https://doi.org/10.7546/CRABS.2020.01.06

Gouliamova, D. E., Dimitrov, R. A., Smith, M. T., Groenewald, M., Stoilova-Disheva, M. M., Guéorguiev, B. V., & Boekhout, T. (2016). DNA barcoding revealed Nematodospora valgi gen. nov., sp. nov. and Candida cetoniae sp. nov. in the Lodderomyces clade. Fungal Biology, 120(2), 179-190. https://doi.org/10.1016/j.funbio.2015.05.008

Gray, J. V., Petsko, G. A., Johnston, G. C., Ringe, D., Singer, R. A., & Werner-Washburne, M. (2004). “Sleeping beauty”: Quiescence in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 68(2), 187-206. https://doi.org/10.1128/MMBR.68.2.187-206.2004

Günther, C. S., & Goddard, M. R. (2019). Do yeasts and Drosophila interact just by chance? Fungal Ecology, 38, 37-43. https://doi.org/10.1016/j.funeco.2018.04.005

Han, D.-Y., Han, P.-J., Rumbold, K., Koricha, A. D., Duan, S.-F., Song, L., Shi, J.-Y., Li, K., Wang, Q.-M., & Bai, F.-Y. (2021). Adaptive gene content and allele distribution variations in the wild and domesticated populations of Saccharomyces cerevisiae. Frontiers in Microbiology, 12, 631250. https://doi.org/10.3389/fmicb.2021.631250

Hebly, M., Brickwedde, A., Bolat, I., Driessen, M. R. M., de Hulster, E. A. F., van den Broek, M., Pronk, J. T., Geertman, J.-M., Daran, J.-M., & Daran-Lapujade, P. (2015). S. cerevisiae × S. eubayanus interspecific hybrid, the best of both worlds and beyond. FEMS Yeast Research, 15(3), fov005. https://doi.org/10.1093/femsyr/fov005

Herskowitz, I. (1988). Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiological Reviews, 52(4), 536-553. https://doi.org/10.1128/mr.52.4.536-553.1988

Hsieh, H.-H., Wang, S.-Y., Chen, T.-L., Huang, Y.-L., & Chen, M.-J. (2012). Effects of cow's and goat's milk as fermentation media on the microbial ecology of sugary kefir grains. International Journal of Food Microbiology, 157(1), 73-81. https://doi.org/10.1016/j.ijfoodmicro.2012.04.014

Hutzler, M., Michel, M., Kunz, O., Kuusisto, T., Magalhães, F., Krogerus, K., & Gibson, B. (2021). Unique brewing-relevant properties of a strain of Saccharomyces jurei isolated from ash (Fraxinus excelsior). Frontiers in Microbiology, 12, 645271. https://doi.org/10.3389/fmicb.2021.645271

Hyma, K. E., & Fay, J. C. (2013). Mixing of vineyard and oak-tree ecotypes of Saccharomyces cerevisiae in North American vineyards. Molecular Ecology, 22(11), 2917-2930. https://doi.org/10.1111/mec.12155

Jeffares, D. C., Rallis, C., Rieux, A., Speed, D., Převorovský, M., Mourier, T., Marsellach, F. X., Iqbal, Z., Lau, W., Cheng, T. M. K., Pracana, R., Mülleder, M., Lawson, J. L. D., Chessel, A., Bala, S., Hellenthal, G., O’Fallon, B., Keane, T., Simpson, J. T., … Bähler, J. (2015). The genomic and phenotypic diversity of Schizosaccharomyces pombe. Nature Genetics, 47(3), 235-241. https://doi.org/10.1038/ng.3215

Jensen, M. A., True, H. L., Chernoff, Y. O., & Lindquist, S. (2001). Molecular population genetics and evolution of a prion-like protein in Saccharomyces cerevisiae. Genetics, 159(2), 527-535. https://doi.org/10.1093/genetics/159.2.527

Johnson, L. J., Koufopanou, V., Goddard, M. R., Hetherington, R., Schäfer, S. M., & Burt, A. (2004). Population genetics of the wild yeast Saccharomyces paradoxus. Genetics, 166(1), 43-52. https://doi.org/10.1534/genetics.166.1.43

Karbalaei, M., Rezaee, S. A., & Farsiani, H. (2020). Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins. Journal of Cellular Physiology, 235(9), 5867-5881. https://doi.org/10.1002/jcp.29583

Kemler, M., Witfeld, F., Begerow, D., & Yurkov, A. (2017). Phylloplane yeasts in temperate climates. In P. Buzzini, M.-A. Lachance, & A. Yurkov (Eds.), Yeasts in natural ecosystems: Ecology (pp. 171-197). Springer International Publishing. https://doi.org/10.1007/978-3-319-62683-3_6

Kenkichi, K., & Tadashi, K. (1974). Ascosporogenous yeasts isolated from tree exudates in Japan. Journal of Fermentation Technology, 52(1), 1-9.

Kidd, S. E., Bach, P. J., Hingston, A. O., Mak, S., Chow, Y., MacDougall, L., Kronstad, J. W., & Bartlett, K. H. (2007). Cryptococcus gattii dispersal mechanisms, British Columbia Canada. Emerging Infectious Diseases, 13(1), 51-57. https://doi.org/10.3201/eid1301.060823

Kidd, S. E., Hagen, F., Tscharke, R. L., Huynh, M., Bartlett, K. H., Fyfe, M., MacDougall, L., Boekhout, T., Kwon-Chung, K. J., & Meyer, W. (2004). A rare genotype of Cryptococcus gattii caused the Cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proceedings of the National Academy of Sciences, 101(49), 17258-17263. https://doi.org/10.1073/pnas.0402981101

Kono, I., & Himeno, K. (1997). A novel killer yeast effective on Schizosaccharomyces pombe. Bioscience, Biotechnology, and Biochemistry, 61(3), 563-564. https://doi.org/10.1271/bbb.61.563

Koufopanou, V., Hughes, J., Bell, G., & Burt, A. (2006). The spatial scale of genetic differentiation in a model organism: The wild yeast Saccharomyces paradoxus. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1475), 1941-1946. https://doi.org/10.1098/rstb.2006.1922

Koufopanou, V., Lomas, S., Pronina, O., Almeida, P., Sampaio, J. P., Mousseau, T., Liti, G., & Burt, A. (2020). Population size, sex and purifying selection: comparative genomics of two sister taxa of the wild yeast Saccharomyces paradoxus. Genome Biology and Evolution, 12(9), 1636-1645. https://doi.org/10.1093/gbe/evaa141

Kowallik, V., & Greig, D. (2016). A systematic forest survey showing an association of Saccharomyces paradoxus with oak leaf litter. Environmental Microbiology Reports, 8(5), 833-841. https://doi.org/10.1111/1758-2229.12446

Kowallik, V., Miller, E., & Greig, D. (2015). The interaction of Saccharomyces paradoxus with its natural competitors on oak bark. Molecular Ecology, 24(7), 1596-1610. https://doi.org/10.1111/mec.13120

Krogerus, K., Magalhães, F., Vidgren, V., & Gibson, B. (2015). New lager yeast strains generated by interspecific hybridization. Journal of Industrial Microbiology and Biotechnology, 42(5), 769-778. https://doi.org/10.1007/s10295-015-1597-6

Kurtzman, C. P. (2005). Description of Komagataella phaffii sp. Nov. and the transfer of Pichia pseudopastoris to the methylotrophic yeast genus Komagataella. International Journal of Systematic and Evolutionary Microbiology, 55(2), 973-976. https://doi.org/10.1099/ijs.0.63491-0

Kurtzman, C. P. (2009). Biotechnological strains of Komagataella (Pichia) pastoris are Komagataella phaffii as determined from multigene sequence analysis. Journal of Industrial Microbiology & Biotechnology, 36(11), 1435-1438. https://doi.org/10.1007/s10295-009-0638-4

Kurtzman, C. P. (2011a). Komagataella Y. Yamada, Matsuda, Maeda & Mikata (1995). In The Yeasts (pp. 491-495). Elsevier. https://doi.org/10.1016/B978-0-444-52149-1.00037-9

Kurtzman, C. P. (2011b). A new methanol assimilating yeast, Ogataea parapolymorpha, the ascosporic state of Candida parapolymorpha. Antonie van Leeuwenhoek, 100(3), 455-462. https://doi.org/10.1007/s10482-011-9603-0

Kurtzman, C. P. (2012). Komagataella populi sp. Nov. and Komagataella ulmi sp. Nov., two new methanol assimilating yeasts from exudates of deciduous trees. Antonie van Leeuwenhoek, 101(4), 859-868. https://doi.org/10.1007/s10482-012-9702-6

Kurtzman, C. P., Fell, J. W., & Boekhout, T. (2011). The yeasts: A taxonomic study (Vol. 1). Science.

Lachance, M.-A., Metcalf, B. J., & Starmer, W. T. (1982). Yeasts from exudates of Quercus, Ulmus, Populus, and Pseudotsuga: New isolations and elucidation of some factors affecting ecological specificity. Microbial Ecology, 8(2), 191-198. https://doi.org/10.1007/BF02010452

Lachance, M.-A., & Starmer, W. T. (1998). Ecology and yeasts. In C. P. Kurtzman & J. W. Fell (Eds.), The yeasts: A taxonomic study (pp. 21-30). Elsevier.

Langdon, Q. K., Peris, D., Baker, E. P., Opulente, D. A., Nguyen, H.-V., Bond, U., Gonçalves, P., Sampaio, J. P., Libkind, D., & Hittinger, C. T. (2019). Fermentation innovation through complex hybridization of wild and domesticated yeasts. Nature Ecology & Evolution, 3(11), 1576-1586. https://doi.org/10.1038/s41559-019-0998-8

Langdon, Q. K., Peris, D., Eizaguirre, J. I., Opulente, D. A., Buh, K. V., Sylvester, K., Jarzyna, M., Rodríguez, M. E., Lopes, C. A., Libkind, D., & Hittinger, C. T. (2020). Postglacial migration shaped the genomic diversity and global distribution of the wild ancestor of lager-brewing hybrids. PLOS Genetics, 16(4), e1008680. https://doi.org/10.1371/journal.pgen.1008680

Leducq, J.-B., Charron, G., Samani, P., Dubé, A. K., Sylvester, K., James, B., Almeida, P., Sampaio, J. P., Hittinger, C. T., Bell, G., & Landry, C. R. (2014). Local climatic adaptation in a widespread microorganism. Proceedings of the Royal Society B: Biological Sciences, 281(1777), 20132472. https://doi.org/10.1098/rspb.2013.2472

Leducq, J.-B., Nielly-Thibault, L., Charron, G., Eberlein, C., Verta, J.-P., Samani, P., Sylvester, K., Hittinger, C. T., Bell, G., & Landry, C. R. (2016). Speciation driven by hybridization and chromosomal plasticity in a wild yeast. Nature Microbiology, 1(1), 15003. https://doi.org/10.1038/nmicrobiol.2015.3

Lee, C.-F., Yao, C.-H., Liu, Y.-R., Hsieh, C.-W., & Young, S.-S. (2009). Lachancea dasiensis sp. Nov., an ascosporogenous yeast isolated from soil and leaves in Taiwan. International Journal of Systematic and Evolutionary Microbiology, 59(7), 1818-1822. https://doi.org/10.1099/ijs.0.008789-0

Lee, T. J., Liu, Y.-C., Liu, W.-A., Lin, Y.-F., Lee, H.-H., Ke, H.-M., Huang, J.-P., Lu, M.-Y. J., Hsieh, C.-L., Chung, K.-F., Liti, G., & Tsai, I. J. (2021). Deep sampling of ancestral genetic diversity reveals Saccharomyces cerevisiae pre-domestication life histories [Preprint]. bioRxiv. https://doi.org/10.1101/2021.09.07.459046

Li, Y. F., Costello, J. C., Holloway, A. K., & Hahn, M. W. (2008). “Reverse ecology” and the power of population genomics. Evolution, 62(12), 2984-2994. https://doi.org/10.1111/j.1558-5646.2008.00486.x

Libkind, D., Hittinger, C. T., Valerio, E., Gonçalves, C., Dover, J., Johnston, M., Gonçalves, P., & Sampaio, J. P. (2011). Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proceedings of the National Academy of Sciences, 108(35), 14539-14544. https://doi.org/10.1073/pnas.1105430108

Limtong, S., Kaewwichian, R., & Groenewald, M. (2013). Ogataea kanchanaburiensis sp. Nov. and Ogataea wangdongensis sp. Nov., two novel methylotrophic yeast species from phylloplane in Thailand. Antonie van Leeuwenhoek, 103(3), 551-558. https://doi.org/10.1007/s10482-012-9837-5

Lin, K., Lin, Y., Ho, M., Chen, Y., & Chung, W. (2021). Molecular epidemiology and phylogenetic analyses of environmental and clinical isolates of Cryptococcus gattii sensu lato in Taiwan. Mycoses, 64(3), 324-335. https://doi.org/10.1111/myc.13195

Liti, G. (2015). The fascinating and secret wild life of the budding yeast S. cerevisiae. ELife, 4, e05835. https://doi.org/10.7554/eLife.05835

Liti, G., Barton, D. B., & Louis, E. J. (2006). Sequence diversity, reproductive isolation and species concepts in Saccharomyces. Genetics, 174(2), 839-850.

Liti, G., Carter, D. M., Moses, A. M., Warringer, J., Parts, L., James, S. A., Davey, R. P., Roberts, I. N., Burt, A., Koufopanou, V., Tsai, I. J., Bergman, C. M., Bensasson, D., O’Kelly, M. J. T., van Oudenaarden, A., Barton, D. B. H., Bailes, E., Nguyen, A. N., Jones, M., … Louis, E. J. (2009). Population genomics of domestic and wild yeasts. Nature, 458(7236), 337-341. https://doi.org/10.1038/nature07743

Liti, G., Peruffo, A., James, S. A., Roberts, I. N., & Louis, E. J. (2005). Inferences of evolutionary relationships from a population survey of LTR-retrotransposons and telomeric-associated sequences in the Saccharomyces sensu stricto complex. Yeast, 22(3), 177-192. https://doi.org/10.1002/yea.1200

Liu, X.-Z., Wang, Q.-M., Göker, M., Groenewald, M., Kachalkin, A. V., Lumbsch, H. T., Millanes, A. M., Wedin, M., Yurkov, A. M., Boekhout, T., & Bai, F.-Y. (2015). Towards an integrated phylogenetic classification of the Tremellomycetes. Studies in Mycology, 81, 85-147. https://doi.org/10.1016/j.simyco.2015.12.001

Lücking, R., Aime, M. C., Robbertse, B., Miller, A. N., Aoki, T., Ariyawansa, H. A., Cardinali, G., Crous, P. W., Druzhinina, I. S., Geiser, D. M., Hawksworth, D. L., Hyde, K. D., Irinyi, L., Jeewon, R., Johnston, P. R., Kirk, P. M., Malosso, E., May, T. W., Meyer, W., … Schoch, C. L. (2021). Fungal taxonomy and sequence-based nomenclature. Nature Microbiology, 6(5), 540-548. https://doi.org/10.1038/s41564-021-00888-x

Lücking, R., Aime, M. C., Robbertse, B., Miller, A. N., Ariyawansa, H. A., Aoki, T., Cardinali, G., Crous, P. W., Druzhinina, I. S., Geiser, D. M., Hawksworth, D. L., Hyde, K. D., Irinyi, L., Jeewon, R., Johnston, P. R., Kirk, P. M., Malosso, E., May, T. W., Meyer, W., … Schoch, C. L. (2020). Unambiguous identification of fungi: Where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus, 11(1), 14. https://doi.org/10.1186/s43008-020-00033-z

MacDougall, L., Kidd, S. E., Galanis, E., Mak, S., Leslie, M. J., Cieslak, P. R., Kronstad, J. W., Morshed, M. G., & Bartlett, K. H. (2007). Spread of Cryptococcus gattii in British Columbia, Canada, and detection in the Pacific Northwest, USA. Emerging Infectious Diseases, 13(1), 42-50. https://doi.org/10.3201/eid1301.060827

Magalhães, F., Calton, A., Heiniö, R.-L., & Gibson, B. (2021). Frozen-dough baking potential of psychrotolerant Saccharomyces species and derived hybrids. Food Microbiology, 94, 103640. https://doi.org/10.1016/j.fm.2020.103640

Magalhães, F., Krogerus, K., Castillo, S., Ortiz-Julien, A., Dequin, S., & Gibson, B. (2017). Exploring the potential of Saccharomyces eubayanus as a parent for new interspecies hybrid strains in winemaking. FEMS Yeast Research, 17(5), fox049. https://doi.org/10.1093/femsyr/fox049

Magalhães, F., Krogerus, K., Vidgren, V., Sandell, M., & Gibson, B. (2017). Improved cider fermentation performance and quality with newly generated Saccharomyces cerevisiae × Saccharomyces eubayanus hybrids. Journal of Industrial Microbiology and Biotechnology, 44(8), 1203-1213. https://doi.org/10.1007/s10295-017-1947-7

Magalhães, K. T., de Melo Pereira, G. V., Campos, C. R., Dragone, G., & Schwan, R. F. (2011). Brazilian kefir: Structure, microbial communities and chemical composition. Brazilian Journal of Microbiology, 42(2), 693-702. https://doi.org/10.1590/S1517-838220110002000034

Magwene, P. M., Kayıkçı, Ö., Granek, J. A., Reininga, J. M., Scholl, Z., & Murray, D. (2011). Outcrossing, mitotic recombination, and life-history trade-offs shape genome evolution in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 108(5), 1987-1992. https://doi.org/10.1073/pnas.1012544108

Mardones, W., Villarroel, C. A., Abarca, V., Urbina, K., Peña, T. A., Molinet, J., Nespolo, R. F., & Cubillos, F. A. (2021). Rapid selection response to ethanol in Saccharomyces eubayanus emulates the domestication process under brewing conditions. Microbial Biotechnology, 1751-7915, 13803. https://doi.org/10.1111/1751-7915.13803

Mardones, W., Villarroel, C. A., Krogerus, K., Tapia, S. M., Urbina, K., Oporto, C. I., O’Donnell, S., Minebois, R., Nespolo, R., Fischer, G., Querol, A., Gibson, B., & Cubillos, F. A. (2020). Molecular profiling of beer wort fermentation diversity across natural Saccharomyces eubayanus isolates. Microbial Biotechnology, 13(4), 1012-1025. https://doi.org/10.1111/1751-7915.13545

Marsh, A. J., O’Sullivan, O., Hill, C., Ross, R. P., & Cotter, P. D. (2014). Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology, 38, 171-178. https://doi.org/10.1016/j.fm.2013.09.003

Martinović, T., Odriozola, I., Mašínová, T., Doreen Bahnmann, B., Kohout, P., Sedlák, P., Merunková, K., Větrovský, T., Tomšovský, M., Ovaskainen, O., & Baldrian, P. (2021). Temporal turnover of the soil microbiome composition is guild-specific. Ecology Letters, 24(12), 2726-2738. https://doi.org/10.1111/ele.13896

Mašínová, T., Yurkov, A., & Baldrian, P. (2018). Forest soil yeasts: Decomposition potential and the utilization of carbon sources. Fungal Ecology, 34, 10-19. https://doi.org/10.1016/j.funeco.2018.03.005

Medina, A., Mohale, S., Samsudin, N. I. P., Rodriguez-Sixtos, A., Rodriguez, A., & Magan, N. (2017). Biocontrol of mycotoxins: Dynamics and mechanisms of action. Current Opinion in Food Science, 17, 41-48. https://doi.org/10.1016/j.cofs.2017.09.008

Mertens, S., Steensels, J., Saels, V., De Rouck, G., Aerts, G., & Verstrepen, K. J. (2015). A large set of newly created interspecific Saccharomyces hybrids increases aromatic diversity in lager beers. Applied and Environmental Microbiology, 81(23), 8202-8214. https://doi.org/10.1128/AEM.02464-15

Mesquita, V. A., Magalhães, K. T., Batista, C. F. S., Schwan, R. S., et al. (2013). The molecular phylogenetic diversity of bacteria and fungi associated with the cerrado soil from different regions of Minas Gerais. Brazilian International Journal of Microbiology Research, 4, 119-131.

Meyen, F. J. F. (1839). A report on the progress of vegetable physiology during the Year 1837. Taylor, London

Miller, M. W., Phaff, H. J., & Snyder, H. E. (1962). On the occurrence of various species of yeast in nature. Mycopathologia et Mycologia Applicata, 16(1), 1-18. https://doi.org/10.1007/BF02136176

Mittelbach, M., Yurkov, A. M., Nocentini, D., Nepi, M., Weigend, M., & Begerow, D. (2015). Nectar sugars and bird visitation define a floral niche for basidiomycetous yeast on the Canary Islands. BMC Ecology, 15(1), 2. https://doi.org/10.1186/s12898-015-0036-x

Mozzachiodi, S., Tattini, L., Llored, A., Irizar, A., Škofljanc, N., D'Angiolo, M., de Chiara, M., Barré, B. P., Yue, J.-X., Lutazi, A., Loeillet, S., Laureau, R., Marsit, S., Stenberg, S., Albaud, B., Persson, K., Legras, J.-L., Dequin, S., Warringer, J., … Liti, G. (2021). Aborting meiosis allows recombination in sterile diploid yeast hybrids. Nature Communications, 12(1), 6564. https://doi.org/10.1038/s41467-021-26883-8

Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858. https://doi.org/10.1038/35002501

Myster, R. W. (2012). Ecotones between forest and grassland. Springer. https://doi.org/10.1007/978-1-4614-3797-0

Naseeb, S., Alsammar, H., Burgis, T., Donaldson, I., Knyazev, N., Knight, C., & Delneri, D. (2018). Whole genome sequencing, de novo assembly and phenotypic profiling for the new budding yeast species Saccharomyces jurei. G3 Genes|Genomes|Genetics, 8(9), 2967-2977. https://doi.org/10.1534/g3.118.200476

Naseeb, S., James, S. A., Alsammar, H., Michaels, C. J., Gini, B., Nueno-Palop, C., Bond, C. J., McGhie, H., Roberts, I. N., & Delneri, D. (2017). Saccharomyces jurei sp. Nov., isolation and genetic identification of a novel yeast species from Quercus robur. International Journal of Systematic and Evolutionary Microbiology, 67(6), 2046-2052. https://doi.org/10.1099/ijsem.0.002013

Naseeb, S., Visinoni, F., Hu, Y., Hinks Roberts, A. J., Maslowska, A., Walsh, T., Smart, K. A., Louis, E. J., & Delneri, D. (2021). Restoring fertility in yeast hybrids: Breeding and quantitative genetics of beneficial traits. Proceedings of the National Academy of Sciences, 118(38), e2101242118. https://doi.org/10.1073/pnas.2101242118

Naumov, G. (1996). Genetic identification of biological species in the Saccharomyces sensu stricto complex. Journal of Industrial Microbiology & Biotechnology, 17(3-4), 295-302. https://doi.org/10.1007/BF01574704

Naumov, G. I. (2015). The yeast Komagataella: A genetic genus in accordance with interspecies hybridization. Microbiology, 84(4), 538-543. https://doi.org/10.1134/S0026261715040141

Naumov, G. I., James, S. A., Naumova, E. S., Louis, E. J., & Roberts, I. N. (2000). Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae. International Journal of Systematic and Evolutionary Microbiology, 50(5), 1931-1942. https://doi.org/10.1099/00207713-50-5-1931

Naumov, G. I., Kondratieva, V. I., Meshcheryakova, E. V., & Naumova, E. S. (2016). Taxonomic genetics of methylotrophic yeast genus Komagataella: New biological species K. kurtzmanii. Russian Journal of Genetics, 52(4), 378-382. https://doi.org/10.1134/S1022795416030108

Naumov, G. I., Lee, C.-F., & Naumova, E. S. (2013). Molecular genetic diversity of the Saccharomyces yeasts in Taiwan: Saccharomyces arboricola, Saccharomyces cerevisiae and Saccharomyces kudriavzevii. Antonie van Leeuwenhoek, 103(1), 217-228. https://doi.org/10.1007/s10482-012-9803-2

Naumov, G. I., Naumova, E. S., & Boundy-Mills, K. L. (2018). Description of Komagataella mondaviorum sp. nov.: A new sibling species of Komagataella (Pichia) pastoris. Antonie van Leeuwenhoek, 111(7), 1197-1207. https://doi.org/10.1007/s10482-018-1028-6

Naumov, G. I., Naumova, E. S., & Sniegowski, P. D. (1998). Saccharomyces paradoxus and Saccharomyces cerevisiae are associated with exudates of North American oaks. Canadian Journal of Microbiology, 44(11), 1045-1050. https://doi.org/10.1139/w98-104

Naumova, E. S., Boundy-Mills, K. L., & Naumov, G. I. (2020). Phylogenetics and biogeography of biotechnologically important methylotrophic yeasts Komagataella. Microbiology, 89(3), 294-300. https://doi.org/10.1134/S002626172003011X

Naumova, E. S., Serpova, E. V., Korshunova, I. V., & Naumov, G. I. (2007). Molecular genetic characterization of the yeast Lachancea kluyveri. Microbiology, 76(3), 317-323. https://doi.org/10.1134/S0026261707030083

Nespolo, R. F., Villarroel, C. A., Oporto, C. I., Tapia, S. M., Vega-Macaya, F., Urbina, K., de Chiara, M., Mozzachiodi, S., Mikhalev, E., Thompson, D., Larrondo, L. F., Saenz-Agudelo, P., Liti, G., & Cubillos, F. A. (2020). An out-of-patagonia migration explains the worldwide diversity and distribution of Saccharomyces eubayanus lineages. PLOS Genetics, 16(5), e1008777. https://doi.org/10.1371/journal.pgen.1008777

Nieuwenhuis, B. P. S., & James, T. Y. (2016). The frequency of sex in fungi. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1706), 20150540. https://doi.org/10.1098/rstb.2015.0540

Nikulin, J., Krogerus, K., & Gibson, B. (2018). Alternative Saccharomyces interspecies hybrid combinations and their potential for low-temperature wort fermentation: Alternative Saccharomyces interspecies hybrids for brewing. Yeast, 35(1), 113-127. https://doi.org/10.1002/yea.3246

Nikulin, J., Vidgren, V., Krogerus, K., Magalhães, F., Valkeemäki, S., Kangas-Heiska, T., & Gibson, B. (2020). Brewing potential of the wild yeast species Saccharomyces paradoxus. European Food Research and Technology, 246(11), 2283-2297. https://doi.org/10.1007/s00217-020-03572-2

Nizovoy, P., Bellora, N., Haridas, S., Sun, H., Daum, C., Barry, K., Grigoriev, I. V., Libkind, D., Connell, L. B., & Moliné, M. (2021). Unique genomic traits for cold adaptation in Naganishia vishniacii: A polyextremophile yeast isolated from Antarctica. FEMS Yeast Research, 21(1), foaa056. https://doi.org/10.1093/femsyr/foaa056

Noh, J., Echeverría, C., Pauchard, A., & Cuenca, P. (2019). Extinction debt in a biodiversity hotspot: The case of the Chilean Winter Rainfall-Valdivian Forests. Landscape and Ecological Engineering, 15(1), 1-12. https://doi.org/10.1007/s11355-018-0352-3

O'Brien, C. E., Oliveira-Pacheco, J., Cinnéide, E. Ó., Haase, M. A. B., Hittinger, C. T., Rogers, T. R., Zaragoza, O., Bond, U., & Butler, G. (2021). Population genomics of the pathogenic yeast Candida tropicalis identifies hybrid isolates in environmental samples. PLOS Pathogens, 17(3), e1009138. https://doi.org/10.1371/journal.ppat.1009138

Olson, D. M., & Dinerstein, E. (2002). The Global 200: Priority ecoregions for global conservation. Annals of the Missouri Botanical Garden, 89(2), 199. https://doi.org/10.2307/3298564

Ono, J., Greig, D., & Boynton, P. J. (2020). Defining and disrupting species boundaries in Saccharomyces. Annual Review of Microbiology, 74(1), 477-495. https://doi.org/10.1146/annurev-micro-021320-014036

Opulente, D. A., Rollinson, E. J., Bernick-Roehr, C., Hulfachor, A. B., Rokas, A., Kurtzman, C. P., & Hittinger, C. T. (2018). Factors driving metabolic diversity in the budding yeast subphylum. BMC Biology, 16(1), 26. https://doi.org/10.1186/s12915-018-0498-3

Paget, C. M., Schwartz, J., & Delneri, D. (2014). Environmental systems biology of cold-tolerant phenotype in Saccharomyces species adapted to grow at different temperatures. Molecular Ecology, 23(21), 5241-5257. https://doi.org/10.1111/mec.12930

Passer, A. R., Coelho, M. A., Billmyre, R. B., Nowrousian, M., Mittelbach, M., Yurkov, A. M., Averette, A. F., Cuomo, C. A., Sun, S., & Heitman, J. (2019). Genetic and genomic analyses reveal boundaries between species closely related to Cryptococcus pathogens, MBio, 10(3), 00764-19. https://doi.org/10.1128/mBio.00764-19

Pasteur, L. (1876). Études sur la Bière, ses Maladies, Causes qui les Provoquent, Procédé pour la Rendre Inaltérable, avec une Théorie Nouvelle de la Fermentation. Gauthier-Villars.

Pereira, L. F., Costa, C. R. L., Brasileiro, B. T. R. V., & de Morais, M. A. (2011). Lachancea mirantina sp. nov., an ascomycetous yeast isolated from the cachaça fermentation process. International Journal of Systematic and Evolutionary Microbiology, 61(4), 989-992. https://doi.org/10.1099/ijs.0.020008-0

Pérez-Torrado, R., Barrio, E., & Querol, A. (2018). Alternative yeasts for winemaking: Saccharomyces non- cerevisiae and its hybrids. Critical Reviews in Food Science and Nutrition, 58(11), 1780-1790. https://doi.org/10.1080/10408398.2017.1285751

Peris, D., Alexander, W. G., Fisher, K. J., Moriarty, R. V., Basuino, M. G., Ubbelohde, E. J., Wrobel, R. L., & Hittinger, C. T. (2020). Synthetic hybrids of six yeast species. Nature Communications, 11(1), 2085. https://doi.org/10.1038/s41467-020-15559-4

Peris, D., Langdon, Q. K., Moriarty, R. V., Sylvester, K., Bontrager, M., Charron, G., Leducq, J.-B., Landry, C. R., Libkind, D., & Hittinger, C. T. (2016). Complex ancestries of lager-brewing hybrids were shaped by standing variation in the wild yeast Saccharomyces eubayanus. PLOS Genetics, 12(7), e1006155. https://doi.org/10.1371/journal.pgen.1006155

Peris, D., Sylvester, K., Libkind, D., Gonçalves, P., Sampaio, J. P., Alexander, W. G., & Hittinger, C. T. (2014). Population structure and reticulate evolution of Saccharomyces eubayanus and its lager-brewing hybrids. Molecular Ecology, 23(8), 2031-2045. https://doi.org/10.1111/mec.12702

Péter, G., Nagy, E. S., & Dlauchy, D. (2019). Systematics, diversity and ecology of the genus Yarrowia and the methanol-assimilating yeasts. In A. Sibirny (Ed.), Non-conventional yeasts: From basic research to application (pp. 297-339). Springer International Publishing. https://doi.org/10.1007/978-3-030-21110-3_9

Péter, G., Takashima, M., & Čadež, N. (2017). Yeast habitats: Different but global. In P. Buzzini, M.-A. Lachance, & A. Yurkov (Eds.), Yeasts in natural ecosystems: Ecology (pp. 39-71). Springer International Publishing. https://doi.org/10.1007/978-3-319-61575-2_2

Peter, J., de Chiara, M., Friedrich, A., Yue, J.-X., Pflieger, D., Bergström, A., Sigwalt, A., Barre, B., Freel, K., Llored, A., Cruaud, C., Labadie, K., Aury, J.-M., Istace, B., Lebrigand, K., Barbry, P., Engelen, S., Lemainque, A., Wincker, P., … Schacherer, J. (2018). Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature, 556(7701), 339-344. https://doi.org/10.1038/s41586-018-0030-5

Phaff, H. J., Miller, M. W., & Shifrine, M. (1956). The taxonomy of yeasts isolated from Drosophila in the Yosemite Region of California. Antonie van Leeuwenhoek, 22(1), 145-161. https://doi.org/10.1007/BF02538322

Phaff, H. J., et al. (1972). A comparative study of the yeast florae associated with treeson the Japanese islands and on the west coast of North America. In G. Terui (Ed.), Fermentation technology today (pp. 759-774). Society of Fermentation Technology.

Põlme, S., Abarenkov, K., Henrik Nilsson, R., Lindahl, B. D., Clemmensen, K. E., Kauserud, H., Nguyen, N., Kjøller, R., Bates, S. T., Baldrian, P., Frøslev, T. G., Adojaan, K., Vizzini, A., Suija, A., Pfister, D., Baral, H.-O., Järv, H., Madrid, H., Nordén, J., … Tedersoo, L. (2020). Fungal traits: A user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity, 105(1), 1-16. https://doi.org/10.1007/s13225-020-00466-2

Porter, T. J., Divol, B., & Setati, M. E. (2019). Lachancea yeast species: Origin, biochemical characteristics and oenological significance. Food Research International, 119, 378-389. https://doi.org/10.1016/j.foodres.2019.02.003

Pulvirenti, A., Nguyen, H. V., Caggia, C., Giudici, P., Rainieri, S., & Zambonelli, C. (2000). Saccharomyces uvarum, a proper species within Saccharomyces sensu stricto. FEMS Microbiology Letters, 192(2), 191-196.

Rai, S. K., Atwood-Moore, A., & Levin, H. L. (2018). Duplication and transformation of the Schizosaccharomyces pombe collection of deletion strains. In T. L. Singleton (Ed.), Schizosaccharomyces pombe (Vol. 1721) (pp. 197-215). New York: Springer. https://doi.org/10.1007/978-1-4939-7546-4_18

Reuter, M., Bell, G., & Greig, D. (2007). Increased outbreeding in yeast in response to dispersal by an insect vector. Current Biology, 17(3), R81-R83. https://doi.org/10.1016/j.cub.2006.11.059

Robinson, H. A., Pinharanda, A., & Bensasson, D. (2016). Summer temperature can predict the distribution of wild yeast populations. Ecology and Evolution, 6(4), 1236-1250. https://doi.org/10.1002/ece3.1919

Rodríguez, M. E., Pérez-Través, L., Sangorrín, M. P., Barrio, E., & Lopes, C. A. (2014). Saccharomyces eubayanus and Saccharomyces uvarum associated with the fermentation of Araucaria araucana seeds in Patagonia. FEMS Yeast Research, 14(6), 948-965. https://doi.org/10.1111/1567-1364.12183

Romano, P., & Suzzi, G. (1993a). Potential use for Zygosaccharomyces species in winemaking. Journal of Wine Research, 4(2), 87-94. https://doi.org/10.1080/09571269308717955

Romano, P., & Suzzi, G. (1993b). Higher alcohol and acetoin production by Zygosaccharomyces wine yeasts. Journal of Applied Bacteriology, 75, 541-545. https://doi.org/10.1111/j.1365-2672.1993.tb01592.x

Romero-Olivares, A. L., Morrison, E. W., Pringle, A., & Frey, S. D. (2021). Correction to: Linking genes to traits in fungi. Microbial Ecology, 82(1), 156. https://doi.org/10.1007/s00248-021-01776-x

Ropars, J., Maufrais, C., Diogo, D., Marcet-Houben, M., Perin, A., Sertour, N., Mosca, K., Permal, E., Laval, G., Bouchier, C., Ma, L., Schwartz, K., Voelz, K., May, R. C., Poulain, J., Battail, C., Wincker, P., Borman, A. M., Chowdhary, A., … d’Enfert, C. (2018). Gene flow contributes to diversification of the major fungal pathogen Candida albicans. Nature Communications, 9(1), 2253. https://doi.org/10.1038/s41467-018-04787-4

Ruderfer, D. M., Pratt, S. C., Seidel, H. S., & Kruglyak, L. (2006). Population genomic analysis of outcrossing and recombination in yeast. Nature Genetics, 38(9), 1077-1081. https://doi.org/10.1038/ng1859

Salvadó, Z., Arroyo-López, F. N., Guillamón, J. M., Salazar, G., Querol, A., & Barrio, E. (2011). Temperature adaptation markedly determines evolution within the genus Saccharomyces. Applied and Environmental Microbiology, 77(7), 2292-2302. https://doi.org/10.1128/AEM.01861-10

Sampaio, J. P., & Gonçalves, P. (2008). Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus. Applied and Environmental Microbiology, 74(7), 2144-2152. https://doi.org/10.1128/AEM.02396-07

Sampaio, J. P., & Gonçalves, P. (2017). Biogeography and ecology of the genus Saccharomyces. In P. Buzzini, M.-A. Lachance, & A. Yurkov (Eds.), Yeasts in natural ecosystems: Ecology (pp. 131-153). Springer International Publishing. https://doi.org/10.1007/978-3-319-61575-2_5

Santos, A. R. O., Faria, E. S., Lachance, M.-A., & Rosa, C. A. (2015). Ogataea mangiferae sp. nov., a methylotrophic yeast isolated from mango leaves. International Journal of Systematic and Evolutionary Microbiology, 65(Pt_6), 1855-1859. https://doi.org/10.1099/ijs.0.000194

Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., Fungal Barcoding Consortium, Bolchacova, E., Voigt, K., Crous, P. W., Miller, A. N., Wingfield, M. J., Aime, M. C., An, K.-D., Bai, F.-Y., Barreto, R. W., Begerow, D., … Schindel, D. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109(16), 6241-6246. https://doi.org/10.1073/pnas.1117018109

Senses-Ergul, S., Ágoston, R., Belák, Á., & Deák, T. (2006). Characterization of some yeasts isolated from foods by traditional and molecular tests. International Journal of Food Microbiology, 108(1), 120-124. https://doi.org/10.1016/j.ijfoodmicro.2005.10.014

Shen, X.-X., Opulente, D. A., Kominek, J., Zhou, X., Steenwyk, J. L., Buh, K. V., Haase, M. A. B., Wisecaver, J. H., Wang, M., Doering, D. T., Boudouris, J. T., Schneider, R. M., Langdon, Q. K., Ohkuma, M., Endoh, R., Takashima, M., Manabe, R., Čadež, N., Libkind, D., … Rokas, A. (2018). Tempo and mode of genome evolution in the budding yeast subphylum. Cell, 175(6), 1533-1545. https://doi.org/10.1016/j.cell.2018.10.023

Sniegowski, P. D., Dombrowski, P. G., & Fingerman, E. (2002). Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics. FEMS Yeast Research, 1(4), 299-306. https://doi.org/10.1111/j.1567-1364.2002.tb00048.x

Spencer, D. M., Spencer, J. F. T., de Figueroa, L. I., Garro, O., & Fengler, E. (1996). Yeasts associated with pods and exudates ofalgarrobo trees (Prosopis spp.) and species of columnarcacti in northwest Argentina. Applied Microbiology and Biotechnology, 44, 736-739.

Spencer, D. M., Spencer, J. F. T., Fengler, E., & de Figueroa, L. I. (1995). Yeasts associated with algarrobo trees (Prosopis spp.) in northwest Argentina: A preliminary report. Journal of Industrial Microbiology, 14, 472-474.

Spurley, W. J., Fisher, K. J., Langdon, Q. K., Buh, K. V., Jarzyna, M., Haase, M. A. B., Sylvester, K., Moriarty, R. V., Rodriguez, D., Sheddan, A., Wright, S., Sorlie, L., Hulfachor, A. B., Opulente, D. A., & Hittinger, C. T. (2021). Substrate, temperature, and geographical patterns among nearly 2000 natural yeast isolates. Yeast, yea.3679. https://doi.org/10.1002/yea.3679

Starmer, W. T., & Lachance, M. A. (2011). Yeast ecology. In C. P. Kurtzman, J. W. Fell, & T. Boekhout (Eds.), The yeasts, a taxonomic study (pp. 65-83). Elsevier.

Stefanini, I. (2018). Yeast-insect associations: It takes guts. Yeast (Chichester, England), 35(4), 315-330. https://doi.org/10.1002/yea.3309

Stefanini, I., Dapporto, L., Berná, L., Polsinelli, M., Turillazzi, S., & Cavalieri, D. (2016). Social wasps are a Saccharomyces mating nest. Proceedings of the National Academy of Sciences, 113(8), 2247-2251. https://doi.org/10.1073/pnas.1516453113

Strauss, M. L. A., Jolly, N. P., Lambrechts, M. G., & van Rensburg, P. (2001). Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeasts. Journal of Applied Microbiology, 91(1), 182-190. https://doi.org/10.1046/j.1365-2672.2001.01379.x

Sweeney, J., Kuehne, H., & Sniegowski, P. (2004). Sympatric natural and populations have different thermal growth profiles. FEMS Yeast Research, 4(4-5), 521-525. https://doi.org/10.1016/S1567-1356(03)00171-5

Sylvester, K., Wang, Q.-M., James, B., Mendez, R., Hulfachor, A. B., & Hittinger, C. T. (2015). Temperature and host preferences drive the diversification of Saccharomyces and other yeasts: A survey and the discovery of eight new yeast species. FEMS Yeast Research, 15(3), fov002. https://doi.org/10.1093/femsyr/fov002

Tedersoo, L., May, T. W., & Smith, M. E. (2010). Ectomycorrhizal lifestyle in fungi: Global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza, 20(4), 217-263. https://doi.org/10.1007/s00572-009-0274-x

Tilakaratna, V., & Bensasson, D. (2017). Habitat predicts levels of genetic admixture in Saccharomyces cerevisiae. G3 Genes|Genomes|Genetics, 7(9), 2919-2929. https://doi.org/10.1534/g3.117.041806

Tláskal, V., Brabcová, V., Větrovský, T., López-Mondéjar, R., Monteiro, L. M. O., Saraiva, J. P., da Rocha, U. N., & Baldrian, P. (2021). Metagenomes, metatranscriptomes and microbiomes of naturally decomposing deadwood. Scientific Data, 8, 1-7. https://doi.org/10.1038/s41597-021-00987-8

Treseder, K. K., & Lennon, J. T. (2015). Fungal traits that drive ecosystem dynamics on land. Microbiology and Molecular Biology Reviews, 79(2), 243-262. https://doi.org/10.1128/MMBR.00001-15

Tsai, I. J., Bensasson, D., Burt, A., & Koufopanou, V. (2008). Population genomics of the wild yeast Saccharomyces paradoxus: Quantifying the life cycle. Proceedings of the National Academy of Sciences, 105(12), 4957-4962. https://doi.org/10.1073/pnas.0707314105

Tschopp, J. F., Brust, P. F., Cregg, J. M., Stillman, C. A., & Gingeras, T. R. (1987). Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic Acids Research, 15(9), 3859-3876. https://doi.org/10.1093/nar/15.9.3859

Tzanetakis, N., Hatzikamari, M., and Litopoulou-Tzanetak, E. (1998). Yeasts of the surface microflora of Feta cheese.

Varela, C., Sundstrom, J., Cuijvers, K., Jiranek, V., & Borneman, A. (2020). Discovering the indigenous microbial communities associated with the natural fermentation of sap from the cider gum Eucalyptus gunnii. Scientific Reports, 10(1), 14716. https://doi.org/10.1038/s41598-020-71663-x

Větrovský, T., Kohout, P., Kopecký, M., Machac, A., Man, M., Bahnmann, B. D., Brabcová, V., Choi, J., Meszárošová, L., Human, Z. R., Lepinay, C., Lladó, S., López-Mondéjar, R., Martinović, T., Mašínová, T., Morais, D., Navrátilová, D., Odriozola, I., Štursová, M., … Baldrian, P. (2019). A meta-analysis of global fungal distribution reveals climate-driven patterns. Nature Communications, 10(1), 5142. https://doi.org/10.1038/s41467-019-13164-8

Větrovský, T., Kolařík, M., Žifčáková, L., Zelenka, T., & Baldrian, P. (2016). The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Molecular Ecology Resources, 16, 388-401. https://doi.org/10.1111/1755-0998.12456

Větrovský, T., Morais, D., Kohout, P., Lepinay, C., Algora, C., Awokunle Hollá, S., Bahnmann, B. D., Bílohnědá, K., Brabcová, V., D’Alò, F., Human, Z. R., Jomura, M., Kolařík, M., Kvasničková, J., Lladó, S., López-Mondéjar, R., Martinović, T., Mašínová, T., Meszárošová, L., … Baldrian, P. (2020). GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Scientific Data, 7(1), 1-14. https://doi.org/10.1038/s41597-020-0567-7

Villarreal, P., Quintrel, P. A., Olivares-Muñoz, S., Ruiz, J. J., Nespolo, R. F., & Cubillos, F. A. (2021). Identification of new ethanol-tolerant yeast strains with fermentation potential from central Patagonia. Yeast. https://doi.org/10.1002/yea.3662

Vishniac, H. S. (1995). Simulated in situ competitive ability and survival of a representative soil yeast, Cryptococcus albidus. Microbial Ecology, 30(3). 309-320. https://doi.org/10.1007/BF00171937

Vishniac, H. S. (2006). A multivariate analysis of soil yeasts isolated from a latitudinal gradient. Microbial Ecology, 52(1), 90-103. https://doi.org/10.1007/s00248-006-9066-4

Vuillemin, P. (1901). Les blastomycètes pathogènes. Rev Gen Sci Pures Appl, 12, 732-751.

Wang, Q.-M., Liu, W.-Q., Liti, G., Wang, S.-A., & Bai, F.-Y. (2012). Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity. Molecular Ecology, 21(22), 5404-5417. https://doi.org/10.1111/j.1365-294X.2012.05732.x

Wang, S.-A., & Bai, F.-Y. (2008). Saccharomyces arboricolus sp. nov., a yeast species from tree bark. International Journal of Systematic and Evolutionary Microbiology, 58(2), 510-514. https://doi.org/10.1099/ijs.0.65331-0

Wegner, E. H. 1983 Biochemical conversions by yeast fermentation at high cell densities. 329-414. United States Pat. 4414329.

White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: a guide to methods and applications (pp. 315-322). Academic Press, Inc.

Wojtatowicz, M., Chrzanowska, J., Juszczyk, P., Skiba, A., & Gdula, A. (2001). Identification and biochemical characteristics of yeast microflora of Rokpol cheese. International Journal of Food Microbiology, 69(1-2), 135-140. https://doi.org/10.1016/S0168-1605(01)00582-7

Wu, L., Sun, Q., Sugawara, H., Yang, S., Zhou, Y., McCluskey, K., Vasilenko, A., Suzuki, K.-I., Ohkuma, M., Lee, Y., Robert, V., Ingsriswang, S., Guissart, F., Philippe, D., & Ma, J. (2013). Global catalogue of microorganisms (gcm): A comprehensive database and information retrieval, analysis, and visualization system for microbial resources. BMC Genomics, 14(1), 933. https://doi.org/10.1186/1471-2164-14-933

Xia, W., Nielly-Thibault, L., Charron, G., Landry, C. R., Kasimer, D., Anderson, J. B., & Kohn, L. M. (2017). Population genomics reveals structure at the individual, host-tree scale and persistence of genotypic variants of the undomesticated yeast Saccharomyces paradoxus in a natural woodland. Molecular Ecology, 26(4), 995-1007. https://doi.org/10.1111/mec.13954

Yurkov, A. (2017). Yeasts in forest soils. In P. Buzzini, M.-A. Lachance, & A. Yurkov (Eds.), Yeasts in natural ecosystems: Diversity (pp. 87-116). Springer International Publishing. https://doi.org/10.1007/978-3-319-62683-3_3

Yurkov, A., Inácio, J., Chernov, I. Y., & Fonseca, Á. (2015). Yeast biogeography and the effects of species recognition approaches: The case study of widespread Basidiomycetous species from birch forests in Russia. Current Microbiology, 70(4), 587-601. https://doi.org/10.1007/s00284-014-0755-9

Yurkov, A., Krüger, D., Begerow, D., Arnold, N., & Tarkka, M. T. (2012). Basidiomycetous yeasts from boletales fruiting bodies and their interactions with the mycoparasite Sepedonium chrysospermum and the host fungus Paxillus. Microbial Ecology, 63(2), 295-303. https://doi.org/10.1007/s00248-011-9923-7

Yurkov, A., & Pozo, M. I. (2017). Yeast community composition and structure. In P. Buzzini, M.-A. Lachance, & A. Yurkov (Eds.), Yeasts in natural ecosystems: Ecology (pp. 70-100). Springer International Publishing.

Yurkov, A., Wehde, T., Kahl, T., & Begerow, D. (2012). Aboveground deadwood deposition supports development of soil yeasts. Diversity, 4(4), 453-474. https://doi.org/10.3390/d4040453

Yurkov, A. M. (2018). Yeasts of the soil-Obscure but precious. Yeast, 35(5), 369-378. https://doi.org/10.1002/yea.3310

Yurkov, A. M., Kemler, M., & Begerow, D. (2011). Species accumulation curves and incidence-based species richness estimators to appraise the diversity of cultivable yeasts from beech forest soils. PLoS ONE, 6(8), e23671. https://doi.org/10.1371/journal.pone.0023671

Yurkov, A. M., Kemler, M., & Begerow, D. (2012). Assessment of yeast diversity in soils under different management regimes. Fungal Ecology, 5(1), 24-35. https://doi.org/10.1016/j.funeco.2011.07.004

Yurkov, A. M., Röhl, O., Pontes, A., Carvalho, C., Maldonado, C., & Sampaio, J. P. (2016). Local climatic conditions constrain soil yeast diversity patterns in Mediterranean forests, woodlands and scrub biome. FEMS Yeast Research, 16(1). fov103. https://doi.org/10.1093/femsyr/fov103

Yurkov, A. M., Wehde, T., Federici, J., Schäfer, A. M., Ebinghaus, M., Lotze-Engelhard, S., Mittelbach, M., Prior, R., Richter, C., Röhl, O., & Begerow, D. (2016). Yeast diversity and species recovery rates from beech forest soils. Mycological Progress, 15(8), 845-859. https://doi.org/10.1007/s11557-016-1206-8

Zhang, H., Skelton, A., Gardner, R. C., & Goddard, M. R. (2010). Saccharomyces paradoxus and Saccharomyces cerevisiae reside on oak trees in New Zealand: Evidence for migration from Europe and interspecies hybrids: New Zealand Saccharomyces ecology. FEMS Yeast Research, 10(7), 941-947. https://doi.org/10.1111/j.1567-1364.2010.00681.x

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...