Strain Rate-Dependent Compressive Properties of Bulk Cylindrical 3D-Printed Samples from 316L Stainless Steel

. 2022 Jan 26 ; 15 (3) : . [epub] 20220126

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35160887

Grantová podpora
19-23675S Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000766 Operational Programme Research, Development and Education

The main aim of the study was to analyse the strain rate sensitivity of the compressive deformation response in bulk 3D-printed samples from 316L stainless steel according to the printing orientation. The laser powder bed fusion (LPBF) method of metal additive manufacturing was utilised for the production of the samples with three different printing orientations: 0∘, 45∘, and 90∘. The specimens were experimentally investigated during uni-axial quasi-static and dynamic loading. A split Hopkinson pressure bar (SHPB) apparatus was used for the dynamic experiments. The experiments were observed using a high-resolution (quasi-static loading) or a high-speed visible-light camera and a high-speed thermographic camera (dynamic loading) to allow for the quantitative and qualitative analysis of the deformation processes. Digital image correlation (DIC) software was used for the evaluation of displacement fields. To assess the deformation behaviour of the 3D-printed bulk samples and strain rate related properties, an analysis of the true stress-true strain diagrams from quasi-static and dynamic experiments as well as the thermograms captured during the dynamic loading was performed. The results revealed a strong strain rate effect on the mechanical response of the investigated material. Furthermore, a dependency of the strain-rate sensitivity on the printing orientation was identified.

Zobrazit více v PubMed

Tofail S.A., Koumoulos E.P., Bandyopadhyay A., Bose S., O’Donoghue L., Charitidis C. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Mater. Today. 2018;21:22–37. doi: 10.1016/j.mattod.2017.07.001. DOI

DebRoy T., Wei H., Zuback J., Mukherjee T., Elmer J., Milewski J., Beese A., Wilson-Heid A., De A., Zhang W. Additive manufacturing of metallic components—Process, structure and properties. Prog. Mater. Sci. 2018;92:112–224. doi: 10.1016/j.pmatsci.2017.10.001. DOI

Vafadar A., Guzzomi F., Rassau A., Hayward K. Advances in Metal Additive Manufacturing: A Review of Common Processes, Industrial Applications, and Current Challenges. Appl. Sci. 2021;11:1213. doi: 10.3390/app11031213. DOI

Khodabakhshi F., Farshidianfar M., Gerlich A., Nosko M., Trembošová V., Khajepour A. Microstructure, strain-rate sensitivity, work hardening, and fracture behavior of laser additive manufactured austenitic and martensitic stainless steel structures. Mater. Sci. Eng. A. 2019;756:545–561. doi: 10.1016/j.msea.2019.04.065. DOI

DebRoy T., Mukherjee T., Wei H.L., Elmer J.W., Milewski J.O. Metallurgy, mechanistic models and machine learning in metal printing. Nat. Rev. Mater. 2021;6:48–68. doi: 10.1038/s41578-020-00236-1. DOI

Herzog D., Seyda V., Wycisk E.M., Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016;117:371–392. doi: 10.1016/j.actamat.2016.07.019. DOI

Gray G., Livescu V., Rigg P., Trujillo C., Cady C., Chen S., Carpenter J., Lienert T., Fensin S. Structure/property (constitutive and dynamic strength/damage) characterization of additively manufactured 316L SS. EPJ Web Conf. 2015;94:02006. doi: 10.1051/epjconf/20159402006. DOI

Bevan M., Ameri A., East D., Austin D., Brown A., Hazell P., Escobedo J. Characterization of Minerals, Metals, and Materials. Springer; Cham, Switzerland: 2017. Mechanical Properties and Behavior of Additive Manufactured Stainless Steel 316L; pp. 577–583. DOI

Song B., Nishida E., Sanborn B., Maguire M., Adams D., Carroll J., Wise J., Reedlunn B., Bishop J., Palmer T. Compressive and Tensile Stress–Strain Responses of Additively Manufactured (AM) 304L Stainless Steel at High Strain Rates. J. Dyn. Behav. Mater. 2017;3:412–425. doi: 10.1007/s40870-017-0122-6. DOI

Ghayoor M., Lee K., He Y., Chang C.H., Paul B., Pasebani S. Selective laser melting of 304L stainless steel: Role of volumetric energy density on the microstructure, texture and mechanical properties. Addit. Manuf. 2020;32:101011. doi: 10.1016/j.addma.2019.101011. DOI

Nisi J.D., Pozzi F., Folgarait P., Ceselin G., Ronci M. Precipitation hardening stainless steel produced by powder bed fusion: Influence of positioning and heat treatment. Procedia Struct. Integr. 2019;24:541–558. doi: 10.1016/j.prostr.2020.02.048. DOI

Tucho W.M., Lysne V.H., Austbø H., Sjolyst-Kverneland A., Hansen V. Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L. J. Alloys Compd. 2018;740:910–925. doi: 10.1016/j.jallcom.2018.01.098. DOI

Blakey-Milner B., Gradl P., Snedden G., Brooks M., Pitot J., Lopez E., Leary M., Berto F., du Plessis A. Metal additive manufacturing in aerospace: A review. Mater. Des. 2021;209:110008. doi: 10.1016/j.matdes.2021.110008. DOI

Biswas N., Ding J. Numerical study of the deformation and fracture behavior of porous Ti6Al4V alloy under static and dynamic loading. Int. J. Impact Eng. 2015;82:89–102. doi: 10.1016/j.ijimpeng.2014.08.011. DOI

Fíla T., Koudelka P., Zlámal P., Falta J., Adorna M., Neuhäuserová M., Luksch J., Jiroušek O. Strain Dependency of Poisson’s Ratio of SLS Printed Auxetic Lattices Subjected to Quasi-Static and Dynamic Compressive Loading. Adv. Eng. Mater. 2019;21:1900204. doi: 10.1002/adem.201900204. DOI

Mauko A., Fíla T., Falta J., Koudelka P., Rada V., Neuhäuserová M., Zlámal P., Vesenjak M., Jiroušek O., Ren Z. Dynamic deformation behaviour of chiral auxetic lattices at low and high strain-rates. Metals. 2021;11:52. doi: 10.3390/met11010052. DOI

Neuhäuserová M., Fíla T., Koudelka P., Falta J., Rada V., Šleichrt J., Zlámal P., Jiroušek O. Compressive behaviour of additively manufactured periodical re-entrant tetrakaidecahedral lattices at low and high strain-rates. Metals. 2021;11:1196. doi: 10.3390/met11081196. DOI

Fíla T., Koudelka P., Falta J., Šleichrt J., Adorna M., Zlámal P., Neuhäuserová M., Mauko A., Valach J., Jiroušek O. Impact Behavior of Additively Manufactured Stainless Steel Auxetic Structures at Elevated and Reduced Temperatures. Adv. Eng. Mater. 2021;23:2000669. doi: 10.1002/adem.202000669. DOI

Fíla T., Koudelka P., Falta J., Zlámal P., Rada V., Adorna M., Bronder S., Jiroušek O. Dynamic impact testing of cellular solids and lattice structures: Application of two-sided direct impact Hopkinson bar. Int. J. Impact Eng. 2021;148:103767. doi: 10.1016/j.ijimpeng.2020.103767. DOI

Šleichrt J., Fíla T., Koudelka P., Adorna M., Falta J., Zlámal P., Glinz J., Neuhäuserová M., Doktor T., Mauko A., et al. Dynamic penetration of cellular solids: Experimental investigation using Hopkinson bar and computed tomography. Mater. Sci. Eng. A. 2021;800:140096. doi: 10.1016/j.msea.2020.140096. DOI

Leicht A., Rashidi M., Klement U., Hryha E. Effect of process parameters on the microstructure, tensile strength and productivity of 316L parts produced by laser powder bed fusion. Mater. Charact. 2020;159:110016. doi: 10.1016/j.matchar.2019.110016. DOI

Larimian T., Kannan M., Grzesiak D., AlMangour B., Borkar T. Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting. Mater. Sci. Eng. A. 2020;770:138455. doi: 10.1016/j.msea.2019.138455. DOI

Marattukalam J.J., Karlsson D., Pacheco V., Beran P., Wiklund U., Jansson U., Hjörvarsson B., Sahlberg M. The effect of laser scanning strategies on texture, mechanical properties, and site-specific grain orientation in selective laser melted 316L SS. Mater. Des. 2020;193:108852. doi: 10.1016/j.matdes.2020.108852. DOI

Yu J., Kim D., Ha K., Jeon J.B., Lee W. Strong feature size dependence of tensile properties and its microstructural origin in selectively laser melted 316L stainless steel. Mater. Lett. 2020;275:128161. doi: 10.1016/j.matlet.2020.128161. DOI

Leicht A., Pauzon C., Rashidi M., Klement U., Nyborg L., Hryha E. Effect of part thickness on the microstructure and tensile properties of 316L parts produced by laser powder bed fusion. Adv. Ind. Manuf. Eng. 2021;2:100037. doi: 10.1016/j.aime.2021.100037. DOI

Luo C., Zhang Y. Effect of printing orientation on anisotropic properties in resistance spot welded 316L stainless steels via selective laser melting. Mater. Lett. 2019;254:237–241. doi: 10.1016/j.matlet.2019.07.087. DOI

Sing S.L., Kuo C.N., Shih C.T., Ho C.C., Chua C.K. Perspectives of using machine learning in laser powder bed fusion for metal additive manufacturing. Virtual Phys. Prototyp. 2021;16:372–386. doi: 10.1080/17452759.2021.1944229. DOI

Smith C., Grima J., Evans K. A novel mechanism for generating auxetic behaviour in reticulated foams: Missing rib foam model. Acta Mater. 2000;48:4349–4356. doi: 10.1016/S1359-6454(00)00269-X. DOI

Evans K., Alderson A., Christian F. Auxetic two-dimensional polymer networks. An example of tailoring geometry for specific mechanical properties. J. Chem. Soc. Faraday Trans. 1995;91:2671–2680. doi: 10.1039/ft9959102671. DOI

Choi J.B., Lakes R.S. Nonlinear Analysis of the Poisson’s Ratio of Negative Poisson’s Ratio Foams. J. Compos. Mater. 1995;29:113–128. doi: 10.1177/002199839502900106. DOI

Pan B., Qian K., Xie H., Asundi A. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review. Meas. Sci. Technol. 2009;20:062001. doi: 10.1088/0957-0233/20/6/062001. DOI

Liu D., Nocedal J. On the limited memory BFGS method for large scale optimization. Math. Program. 1989;45:503–528. doi: 10.1007/BF01589116. DOI

Ganzenmüller G., Plappert D., Trippel A., Hiermaier S. A Split-Hopkinson Tension Bar study on the dynamic strength of basalt-fibre composites. Compos. Part Eng. 2019;171:310–319. doi: 10.1016/j.compositesb.2019.04.031. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...