Monitoring the effect of oxytocin on the neural sensitivity to emotional faces via frequency-tagging EEG: A double-blind, cross-over study

. 2022 Jul ; 59 (7) : e14026. [epub] 20220212

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, randomizované kontrolované studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35150446

The neuropeptide oxytocin (OXT) is suggested to exert an important role in human social behaviors by modulating the salience of social cues. To date, however, there is mixed evidence whether a single dose of OXT can improve the behavioral and neural sensitivity for emotional face processing. To overcome difficulties encountered with classic event-related potential studies assessing stimulus-saliency, we applied frequency-tagging EEG to implicitly assess the effect of a single dose of OXT (24 IU) on the neural sensitivity for positive and negative facial emotions. Neutral faces with different identities were presented at 6 Hz, periodically interleaved with an expressive face (angry, fearful, and happy, in separate sequences) every fifth image (i.e., 1.2 Hz oddball frequency). These distinctive frequency tags for neutral and expressive stimuli allowed direct and objective quantification of the neural expression-categorization responses. The study involved a double-blind, placebo-controlled, cross-over trial with 31 healthy adult men. Contrary to our expectations, we did not find an effect of OXT on facial emotion processing, neither at the neural, nor at the behavioral level. A single dose of OXT did not evoke social enhancement in general, nor did it affect social approach-avoidance tendencies. Possibly ceiling performances in facial emotion processing might have hampered further improvement.

Zobrazit více v PubMed

Adrian, E. D., & Matthews, B. H. C. (1934). The Berger rhythm: Potential changes from the occipital lobes in man. Brain, 57, 355-385. https://doi.org/10.1093/brain/awp324

Andari, E., Richard, N., Leboyer, M., & Sirigu, A. (2016). Adaptive coding of the value of social cues with oxytocin, an fMRI study in autism spectrum disorder. Cortex, 76, 79-88. https://doi.org/10.1016/j.cortex.2015.12.010

Bartz, J. A., Zaki, J., Bolger, N., Hollander, E., Ludwig, N. N., Kolevzon, A., & Ochsner, K. N. (2010). Oxytocin selectively improves empathic accuracy. Psychological Science, 21(10), 1426-1428. https://doi.org/10.1177/0956797610383439

Bartz, J. A., Zaki, J., Bolger, N., & Ochsner, K. N. (2011). Social effects of oxytocin in humans: Context and person matter. Trends in Cognitive Sciences, 15(7), 301-309. https://doi.org/10.1016/j.tics.2011.05.002

Churchland, P. S., & Winkielman, P. (2012). Modulating social behavior with oxytocin: How does it work? What does it mean? Hormones and Behavior, 61(3), 392-399. https://doi.org/10.1016/j.yhbeh.2011.12.003

DaSilva, E. B., Crager, K., Geisler, D., Newbern, P., Orem, B., & Puce, A. (2016). Something to sink your teeth into: The presence of teeth augments ERPs to mouth expressions. NeuroImage, 127, 227-241. https://doi.org/10.1016/j.neuroimage.2015.12.020

Daughters, K., Manstead, A. S. R., Hubble, K., Rees, A., Thapar, A., & Van Goozen, S. H. M. (2015). Salivary oxytocin concentrations in males following intranasal administration of oxytocin: A double-blind, cross-over study. PLoS ONE, 10(12), e0145104. https://doi.org/10.1371/journal.pone.0145104

de Heering, A., & Rossion, B. (2015). Rapid categorization of natural face images in the infant right hemisphere. eLife, 4, 1-14. https://doi.org/10.7554/eLife.06564

Di Simplicio, M., Massey-Chase, R., Cowen, P. J., & Harmer, C. J. (2009). Oxytocin enhances processing of positive versus negative emotional information in healthy male volunteers. Journal of Psychopharmacology, 23(3), 241-248. https://doi.org/10.1177/0269881108095705

Domes, G., Heinrichs, M., Gläscher, J., Büchel, C., Braus, D. F., & Herpertz, S. C. (2007). Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biological Psychiatry, 62(10), 1187-1190. https://doi.org/10.1016/j.biopsych.2007.03.025

Domes, G., Lischke, A., Berger, C., Grossmann, A., Hauenstein, K., Heinrichs, M., & Herpertz, S. C. (2010). Effects of intranasal oxytocin on emotional face processing in women. Psychoneuroendocrinology, 35(1), 83-93. https://doi.org/10.1016/j.psyneuen.2009.06.016

Domes, G., Sibold, M., Schulze, L., Lischke, A., Herpertz, S. C., & Heinrichs, M. (2013). Intranasal oxytocin increases covert attention to positive social cues. Psychological Medicine, 43(8), 1747-1753. https://doi.org/10.1017/S0033291712002565

Dzhelyova, M., Jacques, C., Dormal, G., Michel, C., Schiltz, C., & Rossion, B. (2019). High test-retest reliability of a neural index of rapid automatic discrimination of unfamiliar individual faces. Visual Cognition, 27(2), 127-141. https://doi.org/10.1080/13506285.2019.1616639

Dzhelyova, M., Jacques, C., & Rossion, B. (2017). At a single glance: Fast periodic visual stimulation uncovers the spatio-temporal dynamics of brief facial expression changes in the human brain. Cerebral Cortex, 27(8), 1-18. https://doi.org/10.1093/cercor/bhw223

Dzhelyova, M., & Rossion, B. (2014a). Supra-additive contribution of shape and surface information to individual face discrimination as revealed by fast periodic visual stimulation. Journal of Vision, 14(15), 1-14. https://doi.org/10.1167/14.14.15

Dzhelyova, M., & Rossion, B. (2014b). The effect of parametric stimulus size variation on individual face discrimination indexed by fast periodic visual stimulation. BMC Neuroscience, 15, 87. https://doi.org/10.1186/1471-2202-15-87

Elfenbein, H. A., & Ambady, N. (2002). On the universality and cultural specificity of emotion recognition: A meta-analysis. Psychological Bulletin, 128(2), 203-235. https://doi.org/10.1037/0033-2909.128.2.203

Ellenbogen, M. A. (2018). Oxytocin and facial emotion recognition. In R. Hurlemann & V. Grinevich (Eds.), Behavioral pharmacology of neuropeptides: Oxytocin (pp. 349-374). Springer International Publishing. https://doi.org/10.1007/978-1-4419-7931-5

Evans, S. L., Dal Monte, O., Noble, P., & Averbeck, B. B. (2014). Intranasal oxytocin effects on social cognition: A critique. Brain Research, 1580, 69-77. https://doi.org/10.1016/j.brainres.2013.11.008

Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. https://doi.org/10.3758/BF03193146

Fischer-Shofty, M., Shamay-Tsoory, S. G., Harari, H., & Levkovitz, Y. (2010). The effect of intranasal administration of oxytocin on fear recognition. Neuropsychologia, 48(1), 179-184. https://doi.org/10.1016/j.neuropsychologia.2009.09.003

Gamer, M., Zurowski, B., & Büchel, C. (2010). Different amygdala subregions mediate valence-related and attentional effects of oxytocin in humans. Proceedings of the National Academy of Sciences of the United States of America, 107(20), 9400-9405. https://doi.org/10.1073/pnas.1000985107

Grace, S. A., Rossell, S. L., Heinrichs, M., Kordsachia, C., & Labuschagne, I. (2018). Oxytocin and brain activity in humans: A systematic review and coordinate-based meta-analysis of functional MRI studies. Psychoneuroendocrinology, 96, 6-24. https://doi.org/10.1016/j.psyneuen.2018.05.031

Guastella, A. J., Einfeld, S. L., Gray, K. M., Rinehart, N. J., Tonge, B. J., Lambert, T. J., & Hickie, I. B. (2010). Intranasal oxytocin improves emotion recognition for youth with autism Spectrum disorders. Biological Psychiatry, 67(7), 692-694. https://doi.org/10.1016/j.biopsych.2009.09.020

Guastella, A. J., & Hickie, I. B. (2016). Oxytocin treatment, circuitry, and autism: A critical review of the literature placing oxytocin into the autism context. Biological Psychiatry, 79(3), 234-242. https://doi.org/10.1016/j.biopsych.2015.06.028

Guastella, A. J., Hickie, I. B., McGuinness, M. M., Otis, M., Woods, E. A., Disinger, H. M., Chan, H. K., Chen, T. F., & Banati, R. B. (2013). Recommendations for the standardisation of oxytocin nasal administration and guidelines for its reporting in human research. Psychoneuroendocrinology, 38(5), 612-625. https://doi.org/10.1016/j.psyneuen.2012.11.019

Guastella, A. J., & MacLeod, C. (2012). A critical review of the influence of oxytocin nasal spray on social cognition in humans: Evidence and future directions. Hormones and Behavior, 61(3), 410-418. https://doi.org/10.1016/j.yhbeh.2012.01.002

Hess, U., & Fischer, A. (2014). Emotional mimicry: Why and when we mimic emotions. Social and Personality Compass, 8(2), 45-57. https://doi.org/10.1111/spc3.12083

Horta de Macedo, L. R., Zuardi, A. W., Machado-de-Sousa, J. P., Chagas, M. H. N., & Hallak, J. E. C. (2014). Oxytocin does not improve performance of patients with schizophrenia and healthy volunteers in a facial emotion matching task. Psychiatry Research, 220(1-2), 125-128. https://doi.org/10.1016/j.psychres.2014.07.082

Hovey, D., Martens, L., Laeng, B., Leknes, S., & Westberg, L. (2020). The effect of intranasal oxytocin on visual processing and salience of human faces. Translational Psychiatry, 10, 318. https://doi.org/10.1038/s41398-020-00991-3

Hubble, K., Daughters, K., Manstead, A. S. R., Rees, A., Thapar, A., & Van Goozen, S. H. M. (2017). Oxytocin reduces face processing time but leaves recognition accuracy and eye-gaze unaffected. Journal of the International Neuropsychological Society, 23(1), 23-33. https://doi.org/10.1017/S1355617716000886

Huffmeijer, R., Alink, L. R. A., Tops, M., Grewen, K. M., Light, K. C., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2013). The impact of oxytocin administration and maternal love withdrawal on event-related potential (ERP) responses to emotional faces with performance feedback. Hormones and Behavior, 63(3), 399-410. https://doi.org/10.1016/j.yhbeh.2012.11.008

Kaltwasser, L., Hildebrandt, A., Wilhelm, O., & Sommer, W. (2017). On the relationship of emotional abilities and prosocial behavior. Evolution and Human Behavior, 38(3), 298-308. https://doi.org/10.1016/j.evolhumbehav.2016.10.011

Kappenman, E. S., & Luck, S. J. (2016). Best practices for event-related potential research in clinical populations. Biol Psychiatry Cogn Neurosci Neuroimaging, 1(2), 110-115. https://doi.org/10.1016/j.bpsc.2015.11.007

Keech, B., Crowe, S., & Hocking, D. R. (2018). Intranasal oxytocin, social cognition and neurodevelopmental disorders: A meta-analysis. Psychoneuroendocrinology, 87, 9-19. https://doi.org/10.1016/j.psyneuen.2017.09.022

Kemp, A. H., & Guastella, A. J. (2011). The role of oxytocin in human affect: A novel hypothesis. Current Directions in Psychological Science, 20(4), 222-231. https://doi.org/10.1177/0963721411417547

Kendrick, K. M., Guastella, A. J., & Becker, B. (2018). Overview of human oxytocin research. In R. Hurlemann & V. Grinevich (Eds.), Behavioral pharmacology of neuropeptides: Oxytocin (Vol. 35, pp. 321-348). Springer International Publishing. https://doi.org/10.1007/978-3-319-63739-6

Korb, S., Malsert, J., Strathearn, L., Vuilleumier, P., & Niedenthal, P. (2016). Sniff and mimic - intranasal oxytocin increases facial mimicry in a sample of men. Hormones and Behavior, 84, 64-74. https://doi.org/10.1016/j.yhbeh.2016.06.003

Kret, M. E., & De Gelder, B. (2012). A review on sex differences in processing emotional signals. Neuropsychologia, 50(7), 1211-1221. https://doi.org/10.1016/j.neuropsychologia.2011.12.022

Lee, M. D., & Wagenmakers, E.-J. (2013). Bayesian model comparison. In Bayesian cognitive modeling: A practical course (pp. 101-117). Cambridge University Press. https://doi.org/10.1017/cbo9781139087759.009

Leknes, S., Wessberg, J., Ellingsen, D. M., Chelnokova, O., Olausson, H., & Laeng, B. (2013). Oxytocin enhances pupil dilation and sensitivity to “hidden” emotional expressions. Social Cognitive and Affective Neuroscience, 8(7), 741-749. https://doi.org/10.1093/scan/nss062

Leleu, A., Favre, E., Yailian, A., Fumat, H., Klamm, J., Amado, I., Baudouin, J., Franck, N., & Demily, C. (2019). An implicit and reliable neural measure quantifying impaired visual coding of facial expression: Evidence from the 22q11.2 deletion syndrome. Translational Psychiatry, 9, 67. https://doi.org/10.1038/s41398-019-0411-z

Lenth, R. V. (2021). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.7.0. https://CRAN.Rroject.org/package=emmeans

Leppanen, J., Ng, K. W., Tchanturia, K., & Treasure, J. (2017). Meta-analysis of the effects of intranasal oxytocin on interpretation and expression of emotions. Neuroscience and Biobehavioral Reviews, 78, 125-144. https://doi.org/10.1016/j.neubiorev.2017.04.010

Lischke, A., Berger, C., Prehn, K., Heinrichs, M., Herpertz, S. C., & Domes, G. (2012). Intranasal oxytocin enhances emotion recognition from dynamic facial expressions and leaves eye-gaze unaffected. Psychoneuroendocrinology, 37(4), 475-481. https://doi.org/10.1016/j.psyneuen.2011.07.015

Liu-Shuang, J., Norcia, A. M., & Rossion, B. (2014). An objective index of individual face discrimination in the right occipito-temporal cortex by means of fast periodic oddball stimulation. Neuropsychologia, 52, 57-72. https://doi.org/10.1016/j.neuropsychologia.2013.10.022

Lopatina, O. L., Komleva, Y. K., Gorina, Y. V., Higashida, H., & Salmina, A. B. (2018). Neurobiological aspects of face recognition: The role of oxytocin. Frontiers in Behavioral Neuroscience, 12, 1-11. https://doi.org/10.3389/fnbeh.2018.00195

Lundqvist, D., Flykt, A., & Öhman, A. (1998). The Karolinska directed emotional faces-KDEF, CD ROM from Department of Clinical Neuroscience, Psychology Section.

MacDonald, K., & MacDonald, T. M. (2010). The peptide that binds: A systematic review of oxytocin and its prosocial effects in humans. Harvard Review of Psychiatry, 18(1), 1-21. https://doi.org/10.3109/10673220903523615

MacDonald, K. S. (2012). Sex, receptors, and attachment: A review of individual factors influencing response to oxytocin. Frontiers in Neuroscience, 6, 1-8. https://doi.org/10.3389/fnins.2012.00194

Makeig, S., Bell, A. J., Jung, T.-P., & Sejnowski, T. J. (1995). Independent component analysis of electroencephalographic data. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems 8 (pp. 145-151). MIT Press.

Martins, D. A., Mazibuko, N., Zelaya, F., Vasilakopoulou, S., Loveridge, J., Oates, A., Maltezos, S., Mehta, M., Wastling, S., Howard, M., McAlonan, G., Murphy, D., Williams, S. C. R., Fotopoulou, A., Schuschnig, U., & Paloyelis, Y. (2020). Effects of route of administration on oxytocin-induced changes in regional cerebral blood flow in humans. Nature Communications, 11(1), 1-16. https://doi.org/10.1038/s41467-020-14845-5

McIntosh, D. N. (1996). Facial feedback hypotheses: Evidence, implications, and directions. Motivation and Emotion, 20(2), 121-147. https://doi.org/10.1007/BF02253868

Mierop, A., Mikolajczak, M., Stahl, C., Béna, J., Luminet, O., Lane, A., & Corneille, O. (2020). How can intranasal oxytocin research be trusted? A systematic review of the interactive effects of intranasal oxytocin on psychosocial outcomes. Perspectives on Psychological Science, 15(5), 1228-1242. https://doi.org/10.1177/1745691620921525

Morey, R. D., Rouder, J. N., Jamil, T., Urbanek, S., Forner, K., & Ly, A. (2018). BayesFactor: Computation of Bayes factors for common designs. https://cran.r-project.org/web/packages/BayesFactor/index.html

Naja, W. J., & Aoun, M. P. (2017). Oxytocin and anxiety disorders: Translational and therapeutic aspects. Current Psychiatry Reports, 19(10), 67. https://doi.org/10.1007/s11920-017-0819-1

Norcia, A. M., Appelbaum, L. G., Ales, J. M., Cottereau, B. R., & Rossion, B. (2015). The steady-state visual evoked potential in vision research: A review. Journal of Vision, 15(6), 1-46. https://doi.org/10.1167/15.6.4

Palermo, R., O’Connor, K. B., Davis, J. M., Irons, J., & McKone, E. (2013). New tests to measure individual differences in matching and labelling facial expressions of emotion, and their association with ability to recognise vocal emotions and facial identity. PLoS ONE, 8(6), e68126. https://doi.org/10.1371/journal.pone.0068126

Pavarini, G., Sun, R., Mahmoud, M., Cross, I., Schnall, S., Fischer, A., Deakin, J., Ziauddeen, H., Kogan, A., & Vuillier, L. (2019). The role of oxytocin in the facial mimicry of affiliative vs. non-affiliative emotions. Psychoneuroendocrinology, 109, 104377. https://doi.org/10.1016/j.psyneuen.2019.104377

Pehlivanoglu, D., Myers, E., & Ebner, N. C. (2020). Tri-phasic model of oxytocin (TRIO): A systematic conceptual review of oxytocin-related ERP research. Biological Psychology, 154, 107917. https://doi.org/10.1016/j.biopsycho.2020.107917

Peled-Avron, L., Abu-Akel, A., & Shamay-Tsoory, S. (2020). Exogenous effects of oxytocin in five psychiatric disorders: A systematic review, meta-analyses and a personalized approach through the lens of the social salience hypothesis. Neuroscience and Biobehavioral Reviews, 114, 70-95. https://doi.org/10.1016/j.neubiorev.2020.04.023

Peltola, M. J., Strathearn, L., & Puura, K. (2018). Oxytocin promotes face-sensitive neural responses to infant and adult faces in mothers. Psychoneuroendocrinology, 91, 261-270. https://doi.org/10.1016/j.psyneuen.2018.02.012

Poncet, F., Baudouin, J.-Y., Dzhelyova, M., Rossion, B., & Leleu, A. (2019). Rapid and automatic discrimination between facial expressions in the human brain. Neuropsychologia, 129, 47-55. https://doi.org/10.1016/j.neuropsychologia.2019.03.006

Quintana, D. S., Lischke, A., Grace, S., Scheele, D., Ma, Y., & Becker, B. (2021). Advances in the field of intranasal oxytocin research: Lessons learned and future directions for clinical research. Molecular Psychiatry, 26(1), 80-91. https://doi.org/10.1038/s41380-020-00864-7

Quintana, D. S., Smerud, K. T., Andreassen, O. A., & Djupesland, P. G. (2018). Evidence for intranasal oxytocin delivery to the brain: Recent advances and future perspectives. Therapeutic Delivery, 9(7), 515-525. https://doi.org/10.4155/tde-2018-0002

Retter, T. L., & Rossion, B. (2016). Uncovering the neural magnitude and spatio-temporal dynamics of natural image categorization in a fast visual stream. Neuropsychologia, 91, 9-28. https://doi.org/10.1016/j.neuropsychologia.2016.07.028

Rimmele, U., Hediger, K., Heinrichs, M., & Klaver, P. (2009). Oxytocin makes a face in memory familiar. Journal of Neuroscience, 29(1), 38-42. https://doi.org/10.1523/JNEUROSCI.4260-08.2009

Rossion, B., Prieto, E. A., Boremanse, A., Kuefner, D., & Van Belle, G. (2012). A steady-state visual evoked potential approach to individual face perception: Effect of inversion, contrast-reversal and temporal dynamics. NeuroImage, 63(3), 1585-1600. https://doi.org/10.1016/j.neuroimage.2012.08.033

Schulze, L., Lischke, A., Greif, J., Herpertz, S. C., Heinrichs, M., & Domes, G. (2011). Oxytocin increases recognition of masked emotional faces. Psychoneuroendocrinology, 36(9), 1378-1382. https://doi.org/10.1016/j.psyneuen.2011.03.011

Shahrestani, S., Kemp, A. H., & Guastella, A. J. (2013). The impact of a single administration of intranasal oxytocin on the recognition of basic emotions in humans: A meta-analysis. Neuropsychopharmacology, 38(10), 1929-1936. https://doi.org/10.1038/npp.2013.86

Shamay-Tsoory, S. G., & Abu-Akel, A. (2016). The social salience hypothesis of oxytocin. Biological Psychiatry, 79(3), 194-202. https://doi.org/10.1016/j.biopsych.2015.07.020

Shamay-Tsoory, S. G., Fischer, M., Dvash, J., Harari, H., Perach-Bloom, N., & Levkovitz, Y. (2009). Intranasal Administration of Oxytocin Increases Envy and Schadenfreude (gloating). Biological Psychiatry, 66(9), 864-870. https://doi.org/10.1016/j.biopsych.2009.06.009

Shilling, P. D., & Feifel, D. (2016). Potential of oxytocin in the treatment of schizophrenia. CNS Drugs, 30(3), 193-208. https://doi.org/10.1007/s40263-016-0315-x

Singmann, H., Bolker, B., Westfall, J., Aust, F., & Ben-Shachar, M. S. (2020). Package ‘afex’.

Striepens, N., Kendrick, K. M., Hanking, V., Landgraf, R., Wüllner, U., Maier, W., & Hurlemann, R. (2013). Elevated cerebrospinal fluid and blood concentrations of oxytocin following its intranasal administration in humans. Scientific Reports, 3, 1-5. https://doi.org/10.1038/srep03440

Tillman, R., Gordon, I., Naples, A., Rolison, M., Leckman, J. F., Feldman, R., Pelphrey, K. A., & McPartland, J. C. (2019). Oxytocin enhances the neural efficiency of social perception. Frontiers in Human Neuroscience, 13, 1-13. https://doi.org/10.3389/fnhum.2019.00071

Van der Donck, S., Dzhelyova, M., Vettori, S., Mahdi, S. S., Claes, P., Steyaert, J., & Boets, B. (2020). Rapid neural categorization of angry and fearful faces is specifically impaired in boys with autism spectrum disorder. Journal of Child Psychology and Psychiatry, 61(9), 1019-1029. https://doi.org/10.1111/jcpp.13201

Van der Donck, S., Dzhelyova, M., Vettori, S., Thielen, H., Steyaert, J., Rossion, B., & Boets, B. (2019). Fast periodic visual stimulation EEG reveals reduced neural sensitivity to fearful faces in children with autism. Journal of Autism and Developmental Disorders, 49(11), 4658-4673. https://doi.org/10.1007/s10803-019-04172-0

Van IJzendoorn M. H., & Bakermans-Kranenburg M. J. (2012). A sniff of trust: Meta-analysis of the effects of intranasal oxytocin administration on face recognition, trust to in-group, and trust to out-group. Psychoneuroendocrinology, 37(3), 438-443. https://doi.org/10.1016/j.psyneuen.2011.07.008

Vettori, S., Dzhelyova, M., Van der Donck, S., Jacques, C., Steyaert, J., Rossion, B., & Boets, B. (2020). Frequency-tagging electroencephalography of superimposed social and non-social visual stimulation streams reveals reduced saliency of faces in autism Spectrum disorder. Frontiers in Psychiatry, 11, 1-12. https://doi.org/10.3389/fpsyt.2020.00332

Vettori, S., Van der Donck, S., Nys, J., Moors, P., Van Wesemael, T., Steyaert, J., Rossion, B., Dzhelyova, M., & Boets, B. (2020). Combined frequency-tagging EEG and eye-tracking measures provide no support for the “excess mouth/diminished eye attention” hypothesis in autism. Molecular Autism, 11(1), 1-22. https://doi.org/10.1186/s13229-020-00396-5

Wang, D., Yan, X., Li, M., & Ma, Y. (2017). Neural substrates underlying the effects of oxytocin: A quantitative meta-analysis of pharmaco-imaging studies. Social Cognitive and Affective Neuroscience, 12(10), 1565-1573. https://doi.org/10.1093/scan/nsx085

Wigton, R., Radua, J., Allen, P., Averbeck, B., Meyer-Lindenberg, A., McGuire, P., Sukhi, S., & Fusar-Poli, P. (2015). Neurophysiological effects of acute oxytocin administration: Systematic review and meta-analysis of placebo-controlled imaging studies. Journal of Psychiatry and Neuroscience, 40(1), E1-E22. https://doi.org/10.1503/jpn.130289

Winterton, A., Westlye, L. T., Steen, N. E., Andreassen, O. A., & Quintana, D. S. (2021). Improving the precision of intranasal oxytocin research. Nature Human Behaviour, 5(1), 9-18. https://doi.org/10.1038/s41562-020-00996-4

Wood, A., Rychlowska, M., Korb, S., & Niedenthal, P. (2016). Fashioning the face: Sensorimotor simulation contributes to facial expression recognition. Trends in Cognitive Sciences, 20(3), 227-240. https://doi.org/10.1016/j.tics.2015.12.010

Xu, L., Ma, X., Zhao, W., Luo, L., Yao, S., & Kendrick, K. M. (2015). Oxytocin enhances attentional bias for neutral and positive expression faces in individuals with higher autistic traits. Psychoneuroendocrinology, 62, 352-358. https://doi.org/10.1016/j.psyneuen.2015.09.002

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...