From Marine Metabolites to the Drugs of the Future: Squalamine, Trodusquemine, Their Steroid and Triterpene Analogues
Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
35162998
PubMed Central
PMC8834734
DOI
10.3390/ijms23031075
PII: ijms23031075
Knihovny.cz E-resources
- Keywords
- angiogenesis, antibiotic, ceragenine, claramine, diabetes, obesity, squalamine, triterpenoids, trodusquemine,
- MeSH
- Anti-Infective Agents chemical synthesis chemistry pharmacology MeSH
- Biological Products chemistry pharmacology MeSH
- Cholestanols chemistry MeSH
- Cholestanes chemistry MeSH
- Angiogenesis Inhibitors chemical synthesis chemistry pharmacology MeSH
- Humans MeSH
- Neuroprotective Agents chemical synthesis chemistry pharmacology MeSH
- Antineoplastic Agents chemical synthesis chemistry pharmacology MeSH
- Spermine analogs & derivatives chemistry MeSH
- Steroids chemical synthesis chemistry pharmacology MeSH
- Triterpenes chemical synthesis chemistry pharmacology MeSH
- Aquatic Organisms chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- 3-N-1(spermine)-7, 24-dihydroxy-5-cholestane 24-sulfate MeSH Browser
- Anti-Infective Agents MeSH
- Biological Products MeSH
- ceragenins MeSH Browser
- Cholestanols MeSH
- Cholestanes MeSH
- claramine MeSH Browser
- Angiogenesis Inhibitors MeSH
- Neuroprotective Agents MeSH
- Antineoplastic Agents MeSH
- Spermine MeSH
- squalamine MeSH Browser
- Steroids MeSH
- Triterpenes MeSH
This review comprehensively describes the recent advances in the synthesis and pharmacological evaluation of steroid polyamines squalamine, trodusquemine, ceragenins, claramine, and their diverse analogs and derivatives, with a special focus on their complete synthesis from cholic acids, as well as an antibacterial and antiviral, neuroprotective, antiangiogenic, antitumor, antiobesity and weight-loss activity, antiatherogenic, regenerative, and anxiolytic properties. Trodusquemine is the most-studied small-molecule allosteric PTP1B inhibitor. The discovery of squalamine as the first representative of a previously unknown class of natural antibiotics of animal origin stimulated extensive research of terpenoids (especially triterpenoids) comprising polyamine fragments. During the last decade, this new class of biologically active semisynthetic natural product derivatives demonstrated the possibility to form supramolecular networks, which opens up many possibilities for the use of such structures for drug delivery systems in serum or other body fluids.
See more in PubMed
Casero R.A., Woster P.M. Terminally alkylated polyamine analogues as chemotherapeutic agents. J. Med. Chem. 2001;44:1–26. doi: 10.1021/jm000084m. PubMed DOI
Karigiannis G., Papaioannou D. Structure, biological activity and synthesis of polyamine analogues and conjugates. Eur. J. Org. Chem. 2000;2000:1841–1863. doi: 10.1002/(SICI)1099-0690(200005)2000:10<1841::AID-EJOC1841>3.0.CO;2-9. DOI
Rogoza L.N., Salakhutdinov N.F., Tolstikov G.A. Polymethyleneamine alkaloids of animal origin: I. Metabolites of marine and microbial organisms. Russ. J. Bioorg. Chem. 2005;31:507–520. doi: 10.1007/s11171-005-0070-0. PubMed DOI
Rogoza L.N., Salakhutdinov N.F., Tolstikov G.A. Polymethyleneamine alkaloids of animal origin: II. Polyamine neurotoxins. Russ. J. Bioorg. Chem. 2006;32:23–36. doi: 10.1134/S106816200601002X. PubMed DOI
Stone R. Deja vu guides the way to new antimicrobial steroid. Science. 1993;259:1125. doi: 10.1126/science.8438163. PubMed DOI
Moore K.S., Wehrli S., Roder H., Rogers M., Forrest J.N., Jr., McCrimmon D., Zasloff M. Squalamine: An aminosterol antibiotic from the shark. Proc. Natl. Acad. Sci. USA. 1993;90:1354–1358. doi: 10.1073/pnas.90.4.1354. PubMed DOI PMC
Rao M.N., Shinnar A.E., Noecker L.A., Chao T.L., Feibush B., Snyder B., Sharkansky I., Sarkahian A., Zhang X., Jones S.R., et al. Aminosterols from the Dogfish Shark Squalus acanthias. J. Nat. Prod. 2000;63:631–635. doi: 10.1021/np990514f. PubMed DOI
Moriarty R.M., Tuladhar S.M., Guo L., Wehrli S. Synthesis of squalamine. A steroidal antibiotic from the shark. Tetrahedron Lett. 1994;35:8103–8106. doi: 10.1016/0040-4039(94)88254-1. DOI
Moriarty R.M., Enache L.A., Kinney W.A., Allen C.S., Canary J.W., Tuladhar S.M., Guo L. Stereoselective synthesis of squalamine dessulfate. Tetrahedron Lett. 1995;36:5139–5142. doi: 10.1016/00404-0399(50)10116-. DOI
Yun S.-S., Li W. Identification of squalamine in the plasma membrane of white blood cells in the sea lamprey, Petromyzon marinus. J. Lipid Res. 2007;48:2579–2586. doi: 10.1194/jlr.M700294-JLR200. PubMed DOI
Brunel J.M., Letourneux Y. Recent Advances in the Synthesis of Spermine and Spermidine Analogs of the Shark Aminosterol Squalamine. Eur. J. Org. Chem. 2003;2003:3897–3907. doi: 10.1002/ejoc.200300167. DOI
Schmidt E.J., Boswell J.S., Walsh J.P., Schellenberg M.M., Winter T.W., Li C., Allman G.W., Savage P.B. Activities of cholic acid-derived antimicrobial agents against multidrug-resistant bacteria. J. Antimicrob. Chemother. 2001;47:671–674. doi: 10.1093/jac/47.5.671. PubMed DOI
Cushnie T.P.T., Cushnie B., Lamb A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancingand antivirulence activities. Int. J. Antimicrob. Agents. 2014;44:377–386. doi: 10.1016/j.ijantimicag.2014.06.001. PubMed DOI
Sills A.K., Jr., Williams J.I., Tyler B.M., Epstein D.S., Sipos E.P., Davis J.D., McLane M.P., Pitchford S., Cheshire K., Gannon F.H., et al. Squalamine inhibits angiogenesis and solid tumor growth in vivo and perturbsembryonic vasculature. Cancer Res. 1998;58:2784–2792. PubMed
Westa C.L., Mao Y.-K., Delungahawatta T., Amin J.Y., Farhin S., McQuade R.M., Diwakarla S., Pustovit R., Stanisz A.M., Bienenstock J., et al. Squalamine restores the function of the enteric nervous system in mouse models of Parkinson’s disease. J. Parkinson’s Dis. 2020;10:1477–1491. doi: 10.3233/JPD-202076. PubMed DOI
Hoye T.R., Dvornikovs V., Fine J.M., Anderson K.R., Jeffrey C.S., Muddiman D.C., Shao F., Sorensen P.W., Wang J. Details of the structure determination of the sulfated steroids PSDS and PADS: New components of the Sea Lamprey (Petromyzon marinus) migratory pheromone. J. Org. Chem. 2007;72:7544–7550. doi: 10.1021/jo070957l. PubMed DOI
Fine J.M., Sorensen P.W. Isolation and biological activity of the multi-component sea lamprey migratory pheromone. J. Chem. Ecol. 2008;34:1259–1267. doi: 10.1007/s10886-008-9535-y. PubMed DOI
Seiler N., Knodgen B., Haegele K. N-(3-Aminopropyl)pyrrolidin-2-one, a product of spermidine catabolism in vivo. Biochem. J. 1982;208:189–197. doi: 10.1042/bj2080189. PubMed DOI PMC
Barbut D., Zasloff M. Methods for Treating Blood Pressure Conditions Using Aminosterol Compositions. 20200129528A1. U.S. Patent. 2020 April 30;
Barbut D., Zasloff M. Methods of Treating Alzheimer’s Disease Using Aminosterol Compositions. 20200038412A. U.S. Patent. 2020 February 6;
Barbut D., Zasloff M. Methods of Treating Parkinson’s Disease Using Aminosterol Compositions. 20200038413A1. U.S. Patent. 2020 February 6;
Barbut D., Zasloff M. Methods of Treating Constipation Using Aminosterol Compositions. 20200038414A1. U.S. Patent. 2020 February 6;
Barbut D., Zasloff M. Aminosterol Compositions and Methods of Using the Same for Treating Erectile Dysfunction. 20200038415A1. U.S. Patent. 2020 February 6;
Barbut D., Zasloff M. Methods of Treating Cardiac Conduction Defects Using Aminosterol Compositions. 20200038416A1. U.S. Patent. 2020 February 6;
Barbut D., Zasloff M. Methods and Compositions for Treating Cognitive Impairment. 20200038417A1. U.S. Patent. 2020 February 6;
Barbut D., Zasloff M. Methods of Treating Autism Spectrum Disorder Using Aminosterol Compositions. 20200038418A1. U.S. Patent. 2020 February 6;
Barbut D., Zasloff M. Methods of Treating Multiple System Atrophy Using Aminosterol Compositions. 20200038419A1. U.S. Patent. 2020 February 6;
Barbut D., Zasloff M. Aminosterol Compositions and Methods of Using the Same for Treating Depression. 20200038420A1. U.S. Patent. 2020 February 6;
Barbut D., Zasloff M. Aminosterol Compositions and Methods of Using the Same for Treating Schizophrenia. 20200155574A1. U.S. Patent. 2020 May 21;
Zasloff M. Methods for Treating and Preventing Viral Infections. 20200323883A1. U.S. Patent. 2020 October 15;
Selinsky B.S., Zhou Z., Fojtik K.G., Jones S.R., Dollahon N.R., Shinnar A.E. The aminosterol antibiotic squalamine permeabilizes large unilamellar phospholipid vesicles. Biochim. Biophys. Acta-Biomembr. 1998;1370:218–234. doi: 10.1016/S0005-2736(97)00265-4. PubMed DOI
Williams J.I. Squalamine: A new angiostatic steroid. Antiangiogenic Agents Cancer Ther. 1999;1:153–174. doi: 10.1007/978-1-59259-453-5_10. DOI
Savage P.B., Li C. Cholic acid derivatives: Novel antimicrobials. Expert Opin. Investig. Drugs. 2000;9:263–272. doi: 10.1517/13543784.9.2.263. PubMed DOI
Shu Y., Jones S.R., Kinney W.A., Selinsky B.S. The synthesis of spermine analogs of the shark aminosterol squalamine. Steroids. 2002;67:291–304. doi: 10.1016/S0039-128X(01)00161-1. PubMed DOI
Savage P.B. Cationic steroid antibiotics. Curr. Med. Chem.–Anti-Infect. Agents. 2002;1:293–304. doi: 10.2174/1568012023354776. DOI
Salunke D.B., Hazra B.G., Pore V.S. Bile acide-polyamine conugates as synthetic ionophores. Archivoc. 2003;9:115–125.
Choucair B., Dherbomez M., Roussakis C., El Kihel L. Synthesis of spermidinylcholestanol and spermidinylcholesterol, squalamine analogues. Tetrahedron. 2004;60:11477–11486. doi: 10.1016/j.tet.2004.09.055. PubMed DOI
Alhanout K., M Rolain J., M Brunel J. Squalamine as an Example of a New Potent Antimicrobial Agents Class: A Critical Review. Curr. Med. Chem. 2010;17:3909–3917. doi: 10.2174/092986710793205417. PubMed DOI
Bourguet-Kondracki M.-L., Brunel J.-M. Promises of the Unprecedented Aminosterol Squalamine. Outstanding Marine Molecules: Chemistry, Biology, Analysis. 1st ed. Wiley-VCH Verlag GmbH&Co., KGaA; Weinheim, Germany: 2014. pp. 265–283. Print ISBN: 9783527334650, Online ISBN: 9783527681501. DOI
Djouhri-Bouktab L., Rolain J.M., Brunel J.M. Mini-Review: Polyamines Metabolism, Toxicity and Potent Therapeutical Use. Anti-Infect. Agents. 2014;12:95–103. doi: 10.2174/22113525113119990118. DOI
Blanchet M., Brunel J.M. Bile acid derivatives: From old molecules to a new potent therapeutic use: An overview. Curr. Med. Chem. 2018;25:3613–3636. doi: 10.2174/0929867325666180309113737. PubMed DOI
Négrel S., Brunel J.-M. Synthesis and biological activities of naturally functionalized polyamines: An overview. Curr. Med. Chem. 2021;28:3406–3448. doi: 10.2174/0929867327666201102114544. PubMed DOI
Kinney W.A., Zhang X., Williams J.I., Johnston S., Michalak R.S., Deshpande M., Dostal L., Rosazza J.P.N. A short formal synthesis of squalamine from a microbial metabolite. Org. Lett. 2000;2:2921–2922. doi: 10.1021/ol0059495. PubMed DOI
Weis A.L., Bakos T., Alferiev I., Zhang X., Shao B., Kinney W.A. Synthesis of an azido spermidine equivalent. Tetrahedron Lett. 1999;40:4863–4864. doi: 10.1016/S0040-4039(99)00896-5. DOI
Wehrli S.L., Moore K.S., Roder H., Durell S., Zasloff M. Structure of the novel steroidal antibiotic squalamine determined by two-dimensional NMR spectroscopy. Steroids. 1993;58:370–378. doi: 10.1016/0039-128X(93)90040-T. PubMed DOI
Pearson A.J., Chen Y.S., Han G.R., Hsu S.Y., Ray T. A new method for the oxidation of alkenes to enones. An efficient synthesis of Δ5-7-oxo steroids. J. Chem. Soc. Perkin Trans. 1. 1985:267–273. doi: 10.1039/P19850000267. DOI
Tal D.M., Frisch G.D., Elliott W.H. Bile acids LXIX. Selective K-selectride reduction of 3,7-diketo steroids. Tetrahedron. 1984;40:851–854. doi: 10.1016/S0040-4020(01)91473-5. DOI
Arnostova L.M., Pouzar V., Drasar P. Preparation of steroid hydroxy sulfates. Synth. Commun. 1990;20:1521–1529. doi: 10.1080/00397919008052869. DOI
McGill J.M., LaBell E.S., Williams M. Hydride reagents for stereoselective reductive amination. An improved preparation of 3-endo-tropanamine. Tetrahedron Lett. 1996;37:3977–3980. doi: 10.1016/0040-4039(96)00760-5. DOI
Li C., Budge L.P., Driscoll C.D., Willardson B.M., Allman G.W., Savage P.B. Incremental conversion of outer-membrane permeabilizers into potent antibiotics for gram-negative bacteria. J. Am. Chem. Soc. 1999;121:931–940. doi: 10.1021/ja982938m. DOI
Zhang X., Rao M.N., Jones S.R., Shao B., Feibush P., McGuigan M., Tzodikov N., Feibush B., Sharkansky I., Snyder B., et al. Synthesis of squalamine utilizing a readily accessible spermidine equivalent. J. Org. Chem. 1998;63:8599–8603. doi: 10.1021/jo981344z. DOI
Liang F., Wan S., Li Z., Xiong X., Yang L., Zhou X., Wu C. Medical applications of macrocyclic polyamines. Curr. Med. Chem. 2006;13:711–727. doi: 10.2174/092986706776055706. PubMed DOI
Zhou X.D., Cai F., Zhou W.S. A new highly stereoselective construction of the sidechain of squalamine through improved Sharpless catalytic asymmetric dihydroxylation. Tetrahedron Lett. 2001;42:2537–2539. doi: 10.1016/S0040-4039(01)00191-5. DOI
Zhou X.-D., Cai F., Zhou W.-S. A stereoselective synthesis of squalamine. Tetrahedron. 2002;58:10293–10299. doi: 10.1016/S0040-4020(02)01413-8. DOI
Zhang D.-H., Cai F., Zhou X.-D., Zhou W.-S. A concise and stereoselective synthesis of squalamine. Org. Lett. 2003;5:3257–3259. doi: 10.1021/ol035062j. PubMed DOI
Kolb H.C., VanNieuwenhze M.S., Sharpless K.B. Catalytic asymmetric dihidroxylation. Chem. Rev. 1994;94:2483–2549. doi: 10.1021/cr00032a009. DOI
Iida T., Nishida S., Chang F.C., Niwa T., Goto J., Nambara T. Potential bile acid metabolites. 19. The epimeric 3alpha,6,7beta-trihydroxy- and 3alpha,6,7beta,12alpha-tetrahydroxy-5alpha-cholanoic acids. Cherm. Pharm. Bull. 1993;41:763–765. doi: 10.1248/cpb.41.763. PubMed DOI
Huang L.F., Zhou W.S., Sun L.Q., Pan X.F. Studies on steroidal plant-growth regulators. Part 29. Osmium tetroxide-catalysed asymmetric dihydroxylation of the (22E,24R)- and the (22E,24S)-24-alkyl steroidal unsaturated side chain. J. Chem. Soc. Perkin Trans. 1. 1993:1683–1686. doi: 10.1039/p19930001683. DOI
Corey E.J., Grogan M.J. Stereocontrolled syntheses of 24(S),25-epoxycholesterol and related oxysterols for studies on the activation of LXR receptors. Tetrahedron Lett. 1998;39:9351–9354. doi: 10.1016/S0040-4039(98)02181-9. DOI
Yadav J.S., Mysorekar S.V. A facile conversion of tertiary alcohols to olefins. Synth. Commun. 1989;19:1057–1060. doi: 10.1080/00397918908051028. DOI
Goodnow R., Jr., Konno K., Niwa M., Kallimopoulos T., Bukownic R., Lenares D., Nakanishi K. Synthesis of glutamate receptor antagonist philanthotoxin-433 (PhTX-433) and its analogs. Tetrahedron. 1990;46:3267–3286. doi: 10.1016/S0040-4020(01)85463-6. DOI
Okumura K., Nakamura Y., Takeuchi S., Kato I., Fujimoto Y., Ikekawa N. Formal synthesis of squalamine from desmosterol. Chem. Pharm. Bull. 2003;51:1177–1182. doi: 10.1248/cpb.51.1177. PubMed DOI
Jones S.R., Selinsky B.S., Rao M.N., Zhang X.N., Kinney W.A., Tham F.S. Efficient route to 7α-(benzoyloxy)-3-dioxolane cholestan-24(R)-ol, a key intermediate in the synthesis of squalamine. J. Org. Chem. 1998;63:3786–3789. doi: 10.1021/jo971405d. DOI
Foricher J., Furbringer C., Pfoertner K. Process for the Catalytic Oxidation of Isoprenoids Having Allylic Groups. 5,030,739. U.S. Patent. 1991 July 9;
Shen J.M., Zhou X.D., Zhou W.S. Formal synthesis of squalamine from methylhyodeoxycholanate. Acta Chim. Sin. 2006;64:1513–1516.
Zasloff M. Use of Squalamine for the Manufacture of a Medicament for Inhibiting NHE. 0831837B1. Europe Patent. 2003 May 2;
Jones S.R., Kinney W.A., Zhang X., Jones L.M., Selinsky B.S. The synthesis and characterization of analogs of the antimicrobial compound squalamine: 6β-hydroxy-3-aminosterols synthesized from hyodeoxycholic acid. Steroids. 1996;61:565–571. doi: 10.1016/S0039-128X(96)00114-6. PubMed DOI
Aher N.G., Pore V.S., Mishra N.N., Shukla P.K., Gonnade R.G. Design and synthesis of bile acid-based amino sterols as antimicrobial agents. Bioorg. Med. Chem. Lett. 2009;19:5411–5414. doi: 10.1016/j.bmcl.2009.07.117. PubMed DOI
Brunel J.M., Marc J.P. Compounds That Are Analogs of Squalamine, Used as Antibacterial Agents. 10729701B2. U.S. Patent. 2020 August 4;
Kim H.S., Choi B.S., Kwon K.S., Lee S.O., Kwak H.J., Lee C.H. Synthesis and antimicrobial activity of squalamine analogue. Bioorg. Med. Chem. 2000;8:2059–2065. doi: 10.1016/S0968-0896(00)00128-0. PubMed DOI
Choucair B., Dherbomez M., Roussakis C., El Kihel L. Synthesis of 7α- and 7β-spermidinylcholesterol, squalamine analogues. Bioorg. Med. Chem. Lett. 2004;14:4213–4216. doi: 10.1016/j.bmcl.2004.06.010. PubMed DOI
Kim H.-S., Khan S.N., Jadhav J.R., Jeong J.-W., Jung K., Kwak J.-H. A concise synthesis and antimicrobial activities of 3-polyamino-23,24-bisnorcholanes as steroid–polyamine conjugates. Bioorg. Med. Chem. Lett. 2011;21:3861–3865. doi: 10.1016/j.bmcl.2011.05.048. PubMed DOI
Salmi C., Loncle C., Vidal N., Letourneux Y., Brunel J.M. New stereoselective titanium reductive amination synthesis of 3-amino and polyaminosterol derivatives possessing antimicrobial activities. Eur. J. Med. Chem. 2008;43:540–547. doi: 10.1016/j.ejmech.2007.04.006. PubMed DOI
Salmi C., Loncle C., Vidal N., Laget M., Letourneux Y., Brunel J. New 3-aminosteroid derivatives as a new family of topical antibacterial agents active against methicillin-resistant staphylococcus aureus (MRSA) Lett. Drug Des. Discov. 2008;5:169–172. doi: 10.2174/157018008784084018. DOI
Salmi C., Loncle C., Vidal N., Laget M., Letourneux Y., Brunel J.M. Antimicrobial activities of 3-amino- and polyaminosterol analogues of squalamine and trodusquemine. J. Inzyme Inhib. Med. Chem. 2008;23:860–865. doi: 10.1080/14756360701809910. PubMed DOI
Boes A., Brunel J.M., Derouaux A., Kerff F., Bouhss A., Touze T., Breukink E., Terrak M. Squalamine and aminosterol mimics inhibit the peptidoglycan glycosyltransferase activity of PBP1B. Antibiotics. 2020;9:373. doi: 10.3390/antibiotics9070373. PubMed DOI PMC
Loncle C., Salmi C., Letourneux Y., Brunel J.M. Synthesis of new 7-aminosterol squalamine analogues with high antimicrobial activities through a stereoselective titanium reductive amination reaction. Tetrahedron. 2007;63:12968–12974. doi: 10.1016/j.tet.2007.10.032. DOI
Alhanout K., Brunel J.M., Raoult D., Rolain J.M. In vitro antibacterial activity of aminosterols against multidrug-resistant bacteria from patients with cystic fibrosis. J. Antimicrob. Chemother. 2009;64:810–814. doi: 10.1093/jac/dkp281. PubMed DOI
Alhanout K., Brunel J.M., Ranque S., Rolain J.M. In vitro antifungal activity of aminosterols against moulds isolated from cystic fibrosis patients. J. Antimicrob. Chemother. 2010;65:1307–1309. doi: 10.1093/jac/dkq089. PubMed DOI
Blanchet M., Borselli D., Brunel J.M. Polyamine derivatives: A revival of an old neglected scaffold to fight resistant Gram-negative bacteria? Future Med. Chem. 2016;8:963–973. doi: 10.4155/fmc-2016-0011. PubMed DOI
Djouhri L., Vidal N., Rolain J.M., Brunel J.M. Synthesis of new 3,20-bispolyaminosteroid squalamine analogues and evaluation of their antimicrobial activities. J. Med. Chem. 2011;54:7417–7421. doi: 10.1021/jm200506x. PubMed DOI
Sakr A., Laurent F., Brunel J.-M., Dagher T.N., Blin O., Rolain J.-M. Polyaminosteroid Analogues as Potent Antibacterial Agents Against Mupirocin- Resistant Staphylococcus aureus Strains. Anti-Infect. Agents. 2020;18:239–244. doi: 10.2174/2211352517666190723092347. DOI
Khan S.N., Kim B.J., Kim H.-S. Synthesis and antimicrobial activity of 7-fluoro-3-aminosteroids. Bioorg. Med. Chem. Lett. 2007;17:5139–5142. doi: 10.1016/j.bmcl.2007.07.001. PubMed DOI
Khabnadideh S., Tan C.L., Croft S.L., Kendrick H., Yardley V., Gilbert I.H. Squalamine analogues as potential anti-trypanosomal and anti-leishmanial compounds. Bioorg. Med. Chem. Lett. 2000;10:1237–1239. doi: 10.1016/S0960-894X(00)00196-7. PubMed DOI
Dvorken L.V., Smyth R.B., Mislow K. Stereochemistry of the 1,2,3,4-dibenz-1,3-cyclooctadiene system. J. Am. Chem. Soc. 1958;80:486–492. doi: 10.1021/ja01535a058. DOI
Blagbrough I.S., Al-Hadithi D., Geall A.J. DNA condensation by bile acid conjugates of thermine and spermine. Pharm. Pharmacol. Commun. 1999;5:139–144. doi: 10.1211/146080899128734677. DOI
Vida N., Svobodová H., Rárová L., Drašar P., Šaman D., Cvačka J., Wimmer Z. Polyamine conjugates of stigmasterol. Steroids. 2012;77:1212–1218. doi: 10.1016/j.steroids.2012.07.009. PubMed DOI
Randazzo R.A.S., Bucki R., Janmey P.A., Diamond S.L. A series of cationic sterol lipids with gene transfer and bactericidal activity. Bioorg. Med. Chem. 2009;17:3257–3265. doi: 10.1016/j.bmc.2009.03.049. PubMed DOI PMC
Blagbrough I.S., Geall A.J., Neal A.P. Polyamines and novel polyamine conjugates interact with DNA in ways that can be exploited in non-viral gene therapy. Biochem. Soc. Trans. 2003;31:397–406. doi: 10.1042/bst0310397. PubMed DOI
Geall A.J., Taylor R.J., Earll M.E., Eaton M.A.W., Blagbrough I.S. Synthesis of cholesteryl polyamine carbamates: pKa studies and condensation of calf thymus DNA. Bioconjug. Chem. 2000;11:314–326. doi: 10.1021/bc990115w. PubMed DOI
Kim H.-S., Kwon K.-C., Kim K.S., Lee C.H. Synthesis and antimicrobial activity of new 3α-Hydroxy-23,24-bisnorcholane polyamine carbamates. Bioorg. Med. Chem. Lett. 2001;11:3065–3068. doi: 10.1016/S0960-894X(01)00632-1. PubMed DOI
Savage P.B. Design, synthesis and characterization of cationic peptide and steroid antibiotics. Eur. J. Org. Chem. 2002;2002:759–768. doi: 10.1002/1099-0690(200203)2002:5<759::AID-EJOC759>3.0.CO;2-J. DOI
Lai X.Z., Feng Y., Pollard J., Chin J.N., Rybak M.J., Bucki R., Epand R.F., Epand R.M., Savage P.B. Ceragenins: Cholic acidbased mimics of antimicrobial peptides. Acc. Chem. Res. 2008;41:1233–1240. doi: 10.1021/ar700270t. PubMed DOI
Epand R.M., Epand R.F., Savage P.B. Ceragenins (cationic steroid compounds), a novel class of antimicrobial agents. Drug News Perspect. 2008;21:307–311. doi: 10.1358/dnp.2008.21.6.1246829. PubMed DOI
Leszczyńska K., Namiot A., Fein D.E., Wen Q., Namiot Z., Savage P.B., Diamond S., Janmey P.A., Bucki R. Bactericidal activities of the cationic steroid CSA-13 and the cathelicidin peptide LL-37 against Helicobacter pylori in simulated gastric juice. BMC Microbiol. 2009;9:187. doi: 10.1186/1471-2180-9-187. PubMed DOI PMC
Bucki R., Sostarecz A.G., Byfield F.J., Savage P.B., Janmey P.A. Resistance of the antibacterial agent ceragenin CSA-13 to inactivation by DNA or F-actin and its activity in cystic fibrosis sputum. J. Antimicrob. Chemother. 2007;60:535–545. doi: 10.1093/jac/dkm218. PubMed DOI
Bucki R., Namiot D.B., Namiot Z., Savage P.B., Janmey P.A. Salivary mucins inhibit antibacterial activity of the cathelicidin-derived LL-37 peptide but not the cationic steroid CSA-13. J. Antimicrob. Chemother. 2008;62:329–335. doi: 10.1093/jac/dkn176. PubMed DOI PMC
Leszczyńska K., Namiot A., Cruz K., Byfield F.J., Won E., Mendez G., Sokołowski W., Savage P.B., Bucki R., Janmey P.A. Potential of ceragenin CSA-13 and its mixture with pluronic F-127 as treatment of topical bacterial infections. J. Appl. Microbiol. 2011;110:229–238. doi: 10.1111/j.1365-2672.2010.04874.x. PubMed DOI PMC
Hoppenes M.A., Sylvester C.B., Qureshi A.T., Scherr T., Czapski D.R., Duran R.S., Savage P.B., Hayes D. Ceragenin mediated selectivity of antimicrobial silver nanoparticles. ACS Appl. Mater. Interfaces. 2014;6:13900–13908. doi: 10.1021/am504640f. PubMed DOI
Niemirowicz K., Surel U., Wilczewska A.Z., Mystkowska J., Piktel E., Gu X., Namiot Z., Kułakowska A., Savage P.B., Bucki R. Bactericidal activity and biocompatibility of ceragenin-coated magnetic nanoparticles. J. Nanobiotechnol. 2015;13:32. doi: 10.1186/s12951-015-0093-5. PubMed DOI PMC
Kikuchi K., Bernard E.M., Sadownik A., Regen S.L., Armstrong D. Antimicrobial activities of squalamine mimics. Antimicrob. Agents Chemother. 1997;41:1433–1438. doi: 10.1128/AAC.41.7.1433. PubMed DOI PMC
Saha S., Savage P.B., Bal M. Enhancement of the efficacy of erythromycin in multiple antibiotic-resistant gram-negative bacterial pathogens. J. Appl. Microbiol. 2008;105:822–828. doi: 10.1111/j.1365-2672.2008.03820.x. PubMed DOI
Lavigne J.-P., Brunel J.-M., Chevalier J., Pages J.-M. Squalamine, an original chemosensitizer to combat antibiotic-resistant Gram-negative bacteria. J. Antimicrob. Chemother. 2010;65:799–801. doi: 10.1093/jac/dkq031. PubMed DOI
Ding B., Yin N., Liu Y., Cardenas-Garcia J., Evanson R., Orsak T., Fan M., Turin G., Savage P.B. Origins of cell selectivity of cationic steroid antibiotics. J. Am. Chem. Soc. 2004;126:13642–13648. doi: 10.1021/ja046909p. PubMed DOI
Zasloff M. Formulations Comprising Aminosterols. 8623416B2. U.S. Patent. 2014 January 7;
Vicens M., Medarde M., Macias R.I.R., Larena M.G., Villafaina A., Serrano M.A., Marin J.J.G. Novel cationic and neutral glycocholic acid and polyamine conjugates able to inhibit transporters involved in hepatic and intestinal bile acid uptake. Bioorg. Med. Chem. 2007;15:2359–2367. doi: 10.1016/j.bmc.2007.01.027. PubMed DOI
Blagbrough I.S., Geall A.J. Practical synthesis of unsymmetrical polyamine amides. Tetrahedron Lett. 1998;39:439–442. doi: 10.1016/S0040-4039(97)10542-1. DOI
Chen W.-H., Shao X.-B., Moellering R., Wennersten C., Regen S.L. A bioconjugate approach toward squalamine mimics: Insight into the mechanism of biological action. Bioconjug. Chem. 2006;17:1582–1591. doi: 10.1021/bc060220n. PubMed DOI
Chen W.-H., Wennersten C., Moellering R.C., Regen S.L. Towards squalamine mimics: Synthesis and antibacterial activities of head-to-tail dimeric sterol-polyamine conjugates. Chem. Biodivers. 2013;10:385–393. doi: 10.1002/cbdv.201100431. PubMed DOI
Xiao Q., Sun J., Ju Y., Zhao Y., Cui Y. Facile synthesis of 3β-cholesterol H-phosphonates. Chem. Lett. 2003;32:522–523. doi: 10.1246/cl.2003.522. DOI
Xiao Q., Sun J., Sun Q., Ju Y., Zhao Y.F., Cui Y.X. Synthesis of AZT 5′-O-hydrogen phospholipids and their derivatives. Synthesis. 2003;2003:107–112. doi: 10.1055/s-2003-36249. DOI
Ji S.H., Xiao Q., Ju Y., Zhao Y. Synthesis of novel dimeric steroidal-nucleoside phosphoramidates. Chem. Lett. 2005;34:944–945. doi: 10.1246/cl.2005.944. DOI
Wu D., Ji S., Wu Y., Ju Y., Zhao Y. Design, synthesis, and antitumor activity of bile acid-polyamine-nucleoside conjugates. Bioorg. Med. Chem. Lett. 2007;17:2983–2986. doi: 10.1016/j.bmcl.2007.03.067. PubMed DOI
Shawakfeh K.Q., Al-Said N.H., Abboushi E.K. Synthesis of new di- and triamine diosgenin dimers. Tetrahedron. 2010;66:1420–1423. doi: 10.1016/j.tet.2009.11.037. DOI
Bajaj A., Kondaiah P., Bhattacharya S. Synthesis and gene transfection efficacies of PEI-cholesterol-based lipopolymers. Bioconjug. Chem. 2008;19:1640–1651. doi: 10.1021/bc700381v. PubMed DOI
Mishra R., Mishra S. Updates in bile acid-bioactive molecule conjugates and their applications. Steroids. 2020;159:108639–108654. doi: 10.1016/j.steroids.2020.108639. PubMed DOI
Errico S., Lucchesi G., Odino D., Muscat S., Capitini C., Bugelli C., Canale C., Ferrando R., Grasso G., Barbut D., et al. Making biological membrane resistant to the toxicity of misfolded protein oligomers: A lesson from trodusquemine. Nanoscale. 2020;12:22596–22614. doi: 10.1039/D0NR05285J. PubMed DOI
Govers R.M.T., Brunel J.M. Anti-Diabetic Aminosteroid. WO2013057422A1. Derivatives. Patent. 2013 April 25;
Pandey Z.N.R., Zhou X., Zaman T., Cruz S.A., Qin Z., Lu M., Keyhanian K., Brunel J.M., Stewart A.F.R., Chen H.H. LMO4 is required to maintain hypothalamic insulin signaling. Biochem. Biophys. Res. Commun. 2014;450:666–672. doi: 10.1016/j.bbrc.2014.06.026. PubMed DOI
Blanchet M., Borselli D., Rodallec A., Peiretti F., Vidal N., Bolla J.-M.M., Digiorgio C., Morrison K.R., Wuest W.M., Brunel J.M. Claramines: A New Class of Broad-Spectrum Antimicrobial Agents with Bimodal Activity. ChemMedChem. 2018;13:1018–1027. doi: 10.1002/cmdc.201800073. PubMed DOI
Mancini I., Defant A., Guella G. Recent synthesis of marine natural products with antibacterial activities. Anti-Infect. Agents Med. Chem. 2007;6:17–48. doi: 10.2174/187152107779314151. DOI
Pietras R.J., Weinberg O.K. Antiangiogenic Steroids in Human Cancer Therapy. Evid. Based Complement. Alternat. Med. 2005;2:49–57. doi: 10.1093/ecam/neh066. PubMed DOI PMC
Wnorowska U., Fiedoruk K., Piktel E., Prasad S.V., Sulik M., Janion M., Daniluk T., Savage P.B., Bucki R. Nanoantibiotics containing membrane-active human cathelicidin LL-37 or synthetic ceragenins attached to the surface of magnetic nanoparticles as novel and innovative therapeutic tools: Current status and potential future applications. J. Nanobiotechnol. 2020;18:3. doi: 10.1186/s12951-019-0566-z. PubMed DOI PMC
Dias C., Rauter A.P. Membrane-targeting antibiotics: Recent developments outside the peptide space. Future Med. Chem. 2019;11:211–228. doi: 10.4155/fmc-2018-0254. PubMed DOI
Butler M.W., Stahlschmidt Z.R., Ardia D.R., Davies S., Davis J., Guillette L.J., Johnson N., McCormick S.D., McGraw K.J., DeNardo D.F. Thermal sensitivity of immune function: Evidence against a generalist-specialist trade-off among endothermic and ectothermic vertebrates. Am. Nat. 2013;181:761–774. doi: 10.1086/670191. PubMed DOI
Savage P.B., Li C., Taotafa U., Ding B., Guan Q. Antibacterial properties of cationic steroid antibiotics. FEMS Microbiol. Lett. 2002;217:1–7. doi: 10.1111/j.1574-6968.2002.tb11448.x. PubMed DOI
Alhanout K., Giorgio C.D., Meo M.D., Brunel J.M. Non-Genotoxic Assessment of a Natural Antimicrobial Agent: Squalamine. Anti-Infect. Agents. 2014;12:75–79. doi: 10.2174/22113525113119990114. DOI
Salmi C., Loncle C., Vidal N., Letourneux Y., Fantini J., Maresca M., Taïeb N., Pagès J.M., Brunel J.M., Page J. Squalamine: An Appropriate Strategy against the Emergence of Multidrug Resistant Gram-Negative Bacteria? PLoS ONE. 2008;3:e2765. doi: 10.1371/journal.pone.0002765. PubMed DOI PMC
Alhanout K., Djouhri L., Vidal N., Brunel J.M., Piarroux R., Ranque S. In vitro activity of aminosterols against yeasts involved in blood stream infections. Med. Mycol. 2011;49:121–125. doi: 10.3109/13693786.2010.502189. PubMed DOI
Khelaifia S., Brunel J.M., Michel J.B., Drancourt M. In-vitro archaeacidal activity of biocides against human-associated archaea. PLoS ONE. 2013;8:e62738. doi: 10.1371/journal.pone.0062738. PubMed DOI PMC
Khelaifia S., Drancourt M. Susceptibility of archaea to antimicrobial agents: Applications to clinical microbiology. Clin. Microbiol. Infect. 2012;18:841–848. doi: 10.1111/j.1469-0691.2012.03913.x. PubMed DOI
Nicol M., Mlouka M.A.B., Berthe T., Di Martino P., Jouenne T., Brunel J.M., Dé E. Anti-persister activity of squalamine against Acinetobacter baumannii. Int. J. Antimicrob. Agents. 2019;53:337–342. doi: 10.1016/j.ijantimicag.2018.11.004. PubMed DOI
Coulibaly O., Alhanout K., L’ollivier C., Brunel J.M., Thera M.A., Djimdé A.A., Doumbo O.K., Piarroux R., Ranque S. In vitro activity of aminosterols against dermatophytes. Med. Mycol. 2013;51:309–312. doi: 10.3109/13693786.2012.724773. PubMed DOI
Kwon D.H., Lu C.D. Polyamines increase antibiotic susceptibility in pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2006;50:1623–1627. doi: 10.1128/AAC.50.5.1623-1627.2006. PubMed DOI PMC
Kwon D.H., Lu C.D. Polyamine effects on antibiotic susceptibility in bacteria. Antimicrob. Agents Chemother. 2007;51:2070–2077. doi: 10.1128/AAC.01472-06. PubMed DOI PMC
Alhanout K., Malesinki S., Vidal N., Peyrot V., Rolain J.M., Brunel J.M. New insights into the antibacterial mechanism of action of squalamine. J. Antimicrob. Chemother. 2010;65:1688–1693. doi: 10.1093/jac/dkq213. PubMed DOI
Di Pasquale E., Salmi-Smail C., Brunel J.M., Sanchez P., Fantini J., Maresca M. Biophysical studies of the interaction of squalamine and other cationic amphiphilic molecules with bacterial and eukaryotic membranes: Importance of the distribution coefficient in membrane selectivity. Chem. Phys. Lipids. 2010;163:131–140. doi: 10.1016/j.chemphyslip.2009.10.006. PubMed DOI
Selinsky B.S., Smith R., Frangiosi A., Vonbaur B., Pedersen L. Squalamine is not a proton ionophore. Biochim. Biophys. Acta-Biomembr. 2000;1464:135–141. doi: 10.1016/S0005-2736(99)00256-4. PubMed DOI
Russo T.A., Mylotte D. Expression of the K54 and O4 specific antigen has opposite effects on the bactericidal activity of squalamine against an extraintestinal isolate of Escherichia coli. FEMS Microbiol. Lett. 1998;162:311–315. doi: 10.1111/j.1574-6968.1998.tb13014.x. PubMed DOI
Ghodbane R., Ameen S.M., Drancourt M., Brunel J.M. In vitro antimicrobial activity of squalamine derivatives against mycobacteria. Tuberculosis. 2013;93:565–566. doi: 10.1016/j.tube.2013.04.006. PubMed DOI
Asmar S., Drancourt M. Chlorhexidine decontamination of sputum for culturing Mycobacterium tuberculosis. BMC Microbiol. 2015;15:155. doi: 10.1186/s12866-015-0479-4. PubMed DOI PMC
Djouhri-Bouktab L., Alhanout K., Andrieu V., Raoult D., Rolain J.M., Brunel J.M. Squalamine ointment for Staphylococcus aureus skin decolonization in a mouse model. J. Antimicrob. Chemother. 2011;66:1306–1310. doi: 10.1093/jac/dkr114. PubMed DOI
Djouhri-Bouktab L., Alhanout K., Andrieu V., Stremler N., Dubus J.C., Raoult D., Rolain J.M., Brunel J.M. Soluble squalamine tablets for the rapid disinfection of home nebulizers of cystic fibrosis patients. J. Cyst. Fibros. 2012;11:555–559. doi: 10.1016/j.jcf.2012.05.006. PubMed DOI
Hraiech S., Brégeon F., Brunel J.M., Rolain J.M., Lepidi H., Andrieu V., Raoult D., Papazian L., Roch A. Antibacterial efficacy of inhaled squalamine in a rat model of chronic Pseudomonas aeruginosa pneumonia. J. Antimicrob. Chemother. 2012;67:2452–2458. doi: 10.1093/jac/dks230. PubMed DOI
Coulibaly O., Thera M.A., Koné A.K., Siaka G., Traoré P., Djimdé A.A., Brunel J.M., Gaudart J., Piarroux R., Doumbo O.K., et al. A double-blind randomized placebo-controlled clinical trial of squalamine ointment for tinea capitis treatment. Mycopathologia. 2015;179:187–193. doi: 10.1007/s11046-014-9849-y. PubMed DOI
Zasloff M., Adams A.P., Beckerman B., Campbell A., Han Z., Luijten E., Meza I., Julander J., Mishra A., Qu W., et al. Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential. Proc. Natl. Acad. Sci. USA. 2011;108:15978–15983. doi: 10.1073/pnas.1108558108. PubMed DOI PMC
Ozaslan M. Squalamine: May be an effective viral control. Int. J. Virol. 2012;8:285–287. doi: 10.3923/ijv.2012.285.287. DOI
Perni M., Galvagnion C., Maltsev A., Meisl G., Müller M.B.D., Challa P.K., Kirkegaard J.B., Flagmeier P., Cohen S.I.A., Cascella R., et al. A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. Proc. Natl. Acad. Sci. USA. 2017;114:E1009–E1017. doi: 10.1073/pnas.1610586114. PubMed DOI PMC
Limbocker R., Staats R., Chia S., Ruggeri F.S., Mannini B., Xu C.K., Perni M., Cascella R., Bigi A., Sasser L.R., et al. Squalamine and Its Derivatives Modulate the Aggregation of Amyloid-β and α-Synuclein and Suppress the Toxicity of Their Oligomers. Front. Neurosci. 2021;15:541–558. doi: 10.3389/fnins.2021.680026. PubMed DOI PMC
Perni M., Flagmeier P., Limbocker R., Cascella R., Aprile F.A., Galvagnion C., Heller G.T., Meisl G., Chen S.W., Kumita J.R., et al. Multistep inhibition of α-synuclein aggregation and toxicity in vitro and in vivo by trodusquemine. ACS Chem. Biol. 2018;13:2308–2319. doi: 10.1021/acschembio.8b00466. PubMed DOI
Limbocker R., Mannini B., Ruggeri F.S., Cascella R., Xu C.K., Perni M., Chia S., Chen S.W., Habchi J., Bigi A., et al. Trodusquemine displaces protein misfolded oligomers from cell membranes and abrogates their cytotoxicity through a generic mechanism. Commun. Biol. 2020;3:435. doi: 10.1038/s42003-020-01140-8. PubMed DOI PMC
Errico S., Ramshini H., Capitini C., Canale C., Spaziano M., Barbut D., Calamai M., Zasloff M., Oropesa-Nuñez R., Vendruscolo M., et al. Quantitative Measurement of the Affinity of Toxic and Nontoxic Misfolded Protein Oligomers for Lipid Bilayers and of Its Modulation by Lipid Composition and Trodusquemine. ACS Chem. Neurosci. 2021;12:3189–3202. doi: 10.1021/acschemneuro.1c00327. PubMed DOI PMC
Perni M., van der Goot A., Limbocker R., van Ham T.J., Aprile F.A., Xu C.K., Flagmeier P., Thijssen K., Sormanni P., Fusco G., et al. Comparative Studies in the A30P and A53T α-Synuclein C. Elegans Strains to Investigate the Molecular Origins of Parkinson’s Disease. Front. Cell Dev. Biol. 2021;9:492–502. doi: 10.3389/fcell.2021.552549. PubMed DOI PMC
Limbocker R., Chia S., Ruggeri F.S., Perni M., Cascella R., Heller G.T., Meisl G., Mannini B., Habchi J., Michaels T.C.T., et al. Trodusquemine enhances Aβ42 aggregation but suppresses its toxicity by displacing oligomers from cell membranes. Nat. Commun. 2019;10:225. doi: 10.1038/s41467-018-07699-5. PubMed DOI PMC
Odino D., Errico S., Canale C., Ferrando R., Chiti F., Relini A. Interaction between Biomimetic Lipid Membranes and Trodusquemine: An Atomic Force Microscopy Study. Biophys. J. 2021;120:325a. doi: 10.1016/j.bpj.2020.11.2052. DOI
Zhang L., Qin Z., Sharmin F., Lin W., Ricke K.M., Zasloff M.A., Stewart A.F.R., Chen H.-H. Tyrosine Phosphatase PTP1B Impairs Presynaptic NMDA Receptor-Mediated Plasticity in a Mouse Model of Alzheimer’s Disease. Neurobiol. Dis. 2021;156:105402. doi: 10.1016/j.nbd.2021.105402. PubMed DOI
Ricke K.M., Cruz S.A., Qin Z., Farrokhi K., Sharmin F., Zhang L., Zasloff M.A., Stewart A.F.R., Chen H.-H. Neuronal Protein Tyrosine Phosphatase 1B Hastens Amyloid β-Associated Alzheimer’s Disease in Mice. J. Neurosci. 2020;40:1581–1593. doi: 10.1523/JNEUROSCI.2120-19.2019. PubMed DOI PMC
Limbocker R., Errico S., Barbut D., Knowles T.P.J., Vendruscolo M., Chiti F., Zasloff M. Squalamine and Trodusquemine: Two natural products for neurodegenerative diseases, from physical chemistry to the clinic. Nat. Prod. Rep. 2021;38 doi: 10.1039/D1NP00042J. PubMed DOI
Li D., Williams J.I., Pietras R.J. Squalamine and cisplatin block angiogenesis and growth of human ovarian cancer cells with or without HER-2 gene overexpression. Oncogene. 2002;21:2805–2814. doi: 10.1038/sj.onc.1205410. PubMed DOI
Akhter S., Nath S.K., Tse G.M., Williams J., Zasloff M., Donowitz M. Squalamine, a novel cationic steroid, specifically inhibits the brush- border NA+/H+exchanger isoform NHE3. Am. J. Physiol.-Cell Physiol. 1999;276:136–144. doi: 10.1152/ajpcell.1999.276.1.C136. PubMed DOI
Williams J.I., Weitman S., Gonzalez C.M., Jundt C.H., Marty J., Stringer S.D., Holroyd K.J., Mclane M.P., Chen Q., Zasloff M., et al. Squalamine treatment of human tumors in nu/nu mice enhances platinum-based chemotherapies. Clin. Cancer Res. 2001;7:724–733. PubMed
Teicher B.A., Williams J.I., Takeuchi H., Ara G., Herbst R.S., Buxton D. Potential of the aminosterol, squalamine in combination therapy in the rat 13,762 mammary carcinoma and the murine Lewis lung carcinoma. Anticancer Res. 1998;18:2567–2573. PubMed
Márquez-Garbán D.C., Gorrín-Rivas M., Chen H.W., Sterling C., Elashoff D., Hamilton N., Pietras R.J. Squalamine blocks tumor-associated angiogenesis and growth of human breast cancer cells with or without HER-2/neu overexpression. Cancer Lett. 2019;449:66–75. doi: 10.1016/j.canlet.2019.02.009. PubMed DOI PMC
Higgins R.D., Yan Y., Geng Y., Zasloff M., Williams J.I. Regression of retinopathy by squalamine in a mouse model. Pediatr. Res. 2004;56:144–149. doi: 10.1203/01.PDR.0000128977.55799.34. PubMed DOI
Ciulla T.A., Criswell M.H., Danis R.P., Williams J.I., McLane M.P., Holroyd K.J. Squalamine lactate reduces choroidal neovascularization in a laser-injury model in the rat. Retina. 2003;23:808–814. doi: 10.1097/00006982-200312000-00011. PubMed DOI
Genaidy M., Kazi A.A., Peyman G.A., Passos-Machado E., Farahat H.G., Williams J.I., Holroyd K.J., Blake D.A. Effect of squalamine on iris neovascularization in monkeys. Retina. 2002;22:772–778. doi: 10.1097/00006982-200212000-00014. PubMed DOI
Kinter A., Hardy E., Kinney W.J., Chao T., Zasloff M., Fauci A. MSI-1436, a novel aminosterol, inhibits HIV replication in vitro and in vivo infected mononuclear cells; Proceedings of the 4th Conference on Retroviruses and Opportunistic Infections; Washington, DC, USA. 22–26 January 1997; p. 231.
Alper S.L., Chernova M.N., Williams J., Zasloff M., Law F.Y., Knauf P.A. Differential inhibition of AE1 and AE2 anion exchangers by oxonol dyes and by novel polyaminosterol analogs of the shark antibiotic squalamine. Biochem. Cell Biol. 1998;76:799–806. doi: 10.1139/o98-082. PubMed DOI
Chernova M.N., Vandorpe D.H., Clark J.S., Williams J.I., Zasloff M.A., Jiang L., Alper S.L. Apparent receptor-mediated activation of Ca2+-dependent conductive Cl− transport by shark-derived polyaminosterols. Am. J. Physiol. Integr. Comp. Physiol. 2005;289:R1644–R1658. doi: 10.1152/ajpregu.00098.2005. PubMed DOI
Zasloff M., Williams J., Kinney W., Anderson M., McLane M. Therapeutic Uses for an Aminosterol. WO9744044. Compound. Patent. 1997 November 27;
Zasloff M., Williams J., Chen Q., Anderson M., Maeder T., Holroyd K., Jones S., Kinney W., Cheshire K., McLane M. A spermine-coupled cholesterol metabolite from the shark with potent appetite suppressant and antidiabetic properties. Int. J. Obes. 2001;25:689–697. doi: 10.1038/sj.ijo.0801599. PubMed DOI
Ahima R.S., Patel H.R., Takahashi N., Qi Y., Hileman S.M., Zasloff M.A. Appetite suppression and weight reduction by a centrally active aminosterol. Diabetes. 2002;51:2099–2104. doi: 10.2337/diabetes.51.7.2099. PubMed DOI
Roitman M.F., Wescott S., Cone J.J., McLane M.P., Wolfe H.R. MSI-1436 reduces acute food intake without affecting dopamine transporter activity. Pharmacol. Biochem. Behav. 2010;97:138–143. doi: 10.1016/j.pbb.2010.05.010. PubMed DOI PMC
Cho H. Protein tyrosine phosphatase 1B (PTP1B) and obesity. Vitam. Horm. 2013;91:405–424. doi: 10.1016/B978-0-12-407766-9.00017-1. PubMed DOI
Bence K.K., Delibegovic M., Xue B., Gorgun C.Z., Hotamisligil G.S., Neel B.G., Kahn B.B. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat. Med. 2006;12:917–924. doi: 10.1038/nm1435. PubMed DOI
Haj F.G., Zabolotny J.M., Kim Y.B., Kahn B.B., Neel B.G. Liver-specific Protein-tyrosine Phosphatase 1B (PTP1B) Re-expression Alters Glucose Homeostasis of PTP1B–/–Mice. J. Biol. Chem. 2005;280:15038–15046. doi: 10.1074/jbc.M413240200. PubMed DOI
Delibegovic M., Zimmer D., Kauffman C., Rak K., Hong E.G., Cho Y.R., Kim J.K., Kahn B.B., Neel B.G., Bence K.K. Liver-specific deletion of Protein-Tyrosine Phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes. 2009;58:590–599. doi: 10.2337/db08-0913. PubMed DOI PMC
Goldstein B.J. Protein-tyrosine phosphatase 1B (PTP1B): A novel therapeutic target for type 2 diabetes mellitus, obesity and related states of insulin resistance. Curr. Drug Targets Immune Endocr. Metabol. Disord. 2001;1:265–275. doi: 10.2174/1568008013341163. PubMed DOI
Koren S., Fantus I.G. Inhibition of the protein tyrosine phosphatase PTP1B: Potential therapy for obesity, insulin resistance and type-2 diabetes mellitus. Best Pract. Res. Clin. Endocrinol. Metab. 2007;21:621–640. doi: 10.1016/j.beem.2007.08.004. PubMed DOI
Taylor S. Inhibitors of Protein Tyrosine Phosphatase 1B (PTP1B) Curr. Top. Med. Chem. 2003;3:759–782. doi: 10.2174/1568026033452311. PubMed DOI
Lantz K.A., Hart S.G.E.E., Planey S.L., Roitman M.F., Ruiz-White I.A., Wolfe H.R., Mclane M.P. Inhibition of PTP1B by trodusquemine (MSI-1436) causes fat-specific weight loss in diet-induced obese mice. Obesity. 2010;18:1516–1523. doi: 10.1038/oby.2009.444. PubMed DOI
Pandey N.R., Zhou X., Qin Z., Zaman T., Gomez-Smith M., Keyhanian K., Anisman H., Brunel J.M., Stewart A.F.R., Chen H.-H. The LIM domain only 4 protein is a metabolic responsive inhibitor of protein tyrosine phosphatase 1B that controls hypothalamic leptin signaling. J. Neurosci. 2013;33:12647–12655. doi: 10.1523/JNEUROSCI.0746-13.2013. PubMed DOI PMC
Krishnan N., Koveal D., Miller D.H., Xue B., Akshinthala S.D., Kragelj J., Jensen M.R., Gauss C.-M., Page R., Blackledge M., et al. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat. Chem. Biol. 2014;10:558–566. doi: 10.1038/nchembio.1528. PubMed DOI PMC
Tonks N.K. Protein tyrosine phosphatases—From housekeeping enzymes to master regulators of signal transduction. FEBS J. 2013;280:346–378. doi: 10.1111/febs.12077. PubMed DOI PMC
Liu H., Wu Y., Zhu S., Liang W., Wang Z., Wang Y., Lv T., Yao Y., Yuan D., Song Y. PTP1B promotes cell proliferation and metastasis through activating src and ERK1/2 in non-small cell lung cancer. Cancer Lett. 2015;359:218–225. doi: 10.1016/j.canlet.2015.01.020. PubMed DOI
Lessard L., Labbé D.P., Deblois G., Beǵin L.R., Hardy S., Mes-Masson A.M., Saad F., Trotman L.C., Giguére V., Tremblay M.L. PTP1B is an androgen receptor-regulated phosphatase that promotes the progression of prostate cancer. Cancer Res. 2012;72:1529–1537. doi: 10.1158/0008-5472.CAN-11-2602. PubMed DOI PMC
Wang J., Liu B., Chen X., Su L., Wu P., Wu J., Zhu Z. PTP1B expression contributes to gastric cancer progression. Med. Oncol. 2012;29:948–956. doi: 10.1007/s12032-011-9911-2. PubMed DOI
Zhu S., Bjorge J.D., Fujita D.J. PTP1B contributes to the oncogenic properties of colon cancer cells through Src activation. Cancer Res. 2007;67:10129–10137. doi: 10.1158/0008-5472.CAN-06-4338. PubMed DOI
Stuible M., Doody K.M., Tremblay M.L. PTP1B and TC-PTP: Regulators of transformation and tumorigenesis. Cancer Metastasis Rev. 2008;27:215–230. doi: 10.1007/s10555-008-9115-1. PubMed DOI
Julien S.G., Dubé N., Read M., Penney J., Paquet M., Han Y., Kennedy B.P., Muller W.J., Tremblay M.L. Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis. Nat. Genet. 2007;39:338–346. doi: 10.1038/ng1963. PubMed DOI
Easty D., Gallagher W., Bennett D.C. Protein tyrosine phosphatases, new targets for cancer therapy. Curr. Cancer Drug Targets. 2006;6:519–532. doi: 10.2174/156800906778194603. PubMed DOI
Fan G., Lin G., Lucito R., Tonks N.K. Protein-tyrosine Phosphatase 1B antagonized signaling by insulin-like growth factor-1 receptor and kinase BRK/PTK6 in ovarian cancer cells. J. Biol. Chem. 2013;288:24923–24934. doi: 10.1074/jbc.M113.482737. PubMed DOI PMC
Stern M.P. Diabetes and cardiovascular disease: The “common soil” hypothesis. Diabetes. 1995;44:369–374. doi: 10.2337/diab.44.4.369. PubMed DOI
Halcox J., Misra A. Type 2 diabetes mellitus, metabolic syndrome, and mixed dyslipidemia: How similar, how different, and how to treat? Metab. Syndr. Relat. Disord. 2015;13:1–21. doi: 10.1089/met.2014.0049. PubMed DOI
Hamilton S.J., Watts G.F. Endothelial dysfunction in diabetes: Pathogenesis, significance, and treatment. Rev. Diabet. Stud. 2013;10:133–156. doi: 10.1900/RDS.2013.10.133. PubMed DOI PMC
Bornfeldt K.E., Tabas I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab. 2011;14:575–585. doi: 10.1016/j.cmet.2011.07.015. PubMed DOI PMC
Pansuria M., Xi H., Li L., Yang X.F., Wang H. Insulin resistance, metabolic stress, and atherosclerosis. Front. Biosci. (Sch. Ed.) 2012;4:916–931. doi: 10.2741/s308. PubMed DOI PMC
Rask-Madsen C., Li Q., Freund B., Feather D., Abramov R., Wu I.H., Chen K., Yamamoto-Hiraoka J., Goldenbogen J., Sotiropoulos K.B., et al. Loss of insulin signaling in vascular endothelial cells accelerates atherosclerosis in apolipoprotein e null mice. Cell Metab. 2010;11:379–389. doi: 10.1016/j.cmet.2010.03.013. PubMed DOI PMC
Thompson D., Morrice N., Grant L., Le Sommer S., Lees E.K., Mody N., Wilson H.M., Delibegovic M. Pharmacological inhibition of protein tyrosine phosphatase 1B protects against atherosclerotic plaque formation in the LDLR−/− mouse model of atherosclerosis. Clin. Sci. 2017;131:2489–2501. doi: 10.1042/CS20171066. PubMed DOI PMC
Lu B., Atala A. Small molecules and small molecule drugs in regenerative medicine. Drug Discov. Today. 2014;19:801–808. doi: 10.1016/j.drudis.2013.11.011. PubMed DOI
Smith A.M., Maguire-Nguyen K.K., Rando T.A., Zasloff M.A., Strange K.B., Yin V.P. The protein tyrosine phosphatase 1B inhibitor MSI-1436 stimulates regeneration of heart and multiple other tissues. NPJ Regen. Med. 2017;2:4. doi: 10.1038/s41536-017-0008-1. PubMed DOI PMC
Khoury Z.H., Salameh F. Trodusquemine: Potential Utility in Wound Regeneration. Regen. Eng. Transl. Med. 2021;7:118–119. doi: 10.1007/s40883-021-00211-4. DOI
Griebel G., Holmes A. 50 years of hurdles and hope in anxiolytic drug discovery. Nat. Rev. Drug Discov. 2013;12:667–687. doi: 10.1038/nrd4075. PubMed DOI PMC
Qin Z., Zhou X., Pandey N.R., Vecchiarelli H.A., Stewart C.A., Zhang X., Lagace D.C., Brunel J.M., Béïque J.C., Stewart A.F.R., et al. Chronic stress induces anxiety via an amygdalar intracellular cascade that impairs endocannabinoid signaling. Neuron. 2015;85:1319–1331. doi: 10.1016/j.neuron.2015.02.015. PubMed DOI
Krishnan N., Tonks N.K. Anxious moments for the protein tyrosine phosphatase PTP1B. Trends Neurosci. 2015;38:462–465. doi: 10.1016/j.tins.2015.06.006. PubMed DOI PMC
Qin Z., Zhang L., Cruz S.A., Stewart A.F.R., Chen H.-H. Activation of Tyrosine Phosphatase PTP1B in Pyramidal Neurons Impairs Endocannabinoid Signaling by Tyrosine Receptor Kinase TrkB and Causes Schizophrenia-like Behaviors in Mice. Neuropsychopharmacology. 2020;45:1884–1895. doi: 10.1038/s41386-020-0755-3. PubMed DOI PMC
Bhargava P., Marshall J.L., Dahut W., Rizvi N., Trocky N., Williams J.I., Hait H., Song S., Holroyd K.J., Hawkins M.J. A phase I and pharmacokinetic study of squalamine, a novel antiangiogenic agent, in patients with advanced cancers. Clin. Cancer Res. 2001;7:3912–3919. PubMed
Hao D., Hammond L.A., Eckhardt S.G., Patnaik A., Takimoto C.H., Schwartz G.H., Goetz A.D., Tolcher A.W., McCreery H.A., Mamun K., et al. A Phase I and pharmacokinetic study of squalamine, an aminosterol angiogenesis inhibitor. Clin. Cancer Res. 2003;9:2465–2471. PubMed
Herbst R.S., Hammond L.A., Carbone D.P., Tran H.T., Holroyd K.J., Desai A., Williams J.I., Bekele B.N., Hait H., Allgood V., et al. A phase I/IIA trial of continuous five-day infusion of squalamine lactate (MSI-1256F) plus carboplatin and paclitaxel in patients with advanced non-small cell lung cancer. Clin. Cancer Res. 2003;9:4108–4115. PubMed
Ciulla T., Oliver A., Gast M.J., Evizon S. Squalamine lactate for the treatment of age-related macular degeneration. Expert Rev. Ophthalmol. 2007;2:165–175. doi: 10.1586/17469899.2.2.165. DOI
Wroblewski J.J., Hu A.Y. Topical squalamine 0.2% and intravitreal ranibizumab 0.5 mg as combination therapy for macular edema due to branch and central retinal vein occlusion: An open-label, randomized study. Ophthalmic Surg. Lasers Imaging Retin. 2016;47:914–923. doi: 10.3928/23258160-20161004-04. PubMed DOI
Zeitz O., Joussen A.M. Eye drops instead of intravitreal injections? The dream of treating macular diseases by topically administered drugs. Klin. Monbl. Augenheilkd. 2017;234:1088–1093. doi: 10.1055/s-0043-113253. PubMed DOI
Rosenfeld P.J., Feuer W.J. Lessons from recent phase III trial failures: Don’t design phase III trials based on retrospective subgroup analyses from phase II trials. Ophthalmology. 2018;125:1488–1491. doi: 10.1016/j.ophtha.2018.06.002. PubMed DOI
Kesen M.R., Cousins S.W. Encyclopedia of the Eye. 1st ed. Academic Press; New York, NY, USA: 2010. pp. 257–265. DOI
Deng G., Dewa T., Regen S.L. A synthetic ionophore that recognizes negatively charged phospholipid membranes. J. Am. Chem. Soc. 1996;118:8975–8976. doi: 10.1021/ja961269e. DOI
Tessema T.D., Gassler F., Shu Y., Jones S., Selinsky B.S. Structure-activity relationships in aminosterol antibiotics: The effect of stereochemistry at the 7-OH group. Bioorg. Med. Chem. Lett. 2013;23:3377–3381. doi: 10.1016/j.bmcl.2013.03.094. PubMed DOI
Brunel J.M., Blanchet M., Marc J.P. Amide Derivatives of Squalamine for the Treatment of Infections. 0780101B2. U.S. Patent. 2020 September 22;
Qin Z., Pandey N.R., Zhou X., Stewart C.A., Hari A., Huang H., Stewart A.F.R., Brunel J.M., Chen H.-H. Functional properties of Claramine: A novel PTP1B inhibitor and insulin-mimetic compound. Biochem. Biophys. Res. Commun. 2015;458:21–27. doi: 10.1016/j.bbrc.2015.01.040. PubMed DOI
Bartolomé R.A., Martín-Regalado Á., Jaén M., Zannikou M., Zhang P., de los Ríos V., Balyasnikova I.V., Casal J.I. Protein Tyrosine Phosphatase-1B inhibition disrupts IL13Rα2-promoted invasion and metastasis in cancer cells. Cancers. 2020;12:500. doi: 10.3390/cancers12020500. PubMed DOI PMC
Krishnan N., Konidaris K.F., Gasser G., Tonks N.K. A potent, selective, and orally bioavailable inhibitor of the protein-tyrosine phosphatase PTP1B improves insulin and leptin signaling in animal models. J. Biol. Chem. 2018;293:1517–1525. doi: 10.1074/jbc.C117.819110. PubMed DOI PMC
Lou Y., Schapman D., Mercier D., Alexandre S., Dé E., Brunel J.-M., Kébir N., Thébault P. Modification of poly(dimethyl siloxane) surfaces with an antibacterial claramine-derivative through click-chemistry grafting. React. Funct. Polym. 2022;170:105102. doi: 10.1016/j.reactfunctpolym.2021.105102. DOI
Birteksoz-Tan A.S., Zeybek Z., Hacioglu M., Savage P.B., Bozkurt-Guzel C. In vitro activities of antimicrobial peptides and ceragenins against Legionella pneumophila. J. Antibiot. 2019;72:291–297. doi: 10.1038/s41429-019-0148-1. PubMed DOI
Hashemi M.M., Holden B.S., Durnas B., Buck R., Savage P.B. Ceragenins as mimics of endogenous antimicrobial peptides. J. Antimicrob. Agents. 2017;3:1–11. doi: 10.4172/2472-1212.1000141. DOI
Howell M.D., Streib J.E., Kim B.E., Lesley L.J., Dunlap A.P., Geng D., Feng Y., Savage P.B., Leung D.Y.M. Ceragenins: A class of antiviral compounds to treat orthopox infections. J. Investig. Dermatol. 2009;129:2668–2675. doi: 10.1038/jid.2009.120. PubMed DOI PMC
Moscoso M., Esteban-Torres M., Menéndez M., García E. In vitro bactericidal and bacteriolytic activity of ceragenin CSA-13 against planktonic cultures and biofilms of Streptococcus pneumoniae and other pathogenic Streptococci. PLoS ONE. 2014;9:e101037. doi: 10.1371/journal.pone.0101037. PubMed DOI PMC
Li C., Peters A.S., Meredith E.L., Allman G.W., Savage P.B. Design and synthesis of potent sensitizers of gram-negative bacteria based on a cholic acid scaffolding. J. Am. Chem. Soc. 1998;120:2961–2962. doi: 10.1021/ja973881r. DOI
Oyardi O., Savage P.B., Akcali A., Erturan Z., Bozkurt-Guzel C. Ceragenins exhibiting promising antimicrobial activity against various multidrug resistant Gram negative bacteria. Istanbul J. Pharm. 2019;48:68–72. doi: 10.26650/IstanbulJPharm.2018.400730. DOI
Dao A., Mills R.J., Kamble S., Savage P.B., Little D.G., Schindeler A. The application of ceragenins to orthopedic surgery and medicine. J. Orthop. Res. 2020;38:1883–1894. doi: 10.1002/jor.24615. PubMed DOI
Mills R.J., Boyling A., Cheng T.L., Peacock L., Savage P.B., Tägil M., Little D.G., Schindeler A. CSA-90 reduces periprosthetic joint infection in a novel rat model challenged with local and systemic Staphylococcus aureus. J. Orthop. Res. 2020;38:2065–2073. doi: 10.1002/jor.24618. PubMed DOI
Williams D.L., Sinclair K.D., Jeyapalina S., Bloebaum R.D. Characterization of a novel active release coating to prevent biofilm implant-related infections. J. Biomed. Mater. Res. Part B Appl. Biomater. 2013;101:1078–1089. doi: 10.1002/jbm.b.32918. PubMed DOI
Sinclair K.D., Pham T.X., Williams D.L., Farnsworth R.W., Loc-Carrillo C.M., Bloebaum R.D. Model development for determining the efficacy of a combination coating for the prevention of perioperative device related infections: A pilot study. J. Biomed. Mater. Res. Part B Appl. Biomater. 2013;101:1143–1153. doi: 10.1002/jbm.b.32924. PubMed DOI
Sinclair K.D., Pham T.X., Farnsworth R.W., Williams D.L., Loc-Carrillo C., Horne L.A., Ingebretsen S.H., Bloebaum R.D. Development of a broad spectrum polymer-released antimicrobial coating for the prevention of resistant strain bacterial infections. J. Biomed. Mater. Res. Part A. 2012;100:2732–2738. doi: 10.1002/jbm.a.34209. PubMed DOI PMC
Gu X., Jennings J.D., Snarr J., Chaudhary V., Pollard J.E., Savage P.B. Optimization of ceragenins for prevention of bacterial colonization of hydrogel contact lenses. Investig. Opthalmol. Vis. Sci. 2013;54:6217–6223. doi: 10.1167/iovs.13-12664. PubMed DOI
Jueati R., Jittikoon J., Vajragupta O., Pimthon J. Molecular dynamics and experimental investigations of membrane perturbation by ceragenin CSA-13. Mahidol Univ. J. Pharm. Sci. 2012;39:25–32.
Bozkurt-Guzel C., Savage P.B., Gerceker A.A. In vitro activities of the novel ceragenin CSA-13, alone or in combination with colistin, tobramycin, and ciprofloxacin, against Pseudomonas aeruginosa strains isolated from cystic fibrosis patients. Chemotherapy. 2011;57:505–510. doi: 10.1159/000335588. PubMed DOI
Mitchell G., Silvis M.R., Talkington K.C., Budzik J.M., Dodd C.E., PbBuba J., Oki E.A., Trotta K.L., Licht D., Jimenez-Morales D., et al. Ceragenins and antimicrobial peptides kill bacteria through distinct mechanisms. bioRxiv. 2020 doi: 10.1101/2020.10.20.346411. PubMed DOI PMC
Damar-Çelik D., Mataracı-Kara E., Savage P.B., Özbek-Çelik B. Antibacterial and antibiofilm activities of ceragenins against Achromobacter species isolated from cystic fibrosis patients. J. Chemother. 2021;33:216–227. doi: 10.1080/1120009X.2020.1819702. PubMed DOI
Hashemi M., Mmuoegbulam A., Holden B., Coburn J., Wilson J., Taylor M., Reiley J., Baradaran D., Stenquist T., Deng S., et al. Susceptibility of Multidrug-Resistant Bacteria, isolated from water and plants in Nigeria, to Ceragenins. Int. J. Environ. Res. Public Health. 2018;15:2758. doi: 10.3390/ijerph15122758. PubMed DOI PMC
Hashemi M.M., Holden B.S., Coburn J., Taylor M.F., Weber S., Hilton B., Zaugg A.L., McEwan C., Carson R., Andersen J.L., et al. Proteomic analysis of resistance of gram-negative bacteria to chlorhexidine and impacts on susceptibility to colistin, antimicrobial peptides, and ceragenins. Front. Microbiol. 2019;10:210. doi: 10.3389/fmicb.2019.00210. PubMed DOI PMC
Hacioglu M., Oyardi O., Bozkurt-Guzel C., Savage P.B. Antibiofilm activities of ceragenins and antimicrobial peptides against fungal-bacterial mono and multispecies biofilms. J. Antibiot. 2020;73:455–462. doi: 10.1038/s41429-020-0299-0. PubMed DOI
Hacioglu M., Haciosmanoglu E., Birteksoz-Tan A.S., Bozkurt-Guzel C., Savage P.B. Effects of ceragenins and conventional antimicrobials on Candida albicans and Staphylococcus aureus mono and multispecies biofilms. Diagn. Microbiol. Infect. Dis. 2019;95:114863. doi: 10.1016/j.diagmicrobio.2019.06.014. PubMed DOI
Olekson M.A., You T., Savage P.B., Leung K.P. Antimicrobial ceragenins inhibit biofilms and affect mammalian cell viability and migration in vitro. FEBS Open Bio. 2017;7:953–967. doi: 10.1002/2211-5463.12235. PubMed DOI PMC
Savage P.B. 846 Effects of Ceragenins on Pseudomonas Aeruginosa biofilm formation in burn wounds in a porcine model. J. Burn Care Res. 2020;41:S262–S263. doi: 10.1093/jbcr/iraa024.418. DOI
Piktel E., Pogoda K., Roman M., Niemirowicz K., Tokajuk G., Wróblewska M., Szynaka B., Kwiatek W.M., Savage P.B., Bucki R. Sporicidal activity of ceragenin CSA-13 against Bacillus subtilis. Sci. Rep. 2017;7:44452. doi: 10.1038/srep44452. PubMed DOI PMC
Ghosh S., Joseph G., Korza G., He L., Yuan J.H., Dong W., Setlow B., Li Y.Q., Savage P.B., Setlow P. Effects of the microbicide ceragenin CSA-13 on and properties of Bacillus subtilis spores prepared on two very different media. J. Appl. Microbiol. 2019;127:109–120. doi: 10.1111/jam.14300. PubMed DOI
Chmielewska S.J., Skłodowski K., Piktel E., Suprewicz Ł., Fiedoruk K., Daniluk T., Wolak P., Savage P.B., Bucki R. NDM-1 carbapenemase-producing Enterobacteriaceae are highly susceptible to ceragenins CSA-13, CSA-44, and CSA-131. Infect. Drug Resist. 2020;13:3277–3294. doi: 10.2147/IDR.S261579. PubMed DOI PMC
Bozkurt-Guzel C., Inci G., Oyardi O., Savage P.B. Synergistic activity of ceragenins against carbapenem-resistant Acinetobacter baumannii strains in both checkerboard and dynamic time-kill assays. Curr. Microbiol. 2020;77:1419–1428. doi: 10.1007/s00284-020-01949-w. PubMed DOI PMC
Wnorowska U., Piktel E., Durnaś B., Fiedoruk K., Savage P.B., Bucki R., Durna B., Fiedoruk K., Savage P.B., Bucki R. Use of ceragenins as a potential treatment for urinary tract infections. BMC Infect. Dis. 2019;19:369. doi: 10.1186/s12879-019-3994-3. PubMed DOI PMC
Ozbek-Celik B., Damar-Celik D., Mataraci-Kara E., Bozkurt-Guzel C., Savage P.B. Comparative in vitro activities of first and second-generation ceragenins alone and in combination with antibiotics against Multidrug-Resistant Klebsiella pneumoniae strains. Antibiotics. 2019;8:130. doi: 10.3390/antibiotics8030130. PubMed DOI PMC
Durnaś B., Wnorowska U., Pogoda K., Deptuła P., Wątek M., Piktel E., Głuszek S., Gu X., Savage P.B., Niemirowicz K., et al. Candidacidal activity of selected ceragenins and human cathelicidin LL-37 in experimental settings mimicking infection sites. PLoS ONE. 2016;11:e0157242. doi: 10.1371/journal.pone.0157242. PubMed DOI PMC
Hashemi M.M., Rovig J., Holden B.S., Taylor M.F., Weber S., Wilson J., Hilton B., Zaugg A.L., Ellis S.W., Yost C.D., et al. Ceragenins are active against drug-resistant Candida auris clinical isolates in planktonic and biofilm forms. J. Antimicrob. Chemother. 2018;73:1537–1545. doi: 10.1093/jac/dky085. PubMed DOI
Hacioglu M., Guzel C.B., Savage P.B., Tan A.S.B. Antifungal susceptibilities, in vitro production of virulence factors and activities of ceragenins against Candida spp. isolated from vulvovaginal candidiasis. Med. Mycol. 2019;57:291–299. doi: 10.1093/mmy/myy023. PubMed DOI
Niemirowicz K., Piktel E., Wilczewska A., Markiewicz K., Durnaś B., Wątek M., Puszkarz I., Wróblewska M., Niklińska W., Savage P.B., et al. Core–shell magnetic nanoparticles display synergistic antibacterial effects against Pseudomonas aeruginosa and Staphylococcus aureus when combined with cathelicidin LL-37 or selected ceragenins. Int. J. Nanomed. 2016;11:5443–5455. doi: 10.2147/IJN.S113706. PubMed DOI PMC
Durnaś B., Piktel E., Wątek M., Wollny T., Góźdź S., Smok-Kalwat J., Niemirowicz K., Savage P.B., Bucki R. Anaerobic bacteria growth in the presence of cathelicidin LL-37 and selected ceragenins delivered as magnetic nanoparticles cargo. BMC Microbiol. 2017;17:167. doi: 10.1186/s12866-017-1075-6. PubMed DOI PMC
Niemirowicz K., Durnaś B., Tokajuk G., Piktel E., Michalak G., Gu X., Kułakowska A., Savage P.B., Bucki R. Formulation and candidacidal activity of magnetic nanoparticles coated with cathelicidin LL-37 and ceragenin CSA-13. Sci. Rep. 2017;7:4610. doi: 10.1038/s41598-017-04653-1. PubMed DOI PMC
Hashemi M., Holden B., Taylor M., Wilson J., Coburn J., Hilton B., Nance T., Gubler S., Genberg C., Deng S., et al. Antibacterial and antifungal activities of poloxamer Mmicelles containing ceragenin CSA-131 on ciliated tissues. Molecules. 2018;23:596. doi: 10.3390/molecules23030596. PubMed DOI PMC
Piktel E., Bucki R. Therapeutic potential of ceragenins and nanosystems containing membrane active compounds in the anti-cancer therapies. Postępy Pol. Med. Farm. 2019;6:21–32. doi: 10.5604/01.3001.0013.2315. DOI
Kuroda K., Fukuda T., Okumura K., Yoneyama H., Isogai H., Savage P.B., Isogai E. Ceragenin CSA-13 induces cell cycle arrest and antiproliferative effects in wild-type and p53 null mutant HCT116 colon cancer cells. Anticancer Drugs. 2013;24:826–834. doi: 10.1097/CAD.0b013e3283634dd0. PubMed DOI
Piktel E., Prokop I., Wnorowska U., Król G., Cieśluk M., Niemirowicz K., Savage P.B., Bucki R. Ceragenin CSA-13 as free molecules and attached to magnetic nanoparticle surfaces induce caspase-dependent apoptosis in human breast cancer cells via disruption of cell oxidative balance. Oncotarget. 2018;9:21904–21920. doi: 10.18632/oncotarget.25105. PubMed DOI PMC
Niemirowicz K., Prokop I., Wilczewska A., Wnorowska U., Piktel E., Wątek M., Savage P., Bucki R. Magnetic nanoparticles enhance the anticancer activity of cathelicidin LL-37 peptide against colon cancer cells. Int. J. Nanomed. 2015;10:3843–3853. doi: 10.2147/IJN.S76104. PubMed DOI PMC
Piktel E., Markiewicz K.H., Wilczewska A.Z., Daniluk T., Chmielewska S., Niemirowicz-Laskowska K., Mystkowska J., Paprocka P., Savage P.B., Bucki R. Quantification of synergistic effects of ceragenin CSA-131 combined with iron oxide magnetic nanoparticles against cancer cells. Int. J. Nanomed. 2020;15:4573–4589. doi: 10.2147/IJN.S255170. PubMed DOI PMC
Kazakova O.B., Giniyatullina G.V., Medvedeva N.I., Tolstikov G.A. Synthesis of a triterpene-spermidine conjugate. Russ. J. Org. Chem. 2012;48:1366–1369. doi: 10.1134/S1070428012100181. DOI
Kazakova O.B., Giniyatullina G.V., Tolstikov G.A., Baikova I.P., Zaprutko L., Apryshko G.N. Synthesis and antitumor activity of aminopropoxy derivatives of betulin, erythrodiol, and uvaol. Russ. J. Bioorg. Chem. 2011;37:369–379. doi: 10.1134/S1068162011030101. PubMed DOI
Giniyatullina G.V., Smirnova I.E., Kazakova O.B., Yavorskaya N.P., Golubeva I.S., Zhukova O.S., Pugacheva R.B., Apryshko G.N., Poroikov V.V. Synthesis and anticancer activity of aminopropoxytriterpenoids. Med. Chem. Res. 2015;24:3423–3436. doi: 10.1007/s00044-015-1392-y. DOI
Kazakova O.B., Giniyatullina G.V., Mustafin A.G., Babkov D.A., Sokolova E.V., Spasov A.A. Evaluation of cytotoxicity and α-glucosidase inhibitory activity of amide and polyamino-derivatives of lupane triterpenoids. Molecules. 2020;25:4833–4856. doi: 10.3390/molecules25204833. PubMed DOI PMC
Giniyatullina G.V., Flekhter O.B., Tolstikov G.A. Synthesis of squalamine analogues on the basis of lupane triterpenoids. Mendeleev Commun. 2009;19:32–33. doi: 10.1016/j.mencom.2009.01.013. DOI
Giniyatullina G.V., Kazakova O.B. Synthesis of O- and N-aminopropyltriterpenoids based on messagenin. Chem. Nat. Compd. 2018;54:913–916. doi: 10.1007/s10600-018-2511-z. DOI
Giniyatullina G.V., Kazakova O.B. Synthesis and cytotoxicity of lupane mono- and bis-piperazinylamides. Chem. Nat. Compd. 2021;57:698–705. doi: 10.1007/s10600-021-03453-4. DOI
Giniyatullina G.V., Kazakova O.B., Sorokina I.V., Zhukova N.A., Tolstikova T.G., Tolstikov G.A. Synthesis of aminopropylamino derivatives of betulinic and oleanolic acids. Russ. J. Bioorg. Chem. 2013;39:329–337. doi: 10.1134/S1068162013020064. PubMed DOI
Kazakova O.B., Giniyatullina G.V., Tolstikov G.A. Synthesis of A-secomethylenamino- and substituted amidoximotriterpenoids. Russ. J. Bioorg. Chem. 2011;37:619–625. doi: 10.1134/S1068162011050086. PubMed DOI PMC
Borselli D., Lieutaud A., Thefenne H., Garnotel J., Pagès E.M., Brunel J.M., Bolla J.M. Polyamino-isoprenic derivatives block intrinsic resistance of P. aeruginosa to doxycycline and chloramphenicol in vitro. PLoS ONE. 2016;11:e0154490. doi: 10.1371/journal.pone.0154490. PubMed DOI PMC
Berti L., Bolla J.M., Brunel J.M., Casanova J.P.F., Lorenzi V. Use of Polyaminoisoprenyl Derivatives in Antibiotic or Antiseptic. WO2012113891Al. Treatment. Patent. 2012 August 30;
Lieutaud A., Pieri C., Bolla J.M., Brunel J.M. New polyaminoisoprenyl antibiotics enhancers against two multidrug-resistant gram-negative bacteria from Enterobacter and Salmonella species. J. Med. Chem. 2020;63:10496–10508. doi: 10.1021/acs.jmedchem.0c01335. PubMed DOI
Heller L., Knorrscheidt A., Flemming F., Wiemann J., Sommerwerk S., Pavel I.Z., Al-Harrasi A., Csuk R. Synthesis and proapoptotic activity of oleanolic acid derived amides. Bioorg. Chem. 2016;68:137–151. doi: 10.1016/j.bioorg.2016.08.004. PubMed DOI
Giniyatullina G.V., Kazakova O.B., Salimova E.V., Tolstikov G.A. Synthesis of new betulonic and oleanonic acid amides. Chem. Nat. Compd. 2011;47:68–72. doi: 10.1007/s10600-011-9832-5. DOI
Emmerich D., Vanchanagiri K., Baratto L.C., Schmidt H., Paschke R. Synthesis and studies of anticancer properties of lupane-type triterpenoid derivatives containing a cisplatin fragment. Eur. J. Med. Chem. 2014;2014:460–466. doi: 10.1016/j.ejmech.2014.01.031. PubMed DOI
Csuk R., Schwarz S., Kluge R., Ströhl D. Synthesis and biological activity of some antitumor active derivatives from glycyrrhetinic acid. Eur. J. Med. Chem. 2010;45:5718–5723. doi: 10.1016/j.ejmech.2010.09.028. PubMed DOI
Kazakova O.B., Giniyatullina G.V., Medvedeva N.I., Tolstikov G.A., Apryshko G.N. Synthesis and cytotoxicity of triterpene seven-membered cyclic amines. Russ. J. Bioorg. Chem. 2014;40:198–205. doi: 10.1134/S106816201402006X. PubMed DOI
Medvedeva N.I., Kazakova O.B., Lopatina T.V., Smirnova I.E., Giniyatullina G.V., Baikova I.P., Kataev V.E. Synthesis and antimycobacterial activity of triterpenic A-ring azepanes. Eur. J. Med. Chem. 2018;143:464–472. doi: 10.1016/j.ejmech.2017.11.035. PubMed DOI
Lia T., Fana P., Ye Y., Luo Q., Lou H. Ring A-modified derivatives from the natural triterpene 3-O-acetyl-11-keto-β-boswellic acid and their cytotoxic activity. Anti-Cancer Agents Med. Chem. 2017;17:1153–1167. doi: 10.2174/1871520616666161207144031. PubMed DOI
Antimonova A.N., Uzenkova N.V., Petrenko N.I., Shakirov M.M., Shul’ts E.E., Tolstikov G.A. Synthesis of betulonic acid amides. Chem. Nat. Compd. 2008;44:327–333. doi: 10.1007/s10600-008-9054-7. DOI
Bai K.K., Yu Z., Chen F.L., Li F., Li W.Y., Guo Y.H. Synthesis and evaluation of ursolic acid derivatives as potent cytotoxic agents. Bioorg. Med. Chem. Lett. 2012;22:2488–2493. doi: 10.1016/j.bmcl.2012.02.009. PubMed DOI
Ma C.M., Cai S.Q., Cui J.R., Wang R.Q., Tu P.F., Hattori M., Daneshtalab M. The cytotoxic activity of ursolic acid derivatives. Eur. J. Med. Chem. 2005;40:582–589. doi: 10.1016/j.ejmech.2005.01.001. PubMed DOI
Schwarz S., Lucas S.D., Sommerwerk S., Csuk R. Amino derivatives of glycyrrhetinic acid as potential inhibitors of cholinesterases. Bioorg. Med. Chem. 2014;22:3370–3378. doi: 10.1016/j.bmc.2014.04.046. PubMed DOI
Cheng S.Y., Wang C.M., Cheng H.L., Chen H.J., Hsu Y.M., Lin Y.C., Chou C.-H. Biological activity of oleanane triterpene derivatives obtained by chemical derivatization. Molecules. 2013;18:13003–13019. doi: 10.3390/molecules181013003. PubMed DOI PMC
Gu W., Hao Y., Zhang G., Wang S.F., Miao T.T., Zhang K.P. Synthesis, in vitro antimicrobial and cytotoxic activities of new carbazole derivatives of ursolic acid. Bioorg. Med. Chem. Lett. 2015;25:554–557. doi: 10.1016/j.bmcl.2014.12.021. PubMed DOI
Liang Z., Zhang L., Li L., Liu J., Li H., Zhang L., Chen L., Cheng K., Zheng M., Wen X., et al. Identification of pentacyclic triterpenes derivatives as potent inhibitors against glycogen phosphorylase based on 3D-QSAR studies. Eur. J. Med. Chem. 2011;46:2011–2021. doi: 10.1016/j.ejmech.2011.02.053. PubMed DOI
Lan P., Wang J., Zhang D.M., Shu C., Cao H.H., Sun P.H., Wu X.M., Ye W.C., Chen W.M. Synthesis and antiproliferative evaluation of 23-hydroxybetulinic acid derivatives. Eur. J. Med. Chem. 2011;46:2490–2502. doi: 10.1016/j.ejmech.2011.03.038. PubMed DOI
Tian T., Liu X., Lee E.S., Sun J., Feng Z., Zhao L., Zhao C. Synthesis of novel oleanolic acid and ursolic acid in C-28 position derivatives as potential anticancer agents. Arch. Pharm. Res. 2017;40:458–468. doi: 10.1007/s12272-016-0868-8. PubMed DOI
Urano E., Ablan S.D., Mandt R., Pauly G.T., Sigano D.M., Schneider J.P., Martin D.E., Nitz T.J., Wild C.T., Freed E.O. Alkyl amine bevirimat derivatives are potent and broadly active HIV-1 maturation inhibitors. Antimicrob. Agents Chemother. 2016;60:190–197. doi: 10.1128/AAC.02121-15. PubMed DOI PMC
Salvador J.A.R., Leal A.S., Valdeira A.S., Gonçalves B.M.F., Alho D.P.S., Figueiredo S.A.C., Silvestre S.M., Mendes V.I.S. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment. Eur. J. Med. Chem. 2017;142:95–130. doi: 10.1016/j.ejmech.2017.07.013. PubMed DOI
Luo S., Li P., Li S., Du Z., Hu X., Fu Y., Zhang Z. N, N-Dimethyl tertiary amino group mediated dual pancreas- and lung-targeting therapy against acute pancreatitis. Mol. Pharm. 2017;14:1771–1781. doi: 10.1021/acs.molpharmaceut.7b00028. PubMed DOI
Rodŕigues-Hernández D., Demuner A.J., Barbosa L.C.A., Csuk R., Heller L. Hederagenin as a triterpene template for the development of new antitumor compounds. Eur. J. Med. Chem. 2015;105:57–62. doi: 10.1016/j.ejmech.2015.10.006. PubMed DOI
Ortiz A., Soumeillant M., Savage S.A., Strotman N.A., Haley M., Benkovics T., Nye J., Xu Z., Tan Y., Ayers S., et al. Synthesis of HIV-maturation inhibitor BMS-955176 from betulin by an enabling oxidation strategy. J. Org. Chem. 2017;82:4958–4963. doi: 10.1021/acs.joc.7b00438. PubMed DOI
Spivak A., Khalitova R., Nedopekina D., Dzhemileva L., Yunusbaeva M., Odinokov V., D’yakonov V., Dzhemilev U. Synthesis and evaluation of anticancer activities of novel C-28 guanidine-functionalized triterpene acid derivatives. Molecules. 2018;23:3000. doi: 10.3390/molecules23113000. PubMed DOI PMC
Kahnt M., Hoenke S., Fischer L., Al-Harrasi A., Csuk R. Synthesis and cytotoxicity evaluation of DOTA-conjugates of ursolic acid. Molecules. 2019;24:2254–2273. doi: 10.3390/molecules24122254. PubMed DOI PMC
Cao M., Gao Y., Zhan M., Qiu N., Piao Y., Zhou Z., Shen Y. Glycyrrhizin acid and glycyrrhetinic acid modified polyethyleneimine for targeted DNA delivery to hepatocellular carcinoma. Int. J. Mol. Sci. 2019;20:5074–5098. doi: 10.3390/ijms20205074. PubMed DOI PMC
Bildziukevich U., Malík M., Özdemir Z., Rárová L., Janovská L., Šlouf M., Šaman D., Šarek J., Wimmer Z. Spermine amides of selected triterpenoid acids: Dynamic supramolecular systems formation influences cytotoxicity of the drugs. J. Mater. Chem. B. 2020;8:484–491. doi: 10.1039/C9TB01957J. PubMed DOI
Spivak A.Y., Khalitova R.R., Nedopekina D.A., Gubaidullin R.R. Antimicrobial properties of amine- and guanidine-functionalized derivatives of betulinic, ursolic and oleanolic acids: Synthesis and structure/activity evaluation. Steroids. 2020;154:108530–108542. doi: 10.1016/j.steroids.2019.108530. PubMed DOI
Bildziukevich U., Vida N., Rárová L., Kolár M., Šaman D., Havlíček L., Drašar P., Wimmer Z. Polyamine derivatives of betulinic acid and β-sitosterol: A comparative investigation. Steroids. 2015;100:27–35. doi: 10.1016/j.steroids.2015.04.005. PubMed DOI
Bildziukevich U., Kaletová E., Šaman D., Sievänen E., Kolehmainen E.T., Šlouf M., Wimmer Z. Spectral and microscopic study of self-assembly of novel cationic spermine amides of betulinic acid. Steroids. 2017;117:90–96. doi: 10.1016/j.steroids.2016.07.007. PubMed DOI
Kazakova O.B., Brunel J.M., Khusnutdinova E.F., Negrel S., Giniyatullina G.V., Lopatina T.V., Petrova A.V. A-ring modified triterpenoids and their spermidine-aldimines with strong antibacterial activity. Molbank. 2019;2019:M1078–M1086. doi: 10.3390/M1078. DOI
Qian K., Kuo R., Chen C., Huang L., Morris-Natschke S.L., Lee K. Anti-AIDS agents 81. Design, synthesis, and structure-activity relationship study of betulinic acid and moronic acid derivatives as potent HIV maturation inhibitors. J. Med. Chem. 2010;53:3133–3141. doi: 10.1021/jm901782m. PubMed DOI PMC
Rodríguez-Hernández D., Barbosa L.C.A., Demuner A.J., Martins J.P.A., Fischer (nee Heller) L., Csuk R. Hederagenin amide derivatives as potential antiproliferative agents. Eur. J. Med. Chem. 2019;168:436–446. doi: 10.1016/j.ejmech.2019.02.057. PubMed DOI
Özdemir Z., Saman D., Bertula K., Lahtinen M., Bednarova L., Pazderkova M., Rarova L., Nonappa, Wimmer Z. Rapid self-healing and thixotropic organogelation of amphiphilic oleanolic acid−spermine conjugates. Langmuir. 2021;37:2693–2706. doi: 10.1021/acs.langmuir.0c03335. PubMed DOI
Kazakova O., Rubanik L., Smirnova I., Poleschuk N., Petrova A., Kapustsina Y., Baikova I., Tret’yakova E., Khusnutdinova E. Synthesis and in vitro activity of oleanolic acid derivatives against Chlamydia trachomatis and Staphylococcus aureus. Med. Chem. Res. 2021;30:1408–1418. doi: 10.1007/s00044-021-02741-6. DOI
Khusnutdinova E.F., Sinou V., Babkov D.A., Kazakova O.B., Brunel J.M. Development of new antimicrobial oleanonic acid polyamine conjugates. Antibiotics. 2022;11:94. doi: 10.3390/antibiotics11010094. PubMed DOI PMC