Monitoring the effect of oxytocin on the neural sensitivity to emotional faces via frequency-tagging EEG: A double-blind, cross-over study
Language English Country United States Media print-electronic
Document type Journal Article, Randomized Controlled Trial, Research Support, Non-U.S. Gov't
PubMed
35150446
DOI
10.1111/psyp.14026
Knihovny.cz E-resources
- Keywords
- EEG, Emotional face processing, Frequency-tagging EEG, Oxytocin,
- MeSH
- Adult MeSH
- Double-Blind Method MeSH
- Electroencephalography MeSH
- Emotions MeSH
- Cross-Over Studies MeSH
- Humans MeSH
- Oxytocin * pharmacology MeSH
- Facial Expression * MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Randomized Controlled Trial MeSH
- Names of Substances
- Oxytocin * MeSH
The neuropeptide oxytocin (OXT) is suggested to exert an important role in human social behaviors by modulating the salience of social cues. To date, however, there is mixed evidence whether a single dose of OXT can improve the behavioral and neural sensitivity for emotional face processing. To overcome difficulties encountered with classic event-related potential studies assessing stimulus-saliency, we applied frequency-tagging EEG to implicitly assess the effect of a single dose of OXT (24 IU) on the neural sensitivity for positive and negative facial emotions. Neutral faces with different identities were presented at 6 Hz, periodically interleaved with an expressive face (angry, fearful, and happy, in separate sequences) every fifth image (i.e., 1.2 Hz oddball frequency). These distinctive frequency tags for neutral and expressive stimuli allowed direct and objective quantification of the neural expression-categorization responses. The study involved a double-blind, placebo-controlled, cross-over trial with 31 healthy adult men. Contrary to our expectations, we did not find an effect of OXT on facial emotion processing, neither at the neural, nor at the behavioral level. A single dose of OXT did not evoke social enhancement in general, nor did it affect social approach-avoidance tendencies. Possibly ceiling performances in facial emotion processing might have hampered further improvement.
Department of Neurosciences Center for Developmental Psychiatry KU Leuven Leuven Belgium
Department of Psychology Faculty of Arts Masaryk University Brno Czech Republic
Department of Rehabilitation Sciences Neurorehabilitation Research Group KU Leuven Leuven Belgium
Institute of Neuroscience Université de Louvain Louvain La Neuve Belgium
Institute of Research in Psychological Sciences Université de Louvain Louvain La Neuve Belgium
See more in PubMed
Adrian, E. D., & Matthews, B. H. C. (1934). The Berger rhythm: Potential changes from the occipital lobes in man. Brain, 57, 355-385. https://doi.org/10.1093/brain/awp324
Andari, E., Richard, N., Leboyer, M., & Sirigu, A. (2016). Adaptive coding of the value of social cues with oxytocin, an fMRI study in autism spectrum disorder. Cortex, 76, 79-88. https://doi.org/10.1016/j.cortex.2015.12.010
Bartz, J. A., Zaki, J., Bolger, N., Hollander, E., Ludwig, N. N., Kolevzon, A., & Ochsner, K. N. (2010). Oxytocin selectively improves empathic accuracy. Psychological Science, 21(10), 1426-1428. https://doi.org/10.1177/0956797610383439
Bartz, J. A., Zaki, J., Bolger, N., & Ochsner, K. N. (2011). Social effects of oxytocin in humans: Context and person matter. Trends in Cognitive Sciences, 15(7), 301-309. https://doi.org/10.1016/j.tics.2011.05.002
Churchland, P. S., & Winkielman, P. (2012). Modulating social behavior with oxytocin: How does it work? What does it mean? Hormones and Behavior, 61(3), 392-399. https://doi.org/10.1016/j.yhbeh.2011.12.003
DaSilva, E. B., Crager, K., Geisler, D., Newbern, P., Orem, B., & Puce, A. (2016). Something to sink your teeth into: The presence of teeth augments ERPs to mouth expressions. NeuroImage, 127, 227-241. https://doi.org/10.1016/j.neuroimage.2015.12.020
Daughters, K., Manstead, A. S. R., Hubble, K., Rees, A., Thapar, A., & Van Goozen, S. H. M. (2015). Salivary oxytocin concentrations in males following intranasal administration of oxytocin: A double-blind, cross-over study. PLoS ONE, 10(12), e0145104. https://doi.org/10.1371/journal.pone.0145104
de Heering, A., & Rossion, B. (2015). Rapid categorization of natural face images in the infant right hemisphere. eLife, 4, 1-14. https://doi.org/10.7554/eLife.06564
Di Simplicio, M., Massey-Chase, R., Cowen, P. J., & Harmer, C. J. (2009). Oxytocin enhances processing of positive versus negative emotional information in healthy male volunteers. Journal of Psychopharmacology, 23(3), 241-248. https://doi.org/10.1177/0269881108095705
Domes, G., Heinrichs, M., Gläscher, J., Büchel, C., Braus, D. F., & Herpertz, S. C. (2007). Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biological Psychiatry, 62(10), 1187-1190. https://doi.org/10.1016/j.biopsych.2007.03.025
Domes, G., Lischke, A., Berger, C., Grossmann, A., Hauenstein, K., Heinrichs, M., & Herpertz, S. C. (2010). Effects of intranasal oxytocin on emotional face processing in women. Psychoneuroendocrinology, 35(1), 83-93. https://doi.org/10.1016/j.psyneuen.2009.06.016
Domes, G., Sibold, M., Schulze, L., Lischke, A., Herpertz, S. C., & Heinrichs, M. (2013). Intranasal oxytocin increases covert attention to positive social cues. Psychological Medicine, 43(8), 1747-1753. https://doi.org/10.1017/S0033291712002565
Dzhelyova, M., Jacques, C., Dormal, G., Michel, C., Schiltz, C., & Rossion, B. (2019). High test-retest reliability of a neural index of rapid automatic discrimination of unfamiliar individual faces. Visual Cognition, 27(2), 127-141. https://doi.org/10.1080/13506285.2019.1616639
Dzhelyova, M., Jacques, C., & Rossion, B. (2017). At a single glance: Fast periodic visual stimulation uncovers the spatio-temporal dynamics of brief facial expression changes in the human brain. Cerebral Cortex, 27(8), 1-18. https://doi.org/10.1093/cercor/bhw223
Dzhelyova, M., & Rossion, B. (2014a). Supra-additive contribution of shape and surface information to individual face discrimination as revealed by fast periodic visual stimulation. Journal of Vision, 14(15), 1-14. https://doi.org/10.1167/14.14.15
Dzhelyova, M., & Rossion, B. (2014b). The effect of parametric stimulus size variation on individual face discrimination indexed by fast periodic visual stimulation. BMC Neuroscience, 15, 87. https://doi.org/10.1186/1471-2202-15-87
Elfenbein, H. A., & Ambady, N. (2002). On the universality and cultural specificity of emotion recognition: A meta-analysis. Psychological Bulletin, 128(2), 203-235. https://doi.org/10.1037/0033-2909.128.2.203
Ellenbogen, M. A. (2018). Oxytocin and facial emotion recognition. In R. Hurlemann & V. Grinevich (Eds.), Behavioral pharmacology of neuropeptides: Oxytocin (pp. 349-374). Springer International Publishing. https://doi.org/10.1007/978-1-4419-7931-5
Evans, S. L., Dal Monte, O., Noble, P., & Averbeck, B. B. (2014). Intranasal oxytocin effects on social cognition: A critique. Brain Research, 1580, 69-77. https://doi.org/10.1016/j.brainres.2013.11.008
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. https://doi.org/10.3758/BF03193146
Fischer-Shofty, M., Shamay-Tsoory, S. G., Harari, H., & Levkovitz, Y. (2010). The effect of intranasal administration of oxytocin on fear recognition. Neuropsychologia, 48(1), 179-184. https://doi.org/10.1016/j.neuropsychologia.2009.09.003
Gamer, M., Zurowski, B., & Büchel, C. (2010). Different amygdala subregions mediate valence-related and attentional effects of oxytocin in humans. Proceedings of the National Academy of Sciences of the United States of America, 107(20), 9400-9405. https://doi.org/10.1073/pnas.1000985107
Grace, S. A., Rossell, S. L., Heinrichs, M., Kordsachia, C., & Labuschagne, I. (2018). Oxytocin and brain activity in humans: A systematic review and coordinate-based meta-analysis of functional MRI studies. Psychoneuroendocrinology, 96, 6-24. https://doi.org/10.1016/j.psyneuen.2018.05.031
Guastella, A. J., Einfeld, S. L., Gray, K. M., Rinehart, N. J., Tonge, B. J., Lambert, T. J., & Hickie, I. B. (2010). Intranasal oxytocin improves emotion recognition for youth with autism Spectrum disorders. Biological Psychiatry, 67(7), 692-694. https://doi.org/10.1016/j.biopsych.2009.09.020
Guastella, A. J., & Hickie, I. B. (2016). Oxytocin treatment, circuitry, and autism: A critical review of the literature placing oxytocin into the autism context. Biological Psychiatry, 79(3), 234-242. https://doi.org/10.1016/j.biopsych.2015.06.028
Guastella, A. J., Hickie, I. B., McGuinness, M. M., Otis, M., Woods, E. A., Disinger, H. M., Chan, H. K., Chen, T. F., & Banati, R. B. (2013). Recommendations for the standardisation of oxytocin nasal administration and guidelines for its reporting in human research. Psychoneuroendocrinology, 38(5), 612-625. https://doi.org/10.1016/j.psyneuen.2012.11.019
Guastella, A. J., & MacLeod, C. (2012). A critical review of the influence of oxytocin nasal spray on social cognition in humans: Evidence and future directions. Hormones and Behavior, 61(3), 410-418. https://doi.org/10.1016/j.yhbeh.2012.01.002
Hess, U., & Fischer, A. (2014). Emotional mimicry: Why and when we mimic emotions. Social and Personality Compass, 8(2), 45-57. https://doi.org/10.1111/spc3.12083
Horta de Macedo, L. R., Zuardi, A. W., Machado-de-Sousa, J. P., Chagas, M. H. N., & Hallak, J. E. C. (2014). Oxytocin does not improve performance of patients with schizophrenia and healthy volunteers in a facial emotion matching task. Psychiatry Research, 220(1-2), 125-128. https://doi.org/10.1016/j.psychres.2014.07.082
Hovey, D., Martens, L., Laeng, B., Leknes, S., & Westberg, L. (2020). The effect of intranasal oxytocin on visual processing and salience of human faces. Translational Psychiatry, 10, 318. https://doi.org/10.1038/s41398-020-00991-3
Hubble, K., Daughters, K., Manstead, A. S. R., Rees, A., Thapar, A., & Van Goozen, S. H. M. (2017). Oxytocin reduces face processing time but leaves recognition accuracy and eye-gaze unaffected. Journal of the International Neuropsychological Society, 23(1), 23-33. https://doi.org/10.1017/S1355617716000886
Huffmeijer, R., Alink, L. R. A., Tops, M., Grewen, K. M., Light, K. C., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2013). The impact of oxytocin administration and maternal love withdrawal on event-related potential (ERP) responses to emotional faces with performance feedback. Hormones and Behavior, 63(3), 399-410. https://doi.org/10.1016/j.yhbeh.2012.11.008
Kaltwasser, L., Hildebrandt, A., Wilhelm, O., & Sommer, W. (2017). On the relationship of emotional abilities and prosocial behavior. Evolution and Human Behavior, 38(3), 298-308. https://doi.org/10.1016/j.evolhumbehav.2016.10.011
Kappenman, E. S., & Luck, S. J. (2016). Best practices for event-related potential research in clinical populations. Biol Psychiatry Cogn Neurosci Neuroimaging, 1(2), 110-115. https://doi.org/10.1016/j.bpsc.2015.11.007
Keech, B., Crowe, S., & Hocking, D. R. (2018). Intranasal oxytocin, social cognition and neurodevelopmental disorders: A meta-analysis. Psychoneuroendocrinology, 87, 9-19. https://doi.org/10.1016/j.psyneuen.2017.09.022
Kemp, A. H., & Guastella, A. J. (2011). The role of oxytocin in human affect: A novel hypothesis. Current Directions in Psychological Science, 20(4), 222-231. https://doi.org/10.1177/0963721411417547
Kendrick, K. M., Guastella, A. J., & Becker, B. (2018). Overview of human oxytocin research. In R. Hurlemann & V. Grinevich (Eds.), Behavioral pharmacology of neuropeptides: Oxytocin (Vol. 35, pp. 321-348). Springer International Publishing. https://doi.org/10.1007/978-3-319-63739-6
Korb, S., Malsert, J., Strathearn, L., Vuilleumier, P., & Niedenthal, P. (2016). Sniff and mimic - intranasal oxytocin increases facial mimicry in a sample of men. Hormones and Behavior, 84, 64-74. https://doi.org/10.1016/j.yhbeh.2016.06.003
Kret, M. E., & De Gelder, B. (2012). A review on sex differences in processing emotional signals. Neuropsychologia, 50(7), 1211-1221. https://doi.org/10.1016/j.neuropsychologia.2011.12.022
Lee, M. D., & Wagenmakers, E.-J. (2013). Bayesian model comparison. In Bayesian cognitive modeling: A practical course (pp. 101-117). Cambridge University Press. https://doi.org/10.1017/cbo9781139087759.009
Leknes, S., Wessberg, J., Ellingsen, D. M., Chelnokova, O., Olausson, H., & Laeng, B. (2013). Oxytocin enhances pupil dilation and sensitivity to “hidden” emotional expressions. Social Cognitive and Affective Neuroscience, 8(7), 741-749. https://doi.org/10.1093/scan/nss062
Leleu, A., Favre, E., Yailian, A., Fumat, H., Klamm, J., Amado, I., Baudouin, J., Franck, N., & Demily, C. (2019). An implicit and reliable neural measure quantifying impaired visual coding of facial expression: Evidence from the 22q11.2 deletion syndrome. Translational Psychiatry, 9, 67. https://doi.org/10.1038/s41398-019-0411-z
Lenth, R. V. (2021). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.7.0. https://CRAN.Rroject.org/package=emmeans
Leppanen, J., Ng, K. W., Tchanturia, K., & Treasure, J. (2017). Meta-analysis of the effects of intranasal oxytocin on interpretation and expression of emotions. Neuroscience and Biobehavioral Reviews, 78, 125-144. https://doi.org/10.1016/j.neubiorev.2017.04.010
Lischke, A., Berger, C., Prehn, K., Heinrichs, M., Herpertz, S. C., & Domes, G. (2012). Intranasal oxytocin enhances emotion recognition from dynamic facial expressions and leaves eye-gaze unaffected. Psychoneuroendocrinology, 37(4), 475-481. https://doi.org/10.1016/j.psyneuen.2011.07.015
Liu-Shuang, J., Norcia, A. M., & Rossion, B. (2014). An objective index of individual face discrimination in the right occipito-temporal cortex by means of fast periodic oddball stimulation. Neuropsychologia, 52, 57-72. https://doi.org/10.1016/j.neuropsychologia.2013.10.022
Lopatina, O. L., Komleva, Y. K., Gorina, Y. V., Higashida, H., & Salmina, A. B. (2018). Neurobiological aspects of face recognition: The role of oxytocin. Frontiers in Behavioral Neuroscience, 12, 1-11. https://doi.org/10.3389/fnbeh.2018.00195
Lundqvist, D., Flykt, A., & Öhman, A. (1998). The Karolinska directed emotional faces-KDEF, CD ROM from Department of Clinical Neuroscience, Psychology Section.
MacDonald, K., & MacDonald, T. M. (2010). The peptide that binds: A systematic review of oxytocin and its prosocial effects in humans. Harvard Review of Psychiatry, 18(1), 1-21. https://doi.org/10.3109/10673220903523615
MacDonald, K. S. (2012). Sex, receptors, and attachment: A review of individual factors influencing response to oxytocin. Frontiers in Neuroscience, 6, 1-8. https://doi.org/10.3389/fnins.2012.00194
Makeig, S., Bell, A. J., Jung, T.-P., & Sejnowski, T. J. (1995). Independent component analysis of electroencephalographic data. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems 8 (pp. 145-151). MIT Press.
Martins, D. A., Mazibuko, N., Zelaya, F., Vasilakopoulou, S., Loveridge, J., Oates, A., Maltezos, S., Mehta, M., Wastling, S., Howard, M., McAlonan, G., Murphy, D., Williams, S. C. R., Fotopoulou, A., Schuschnig, U., & Paloyelis, Y. (2020). Effects of route of administration on oxytocin-induced changes in regional cerebral blood flow in humans. Nature Communications, 11(1), 1-16. https://doi.org/10.1038/s41467-020-14845-5
McIntosh, D. N. (1996). Facial feedback hypotheses: Evidence, implications, and directions. Motivation and Emotion, 20(2), 121-147. https://doi.org/10.1007/BF02253868
Mierop, A., Mikolajczak, M., Stahl, C., Béna, J., Luminet, O., Lane, A., & Corneille, O. (2020). How can intranasal oxytocin research be trusted? A systematic review of the interactive effects of intranasal oxytocin on psychosocial outcomes. Perspectives on Psychological Science, 15(5), 1228-1242. https://doi.org/10.1177/1745691620921525
Morey, R. D., Rouder, J. N., Jamil, T., Urbanek, S., Forner, K., & Ly, A. (2018). BayesFactor: Computation of Bayes factors for common designs. https://cran.r-project.org/web/packages/BayesFactor/index.html
Naja, W. J., & Aoun, M. P. (2017). Oxytocin and anxiety disorders: Translational and therapeutic aspects. Current Psychiatry Reports, 19(10), 67. https://doi.org/10.1007/s11920-017-0819-1
Norcia, A. M., Appelbaum, L. G., Ales, J. M., Cottereau, B. R., & Rossion, B. (2015). The steady-state visual evoked potential in vision research: A review. Journal of Vision, 15(6), 1-46. https://doi.org/10.1167/15.6.4
Palermo, R., O’Connor, K. B., Davis, J. M., Irons, J., & McKone, E. (2013). New tests to measure individual differences in matching and labelling facial expressions of emotion, and their association with ability to recognise vocal emotions and facial identity. PLoS ONE, 8(6), e68126. https://doi.org/10.1371/journal.pone.0068126
Pavarini, G., Sun, R., Mahmoud, M., Cross, I., Schnall, S., Fischer, A., Deakin, J., Ziauddeen, H., Kogan, A., & Vuillier, L. (2019). The role of oxytocin in the facial mimicry of affiliative vs. non-affiliative emotions. Psychoneuroendocrinology, 109, 104377. https://doi.org/10.1016/j.psyneuen.2019.104377
Pehlivanoglu, D., Myers, E., & Ebner, N. C. (2020). Tri-phasic model of oxytocin (TRIO): A systematic conceptual review of oxytocin-related ERP research. Biological Psychology, 154, 107917. https://doi.org/10.1016/j.biopsycho.2020.107917
Peled-Avron, L., Abu-Akel, A., & Shamay-Tsoory, S. (2020). Exogenous effects of oxytocin in five psychiatric disorders: A systematic review, meta-analyses and a personalized approach through the lens of the social salience hypothesis. Neuroscience and Biobehavioral Reviews, 114, 70-95. https://doi.org/10.1016/j.neubiorev.2020.04.023
Peltola, M. J., Strathearn, L., & Puura, K. (2018). Oxytocin promotes face-sensitive neural responses to infant and adult faces in mothers. Psychoneuroendocrinology, 91, 261-270. https://doi.org/10.1016/j.psyneuen.2018.02.012
Poncet, F., Baudouin, J.-Y., Dzhelyova, M., Rossion, B., & Leleu, A. (2019). Rapid and automatic discrimination between facial expressions in the human brain. Neuropsychologia, 129, 47-55. https://doi.org/10.1016/j.neuropsychologia.2019.03.006
Quintana, D. S., Lischke, A., Grace, S., Scheele, D., Ma, Y., & Becker, B. (2021). Advances in the field of intranasal oxytocin research: Lessons learned and future directions for clinical research. Molecular Psychiatry, 26(1), 80-91. https://doi.org/10.1038/s41380-020-00864-7
Quintana, D. S., Smerud, K. T., Andreassen, O. A., & Djupesland, P. G. (2018). Evidence for intranasal oxytocin delivery to the brain: Recent advances and future perspectives. Therapeutic Delivery, 9(7), 515-525. https://doi.org/10.4155/tde-2018-0002
Retter, T. L., & Rossion, B. (2016). Uncovering the neural magnitude and spatio-temporal dynamics of natural image categorization in a fast visual stream. Neuropsychologia, 91, 9-28. https://doi.org/10.1016/j.neuropsychologia.2016.07.028
Rimmele, U., Hediger, K., Heinrichs, M., & Klaver, P. (2009). Oxytocin makes a face in memory familiar. Journal of Neuroscience, 29(1), 38-42. https://doi.org/10.1523/JNEUROSCI.4260-08.2009
Rossion, B., Prieto, E. A., Boremanse, A., Kuefner, D., & Van Belle, G. (2012). A steady-state visual evoked potential approach to individual face perception: Effect of inversion, contrast-reversal and temporal dynamics. NeuroImage, 63(3), 1585-1600. https://doi.org/10.1016/j.neuroimage.2012.08.033
Schulze, L., Lischke, A., Greif, J., Herpertz, S. C., Heinrichs, M., & Domes, G. (2011). Oxytocin increases recognition of masked emotional faces. Psychoneuroendocrinology, 36(9), 1378-1382. https://doi.org/10.1016/j.psyneuen.2011.03.011
Shahrestani, S., Kemp, A. H., & Guastella, A. J. (2013). The impact of a single administration of intranasal oxytocin on the recognition of basic emotions in humans: A meta-analysis. Neuropsychopharmacology, 38(10), 1929-1936. https://doi.org/10.1038/npp.2013.86
Shamay-Tsoory, S. G., & Abu-Akel, A. (2016). The social salience hypothesis of oxytocin. Biological Psychiatry, 79(3), 194-202. https://doi.org/10.1016/j.biopsych.2015.07.020
Shamay-Tsoory, S. G., Fischer, M., Dvash, J., Harari, H., Perach-Bloom, N., & Levkovitz, Y. (2009). Intranasal Administration of Oxytocin Increases Envy and Schadenfreude (gloating). Biological Psychiatry, 66(9), 864-870. https://doi.org/10.1016/j.biopsych.2009.06.009
Shilling, P. D., & Feifel, D. (2016). Potential of oxytocin in the treatment of schizophrenia. CNS Drugs, 30(3), 193-208. https://doi.org/10.1007/s40263-016-0315-x
Singmann, H., Bolker, B., Westfall, J., Aust, F., & Ben-Shachar, M. S. (2020). Package ‘afex’.
Striepens, N., Kendrick, K. M., Hanking, V., Landgraf, R., Wüllner, U., Maier, W., & Hurlemann, R. (2013). Elevated cerebrospinal fluid and blood concentrations of oxytocin following its intranasal administration in humans. Scientific Reports, 3, 1-5. https://doi.org/10.1038/srep03440
Tillman, R., Gordon, I., Naples, A., Rolison, M., Leckman, J. F., Feldman, R., Pelphrey, K. A., & McPartland, J. C. (2019). Oxytocin enhances the neural efficiency of social perception. Frontiers in Human Neuroscience, 13, 1-13. https://doi.org/10.3389/fnhum.2019.00071
Van der Donck, S., Dzhelyova, M., Vettori, S., Mahdi, S. S., Claes, P., Steyaert, J., & Boets, B. (2020). Rapid neural categorization of angry and fearful faces is specifically impaired in boys with autism spectrum disorder. Journal of Child Psychology and Psychiatry, 61(9), 1019-1029. https://doi.org/10.1111/jcpp.13201
Van der Donck, S., Dzhelyova, M., Vettori, S., Thielen, H., Steyaert, J., Rossion, B., & Boets, B. (2019). Fast periodic visual stimulation EEG reveals reduced neural sensitivity to fearful faces in children with autism. Journal of Autism and Developmental Disorders, 49(11), 4658-4673. https://doi.org/10.1007/s10803-019-04172-0
Van IJzendoorn M. H., & Bakermans-Kranenburg M. J. (2012). A sniff of trust: Meta-analysis of the effects of intranasal oxytocin administration on face recognition, trust to in-group, and trust to out-group. Psychoneuroendocrinology, 37(3), 438-443. https://doi.org/10.1016/j.psyneuen.2011.07.008
Vettori, S., Dzhelyova, M., Van der Donck, S., Jacques, C., Steyaert, J., Rossion, B., & Boets, B. (2020). Frequency-tagging electroencephalography of superimposed social and non-social visual stimulation streams reveals reduced saliency of faces in autism Spectrum disorder. Frontiers in Psychiatry, 11, 1-12. https://doi.org/10.3389/fpsyt.2020.00332
Vettori, S., Van der Donck, S., Nys, J., Moors, P., Van Wesemael, T., Steyaert, J., Rossion, B., Dzhelyova, M., & Boets, B. (2020). Combined frequency-tagging EEG and eye-tracking measures provide no support for the “excess mouth/diminished eye attention” hypothesis in autism. Molecular Autism, 11(1), 1-22. https://doi.org/10.1186/s13229-020-00396-5
Wang, D., Yan, X., Li, M., & Ma, Y. (2017). Neural substrates underlying the effects of oxytocin: A quantitative meta-analysis of pharmaco-imaging studies. Social Cognitive and Affective Neuroscience, 12(10), 1565-1573. https://doi.org/10.1093/scan/nsx085
Wigton, R., Radua, J., Allen, P., Averbeck, B., Meyer-Lindenberg, A., McGuire, P., Sukhi, S., & Fusar-Poli, P. (2015). Neurophysiological effects of acute oxytocin administration: Systematic review and meta-analysis of placebo-controlled imaging studies. Journal of Psychiatry and Neuroscience, 40(1), E1-E22. https://doi.org/10.1503/jpn.130289
Winterton, A., Westlye, L. T., Steen, N. E., Andreassen, O. A., & Quintana, D. S. (2021). Improving the precision of intranasal oxytocin research. Nature Human Behaviour, 5(1), 9-18. https://doi.org/10.1038/s41562-020-00996-4
Wood, A., Rychlowska, M., Korb, S., & Niedenthal, P. (2016). Fashioning the face: Sensorimotor simulation contributes to facial expression recognition. Trends in Cognitive Sciences, 20(3), 227-240. https://doi.org/10.1016/j.tics.2015.12.010
Xu, L., Ma, X., Zhao, W., Luo, L., Yao, S., & Kendrick, K. M. (2015). Oxytocin enhances attentional bias for neutral and positive expression faces in individuals with higher autistic traits. Psychoneuroendocrinology, 62, 352-358. https://doi.org/10.1016/j.psyneuen.2015.09.002