Frequency-Tagging EEG of Superimposed Social and Non-Social Visual Stimulation Streams Provides No Support for Social Salience Enhancement after Intranasal Oxytocin Administration
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
G0C7816N
Research Foundation Flanders
the Excellence of Science EOS grant G0E8718N (HUMVISCAT)
Research Foundation Flanders
C14/17/102
KU Leuven
202009110102
China Scholarship Council
PubMed
36138960
PubMed Central
PMC9496939
DOI
10.3390/brainsci12091224
PII: brainsci12091224
Knihovny.cz E-zdroje
- Klíčová slova
- EEG, frequency-tagging EEG, oxytocin, social stimuli processing,
- Publikační typ
- časopisecké články MeSH
The social salience hypothesis proposes that the neuropeptide oxytocin (OT) can impact human social behavior by modulating the salience of social cues. Here, frequency-tagging EEG was used to quantify the neural responses to social versus non-social stimuli while administering a single dose of OT (24 IU) versus placebo treatment. Specifically, two streams of faces and houses were superimposed on one another, with each stream of stimuli tagged with a particular presentation rate (i.e., 6 and 7.5 Hz or vice versa). These distinctive frequency tags allowed unambiguously disentangling and objectively quantifying the respective neural responses elicited by the different streams of stimuli. This study involved a double-blind, placebo-controlled, cross-over trial with 31 healthy adult men. Based on four trials of 60 s, we detected robust frequency-tagged neural responses in each individual, with entrainment to faces being more pronounced in lateral occipito-temporal regions and entrainment to houses being focused in medial occipital regions. However, contrary to our expectation, a single dose of OT did not modulate these stimulus-driven neural responses, not in terms of enhanced social processing nor in terms of generally enhanced information salience. Bayesian analyses formally confirmed these null findings. Possibly, the baseline ceiling level performance of these neurotypical adult participants as well as the personal irrelevance of the applied stimulation streams might have hindered the observation of any OT effect.
Center for Clinical Psychiatry Department of Neuroscience KU Leuven 3000 Leuven Belgium
Center for Developmental Psychiatry Department of Neurosciences KU Leuven 3000 Leuven Belgium
Department of Psychology Faculty of Arts Masaryk University 60200 Brno Czech Republic
Institute of Research in Psychological Sciences Université de Louvain 1348 Louvain la Neuve Belgium
Zobrazit více v PubMed
Kosfeld M., Heinrichs M.L., Zak P.J., Fischbacher U., Fehr E. Oxytocin increases trust in humans. Nature. 2005;435:673–676. doi: 10.1038/nature03701. PubMed DOI
Zak P.J., Stanton A.A., Ahmadi S. Oxytocin Increases Generosity in Humans. PLoS ONE. 2007;2:e1128. doi: 10.1371/journal.pone.0001128. PubMed DOI PMC
De Dreu C.K.W., Greer L.L., Handgraaf M.J.J., Shalvi S., Van Kleef G.A., Baas M., Velden F.S.T., Van Dijk E., Feith S.W.W. The Neuropeptide Oxytocin Regulates Parochial Altruism in Intergroup Conflict Among Humans. Science. 2010;328:1408–1411. doi: 10.1126/science.1189047. PubMed DOI
Declerck C.H., Boone C., Kiyonari T. Oxytocin and cooperation under conditions of uncertainty: The modulating role of incentives and social information. Horm. Behav. 2010;57:368–374. doi: 10.1016/j.yhbeh.2010.01.006. PubMed DOI
Baumgartner T., Heinrichs M., Vonlanthen A., Fischbacher U., Fehr E. Oxytocin Shapes the Neural Circuitry of Trust and Trust Adaptation in Humans. Neuron. 2008;58:639–650. doi: 10.1016/j.neuron.2008.04.009. PubMed DOI
Marsh A.A., Yu H., Pine D.S., Blair R.J.R. Oxytocin improves specific recognition of positive facial expressions. Psychopharmacology. 2010;209:225–232. doi: 10.1007/s00213-010-1780-4. PubMed DOI
Lischke A., Berger C., Prehn K., Heinrichs M., Herpertz S.C., Domes G. Intranasal oxytocin enhances emotion recognition from dynamic facial expressions and leaves eye-gaze unaffected. Psychoneuroendocrinology. 2012;37:475–481. doi: 10.1016/j.psyneuen.2011.07.015. PubMed DOI
Domes G., Heinrichs M., Michel A., Berger C., Herpertz S.C. Oxytocin Improves “Mind-Reading” in Humans. Biol. Psychiatry. 2007;61:731–733. doi: 10.1016/j.biopsych.2006.07.015. PubMed DOI
Domes G., Steiner A., Porges S.W., Heinrichs M. Oxytocin differentially modulates eye gaze to naturalistic social signals of happiness and anger. Psychoneuroendocrinology. 2013;38:1198–1202. doi: 10.1016/j.psyneuen.2012.10.002. PubMed DOI
Guastella A.J., Mitchell P.B., Dadds M.R. Oxytocin Increases Gaze to the Eye Region of Human Faces. Biol. Psychiatry. 2008;63:3–5. doi: 10.1016/j.biopsych.2007.06.026. PubMed DOI
Guastella A.J., Einfeld S.L., Gray K.M., Rinehart N.J., Tonge B.J., Lambert T.J., Hickie I.B. Intranasal Oxytocin Improves Emotion Recognition for Youth with Autism Spectrum Disorders. Biol. Psychiatry. 2010;67:692–694. doi: 10.1016/j.biopsych.2009.09.020. PubMed DOI
Dadds M.R., Macdonald E., Cauchi A., Williams K., Levy F., Brennan J. Nasal Oxytocin for Social Deficits in Childhood Autism: A Randomized Controlled Trial. J. Autism Dev. Disord. 2013;44:521–531. doi: 10.1007/s10803-013-1899-3. PubMed DOI
Huang Y., Huang X., Ebstein R.P., Yu R. Intranasal oxytocin in the treatment of autism spectrum disorders: A multilevel meta-analysis. Neurosci. Biobehav. Rev. 2021;122:18–27. doi: 10.1016/j.neubiorev.2020.12.028. PubMed DOI
Bakermans-Kranenburg M.J., Van Ijzendoorn M.H. Sniffing around oxytocin: Review and meta-analyses of trials in healthy and clinical groups with implications for pharmacotherapy. Transl. Psychiatry. 2013;3:e258. doi: 10.1038/tp.2013.34. PubMed DOI PMC
Feifel D., MacDonald K., Cobb P., Minassian A. Adjunctive intranasal oxytocin improves verbal memory in people with schizophrenia. Schizophr. Res. 2012;139:207–210. doi: 10.1016/j.schres.2012.05.018. PubMed DOI
Simeon D., Bartz J., Hamilton H., Crystal S., Braun A., Ketay S., Hollander E. Oxytocin administration attenuates stress reactivity in borderline personality disorder: A pilot study. Psychoneuroendocrinology. 2011;36:1418–1421. doi: 10.1016/j.psyneuen.2011.03.013. PubMed DOI
Shamay-Tsoory S.G., Fischer M., Dvash J., Harari H., Perach-Bloom N., Levkovitz Y. Intranasal Administration of Oxytocin Increases Envy and Schadenfreude (Gloating) Biol. Psychiatry. 2009;66:864–870. doi: 10.1016/j.biopsych.2009.06.009. PubMed DOI
Taylor S.E., Gonzaga G.C., Klein L.C., Hu P., Greendale G.A., Seeman T.E. Relation of Oxytocin to Psychological Stress Responses and Hypothalamic-Pituitary-Adrenocortical Axis Activity in Older Women. Psychosom. Med. 2006;68:238–245. doi: 10.1097/01.psy.0000203242.95990.74. PubMed DOI
Tabak B.A., McCullough M.E., Szeto A., Mendez A.J., McCabe P.M. Oxytocin indexes relational distress following interpersonal harms in women. Psychoneuroendocrinology. 2011;36:115–122. doi: 10.1016/j.psyneuen.2010.07.004. PubMed DOI PMC
Groppe S.E., Gossen A., Rademacher L., Hahn A., Westphal L., Gründer G., Spreckelmeyer K.N. Oxytocin Influences Processing of Socially Relevant Cues in the Ventral Tegmental Area of the Human Brain. Biol. Psychiatry. 2013;74:172–179. doi: 10.1016/j.biopsych.2012.12.023. PubMed DOI
Shamay-Tsoory S.G., Abu-Akel A. The Social Salience Hypothesis of Oxytocin. Biol. Psychiatry. 2016;79:194–202. doi: 10.1016/j.biopsych.2015.07.020. PubMed DOI
Rimmele U., Hediger K., Heinrichs M., Klaver P. Oxytocin Makes a Face in Memory Familiar. J. Neurosci. 2009;29:38–42. doi: 10.1523/JNEUROSCI.4260-08.2009. PubMed DOI PMC
Unkelbach C., Guastella A.J., Forgas J.P. Oxytocin Selectively Facilitates Recognition of Positive Sex and Relationship Words. Psychol. Sci. 2008;19:1092–1094. doi: 10.1111/j.1467-9280.2008.02206.x. PubMed DOI
Hu J., Qi S., Becker B., Luo L., Gao S., Gong Q., Hurlemann R., Kendrick K.M. Oxytocin selectively facilitates learning with social feedback and increases activity and functional connectivity in emotional memory and reward processing regions. Hum. Brain Mapp. 2015;36:2132–2146. doi: 10.1002/hbm.22760. PubMed DOI PMC
Norman G.J., Cacioppo J.T., Morris J.S., Karelina K., Malarkey W.B., DeVries A.C., Berntson G.G. Selective influences of oxytocin on the evaluative processing of social stimuli. J. Psychopharmacol. 2010;25:1313–1319. doi: 10.1177/0269881110367452. PubMed DOI PMC
Tollenaar M.S., Chatzimanoli M., van der Wee N.J., Putman P. Enhanced orienting of attention in response to emotional gaze cues after oxytocin administration in healthy young men. Psychoneuroendocrinology. 2013;38:1797–1802. doi: 10.1016/j.psyneuen.2013.02.018. PubMed DOI
Domes G., Sibold M., Schulze L., Lischke A., Herpertz S.C., Heinrichs M. Intranasal oxytocin increases covert attention to positive social cues. Psychol. Med. 2012;43:1747–1753. doi: 10.1017/S0033291712002565. PubMed DOI
Baum A., Sachidanandam R., García-Sastre A. Different Amygdala Subregions Mediate Valence- Related and Attentional Effects of Oxytocin in Humans. Proc. Natl. Acad. Sci. USA. 2011;108:3092. doi: 10.1073/pnas.1100561108. PubMed DOI PMC
Leknes S., Wessberg J., Ellingsen D.-M., Chelnokova O., Olausson H., Laeng B. Oxytocin enhances pupil dilation and sensitivity to ‘hidden’ emotional expressions. Soc. Cogn. Affect. Neurosci. 2012;8:741–749. doi: 10.1093/scan/nss062. PubMed DOI PMC
Hovey D., Martens L., Laeng B., Leknes S., Westberg L. The effect of intranasal oxytocin on visual processing and salience of human faces. Transl. Psychiatry. 2020;10:318. doi: 10.1038/s41398-020-00991-3. PubMed DOI PMC
Andari E., Richard N., Leboyer M., Sirigu A. Adaptive coding of the value of social cues with oxytocin, an fMRI study in autism spectrum disorder. Cortex. 2016;76:79–88. doi: 10.1016/j.cortex.2015.12.010. PubMed DOI
Kirsch P., Esslinger C., Chen Q., Mier D., Lis S., Siddhanti S., Gruppe H., Mattay V.S., Gallhofer B., Meyer-Lindenberg A. Oxytocin Modulates Neural Circuitry for Social Cognition and Fear in Humans. J. Neurosci. 2005;25:11489–11493. doi: 10.1523/JNEUROSCI.3984-05.2005. PubMed DOI PMC
Peltola M.J., Strathearn L., Puura K. Oxytocin promotes face-sensitive neural responses to infant and adult faces in mothers. Psychoneuroendocrinology. 2018;91:261–270. doi: 10.1016/j.psyneuen.2018.02.012. PubMed DOI
Huffmeijer R., Alink L.R., Tops M., Grewen K.M., Light K.C., Bakermans-Kranenburg M.J., van Ijzendoorn M.H. The impact of oxytocin administration and maternal love withdrawal on event-related potential (ERP) responses to emotional faces with performance feedback. Horm. Behav. 2013;63:399–410. doi: 10.1016/j.yhbeh.2012.11.008. PubMed DOI
Tillman R., Gordon I., Naples A., Rolison M., Leckman J.F., Feldman R., Pelphrey K.A., McPartland J.C. Oxytocin Enhances the Neural Efficiency of Social Perception. Front. Hum. Neurosci. 2019;13:71. doi: 10.3389/fnhum.2019.00071. PubMed DOI PMC
Adrian E.D., Matthews B.H.C. The berger rhythm: Potential changes from the occipital lobes in man. Brain. 1934;57:355–385. doi: 10.1093/brain/57.4.355. PubMed DOI
Norcia A.M., Appelbaum L., Ales J.M., Cottereau B.R., Rossion B. The steady-state visual evoked potential in vision research: A review. J. Vis. 2015;15:4. doi: 10.1167/15.6.4. PubMed DOI PMC
Vettori S., Dzhelyova M., Van der Donck S., Jacques C., Van Wesemael T., Steyaert J., Rossion B., Boets B. Combined frequency-tagging EEG and eye tracking reveal reduced social bias in boys with autism spectrum disorder. Cortex. 2019;125:135–148. doi: 10.1016/j.cortex.2019.12.013. PubMed DOI
Vettori S., Dzhelyova M., Van Der Donck S., Jacques C., Steyaert J., Rossion B., Boets B. Frequency-Tagging Electroencephalography of Superimposed Social and Non-Social Visual Stimulation Streams Reveals Reduced Saliency of Faces in Autism Spectrum Disorder. Front. Psychiatry. 2020;11:332. doi: 10.3389/fpsyt.2020.00332. PubMed DOI PMC
Pei F., Pettet M.W., Norcia A.M. Neural correlates of object-based attention. J. Vis. 2002;2:588–596. doi: 10.1167/2.9.1. PubMed DOI
Chen Y., Seth A.K., Gally J.A., Edelman G.M. The power of human brain magnetoencephalographic signals can be modulated up or down by changes in an attentive visual task. Proc. Natl. Acad. Sci. USA. 2003;100:3501–3506. doi: 10.1073/pnas.0337630100. PubMed DOI PMC
Müller M.M., Andersen S., Trujillo N.J., Valdés-Sosa P., Malinowski P., Hillyard S.A. Feature-selective attention enhances color signals in early visual areas of the human brain. Proc. Natl. Acad. Sci. USA. 2006;103:14250–14254. doi: 10.1073/pnas.0606668103. PubMed DOI PMC
Andersen S.K., Fuchs S., Müller M.M. Effects of Feature-selective and Spatial Attention at Different Stages of Visual Processing. J. Cogn. Neurosci. 2011;23:238–246. doi: 10.1162/jocn.2009.21328. PubMed DOI
Störmer V.S., Winther G.N., Li S.-C., Andersen S.K. Sustained Multifocal Attentional Enhancement of Stimulus Processing in Early Visual Areas Predicts Tracking Performance. J. Neurosci. 2013;33:5346–5351. doi: 10.1523/JNEUROSCI.4015-12.2013. PubMed DOI PMC
Baldauf D., Desimone R. Neural Mechanisms of Object-Based Attention. Science. 2014;344:424–427. doi: 10.1126/science.1247003. PubMed DOI
de Heering A., Rossion B. Rapid categorization of natural face images in the infant right hemisphere. eLife. 2015;4:e06564. doi: 10.7554/eLife.06564. PubMed DOI PMC
Van der Donck S., Dzhelyova M., Vettori S., Thielen H., Steyaert J., Rossion B., Boets B. Fast Periodic Visual Stimulation EEG Reveals Reduced Neural Sensitivity to Fearful Faces in Children with Autism. J. Autism Dev. Disord. 2019;49:4658–4673. doi: 10.1007/s10803-019-04172-0. PubMed DOI PMC
Van Der Donck S., Dzhelyova M., Vettori S., Mahdi S.S., Claes P., Steyaert J., Boets B. Rapid neural categorization of angry and fearful faces is specifically impaired in boys with autism spectrum disorder. J. Child Psychol. Psychiatry. 2020;61:1019–1029. doi: 10.1111/jcpp.13201. PubMed DOI PMC
Vettori S., Dzhelyova M., Van der Donck S., Jacques C., Steyaert J., Rossion B., Boets B. Reduced neural sensitivity to rapid individual face discrimination in autism spectrum disorder. NeuroImage: Clin. 2018;21:101613. doi: 10.1016/j.nicl.2018.101613. PubMed DOI PMC
Leleu A., Favre E., Yailian A., Fumat H., Klamm J., Amado I., Baudouin J.-Y., Franck N., Demily C. An implicit and reliable neural measure quantifying impaired visual coding of facial expression: Evidence from the 22q11.2 deletion syndrome. Transl. Psychiatry. 2019;9:67. doi: 10.1038/s41398-019-0411-z. PubMed DOI PMC
Poncet F., Baudouin J.-Y., Dzhelyova M.P., Rossion B., Leleu A. Rapid and automatic discrimination between facial expressions in the human brain. Neuropsychologia. 2019;129:47–55. doi: 10.1016/j.neuropsychologia.2019.03.006. PubMed DOI
Van der Donck S., Moerkerke M., Dlhosova T., Vettori S., Dzhelyova M., Alaerts K., Boets B. Monitoring the effect of oxytocin on the neural sensitivity to emotional faces via frequency-tagging EEG: A double-blind, cross-over study. Psychophysiol. 2022;59:e14026. doi: 10.1111/psyp.14026. PubMed DOI
Grill-Spector K., Weiner K.S., Kay K., Gomez J. The Functional Neuroanatomy of Human Face Perception. Annu. Rev. Vis. Sci. 2017;3:167–196. doi: 10.1146/annurev-vision-102016-061214. PubMed DOI PMC
Haxby J.V., Hoffman E.A., Gobbini M.I. The distributed human neural system for face perception. Trends Cogn. Sci. 2000;4:223–233. doi: 10.1016/S1364-6613(00)01482-0. PubMed DOI
Kanwisher N., McDermott J., Chun M. The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception. J. Neurosci. 1997;17:4302–4311. doi: 10.1523/JNEUROSCI.17-11-04302.1997. PubMed DOI PMC
Puce A., Allison T., Gore J.C., McCarthy G. Face-sensitive regions in human extrastriate cortex studied by functional MRI. J. Neurophysiol. 1995;74:1192–1199. doi: 10.1152/jn.1995.74.3.1192. PubMed DOI
Epstein R., Kanwisher N. A cortical representation of the local visual environment. Nature. 1998;392:598–601. doi: 10.1038/33402. PubMed DOI
Kadipasaoglu C.M., Conner C.R., Whaley M.L., Baboyan V.G., Tandon N. Category-Selectivity in Human Visual Cortex Follows Cortical Topology: A Grouped icEEG Study. PLoS ONE. 2016;11:e0157109. doi: 10.1371/journal.pone.0157109. PubMed DOI PMC
Weiner K.S., Grill-Spector K. Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. NeuroImage. 2010;52:1559–1573. doi: 10.1016/j.neuroimage.2010.04.262. PubMed DOI PMC
Jacques C., Retter T.L., Rossion B. A single glance at natural face images generate larger and qualitatively different category-selective spatio-temporal signatures than other ecologically-relevant categories in the human brain. NeuroImage. 2016;137:21–33. doi: 10.1016/j.neuroimage.2016.04.045. PubMed DOI
Domes G., Lischke A., Berger C., Grossmann A., Hauenstein K., Heinrichs M., Herpertz S.C. Effects of intranasal oxytocin on emotional face processing in women. Psychoneuroendocrinology. 2010;35:83–93. doi: 10.1016/j.psyneuen.2009.06.016. PubMed DOI
Macdonald K.S. Sex, Receptors, and Attachment: A Review of Individual Factors Influencing Response to Oxytocin. Front. Behav. Neurosci. 2013;6:194. doi: 10.3389/fnins.2012.00194. PubMed DOI PMC
Graustella A.J., MacLeod C. A critical review of the influence of oxytocin nasal spray on social cognition in humans: Evidence and future directions. Horm. Behav. 2012;61:410–418. doi: 10.1016/j.yhbeh.2012.01.002. PubMed DOI
Quintana D.S., Lischke A., Grace S., Scheele D., Ma Y., Becker B. Advances in the field of intranasal oxytocin research: Lessons learned and future directions for clinical research. Mol. Psychiatry. 2020;26:80–91. doi: 10.1038/s41380-020-00864-7. PubMed DOI PMC
Daughters K., Manstead A., Hubble K., Rees A., Thapar A., Van Goozen S.H.M. Salivary Oxytocin Concentrations in Males following Intranasal Administration of Oxytocin: A Double-Blind, Cross-Over Study. PLoS ONE. 2015;10:e0145104. doi: 10.1371/journal.pone.0145104. PubMed DOI PMC
Striepens N., Kendrick K.M., Hanking V., Landgraf R., Wüllner U., Maier W., Hurlemann R. Elevated cerebrospinal fluid and blood concentrations of oxytocin following its intranasal administration in humans. Sci. Rep. 2013;3:3440. doi: 10.1038/srep03440. PubMed DOI PMC
Retter T.L., Rossion B. Uncovering the neural magnitude and spatio-temporal dynamics of natural image categorization in a fast visual stream. Neuropsychologia. 2016;91:9–28. doi: 10.1016/j.neuropsychologia.2016.07.028. PubMed DOI
Makeig S., Bell A.J., Jung T.-P., Sejnowski T.J. Independent Component Analysis of Electroencephalographic Data. In: Touretzky D.S., Mozer M.C., Hasselmo M.E., editors. Advances in Neural Information Processing Systems 8. MIT Press; Cambridge, United Kingdom: 1996. pp. 145–151.
Regan D. Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science and Medicine. Elsevier; Amsterdam, The Netherlands: 1989.
Rossion B., Torfs K., Jacques C., Liu-Shuang J. Fast periodic presentation of natural images reveals a robust face-selective electrophysiological response in the human brain. J. Vis. 2015;15:18. doi: 10.1167/15.1.18. PubMed DOI
Dzhelyova M., Jacques C., Rossion B. At a Single Glance: Fast Periodic Visual Stimulation Uncovers the Spatio-Temporal Dynamics of Brief Facial Expression Changes in the Human Brain. Cereb. Cortex. 2016;27:4106–4123. doi: 10.1093/cercor/bhw223. PubMed DOI
Liu-Shuang J., Norcia A.M., Rossion B. An objective index of individual face discrimination in the right occipito-temporal cortex by means of fast periodic oddball stimulation. Neuropsychologia. 2013;52:57–72. doi: 10.1016/j.neuropsychologia.2013.10.022. PubMed DOI
Singmann H., Bolker B., Westfall J., Aust F., Ben- Shachar M.S. afex: Analysis of Factorial Experiments. R Package Version 1.1-0. 2022. [(accessed on 29 July 2021)]. Available online: https://CRAN.R-project.org/package=afex.
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2018. [(accessed on 29 July 2021)]. Available online: https://www.R-project.org/
Lenth R. emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Package Version 1.7.3. 2022. [(accessed on 29 July 2021)]. Available online: https://CRAN.R-project.org/package=emmeans.
Morey R.D. and Rouder, J.N. BayesFactor: Computation of Bayes Factors for Common Designs. R Package Version 0.9.12-4.3. 2021. [(accessed on 29 July 2021)]. Available online: https://CRAN.R-project.org/package=BayesFactor.
Lee M.D., Wagenmakers E.-J. Bayesian Cognitive Modeling: A Practical Course. Cambridge University Press; Cambridge, UK: 2014. Bayesian Model Comparison; pp. 101–117. DOI
Jeffreys H. Theory of Probabilit. 3rd ed. Oxford University Press; Oxford, UK: 1961.
Faul F., Erdfelder E., Lang A.-G., Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 2007;39:175–191. doi: 10.3758/BF03193146. PubMed DOI
Hagen S., Jacques C., Maillard L., Colnat-Coulbois S., Rossion B., Jonas J. Spatially Dissociated Intracerebral Maps for Face- and House-Selective Activity in the Human Ventral Occipito-Temporal Cortex. Cereb. Cortex. 2020;30:4026–4043. doi: 10.1093/cercor/bhaa022. PubMed DOI
Epstein R.A., Kveraga K., Bar M. Scene Vision: Making Sense of What We See. MIT Press; Cambridge, MA, USA: 2014. Neural Systems for Visual Scene Recognition.
Jacques C., Witthoft N., Weiner K.S., Foster B.L., Rangarajan V., Hermes D., Miller K.J., Parvizi J., Grill-Spector K. Corresponding ECoG and fMRI category-selective signals in human ventral temporal cortex. Neuropsychologia. 2015;83:14–28. doi: 10.1016/j.neuropsychologia.2015.07.024. PubMed DOI PMC
Dzhelyova M., Jacques C., Dormal G., Michel C., Schiltz C., Rossion B. High test-retest reliability of a neural index of rapid automatic discrimination of unfamiliar individual faces. Vis. Cogn. 2019;27:127–141. doi: 10.1080/13506285.2019.1616639. DOI
Jeste S.S., Frohlich J., Loo S.K. Electrophysiological biomarkers of diagnosis and outcome in neurodevelopmental disorders. Curr. Opin. Neurol. 2015;28:110–116. doi: 10.1097/WCO.0000000000000181. PubMed DOI PMC
Winterton A., Westlye L.T., Steen N.E., Andreassen O.A., Quintana D.S. Improving the precision of intranasal oxytocin research. Nat. Hum. Behav. 2020;5:9–18. doi: 10.1038/s41562-020-00996-4. PubMed DOI
Tabak B.A., Teed A.R., Castle E., Dutcher J.M., Meyer M.L., Bryan R., Irwin M.R., Lieberman M.D., Eisenberger N.I. Null results of oxytocin and vasopressin administration across a range of social cognitive and behavioral paradigms: Evidence from a randomized controlled trial. Psychoneuroendocrinology. 2019;107:124–132. doi: 10.1016/j.psyneuen.2019.04.019. PubMed DOI PMC
Bartz J.A., Zaki J., Bolger N., Hollander E., Ludwig N., Kolevzon A., Ochsner K.N. Oxytocin Selectively Improves Empathic Accuracy. Psychol. Sci. 2010;21:1426–1428. doi: 10.1177/0956797610383439. PubMed DOI PMC
Feeser M., Fan Y., Weigand A., Hahn A., Gärtner M., Böker H., Grimm S., Bajbouj M. Oxytocin improves mentalizing–Pronounced effects for individuals with attenuated ability to empathize. Psychoneuroendocrinology. 2015;53:223–232. doi: 10.1016/j.psyneuen.2014.12.015. PubMed DOI
Harari-Dahan O., Bernstein A. A general approach-avoidance hypothesis of Oxytocin: Accounting for social and non-social effects of oxytocin. Neurosci. Biobehav. Rev. 2014;47:506–519. doi: 10.1016/j.neubiorev.2014.10.007. PubMed DOI
Harari-Dahan O., Bernstein A. Oxytocin attenuates social and non-social avoidance: Re-thinking the social specificity of Oxytocin. Psychoneuroendocrinology. 2017;81:105–112. doi: 10.1016/j.psyneuen.2017.04.005. PubMed DOI
Alaerts K., Taillieu A., Daniels N., Soriano J.R., Prinsen J. Oxytocin enhances neural approach towards social and non-social stimuli of high personal relevance. Sci. Rep. 2021;11:1–10. doi: 10.1038/s41598-021-02914-8. PubMed DOI PMC
Trilla I., Drimalla H., Bajbouj M., Dziobek I. The Influence of Reward on Facial Mimicry: No Evidence for a Significant Effect of Oxytocin. Front. Behav. Neurosci. 2020;14:88. doi: 10.3389/fnbeh.2020.00088. PubMed DOI PMC
Melkonyan A., Liu L., Brown E.C., Meyer W., Madipakkam A.R., Ringelmann L., Lange F., Schmid S.M., Münte T.F., Park S.Q. Unchanged food approach-avoidance behaviour of healthy men after oxytocin administration. J. Neuroendocr. 2020;32:e12923. doi: 10.1111/jne.12923. PubMed DOI
Lane A., Luminet O., Nave G., Mikolajczak M. Is there a Publication Bias in Behavioural Intranasal Oxytocin Research on Humans? Opening the File Drawer of One Laboratory. J. Neuroendocr. 2016;28:1–15. doi: 10.1111/jne.12384. PubMed DOI
Bürkner P.-C., Williams D.R., Simmons T.C., Woolley J.D. Intranasal Oxytocin May Improve High-Level Social Cognition in Schizophrenia, But Not Social Cognition or Neurocognition in General: A Multilevel Bayesian Meta-analysis. Schizophr. Bull. 2017;43:1291–1303. doi: 10.1093/schbul/sbx053. PubMed DOI PMC
Huang M., Liu K., Wei Z., Feng Z., Chen J., Yang J., Zhong Q., Wan G., Kong X.-J. Serum Oxytocin Level Correlates With Gut Microbiome Dysbiosis in Children With Autism Spectrum Disorder. Front. Neurosci. 2021;15:1320. doi: 10.3389/fnins.2021.721884. PubMed DOI PMC
Peled-Avron L., Abu-Akel A., Shamay-Tsoory S. Exogenous effects of oxytocin in five psychiatric disorders: A systematic review, meta-analyses and a personalized approach through the lens of the social salience hypothesis. Neurosci. Biobehav. Rev. 2020;114:70–95. doi: 10.1016/j.neubiorev.2020.04.023. PubMed DOI
Ma Y., Shamay-Tsoory S., Han S., Zink C.F. Oxytocin and Social Adaptation: Insights from Neuroimaging Studies of Healthy and Clinical Populations. Trends Cogn. Sci. 2016;20:133–145. doi: 10.1016/j.tics.2015.10.009. PubMed DOI
Walum H., Waldman I.D., Young L.J. Statistical and Methodological Considerations for the Interpretation of Intranasal Oxytocin Studies. Biol. Psychiatry. 2015;79:251–257. doi: 10.1016/j.biopsych.2015.06.016. PubMed DOI PMC