• This record comes from PubMed

From Marine Metabolites to the Drugs of the Future: Squalamine, Trodusquemine, Their Steroid and Triterpene Analogues

. 2022 Jan 19 ; 23 (3) : . [epub] 20220119

Language English Country Switzerland Media electronic

Document type Journal Article, Review

This review comprehensively describes the recent advances in the synthesis and pharmacological evaluation of steroid polyamines squalamine, trodusquemine, ceragenins, claramine, and their diverse analogs and derivatives, with a special focus on their complete synthesis from cholic acids, as well as an antibacterial and antiviral, neuroprotective, antiangiogenic, antitumor, antiobesity and weight-loss activity, antiatherogenic, regenerative, and anxiolytic properties. Trodusquemine is the most-studied small-molecule allosteric PTP1B inhibitor. The discovery of squalamine as the first representative of a previously unknown class of natural antibiotics of animal origin stimulated extensive research of terpenoids (especially triterpenoids) comprising polyamine fragments. During the last decade, this new class of biologically active semisynthetic natural product derivatives demonstrated the possibility to form supramolecular networks, which opens up many possibilities for the use of such structures for drug delivery systems in serum or other body fluids.

See more in PubMed

Casero R.A., Woster P.M. Terminally alkylated polyamine analogues as chemotherapeutic agents. J. Med. Chem. 2001;44:1–26. doi: 10.1021/jm000084m. PubMed DOI

Karigiannis G., Papaioannou D. Structure, biological activity and synthesis of polyamine analogues and conjugates. Eur. J. Org. Chem. 2000;2000:1841–1863. doi: 10.1002/(SICI)1099-0690(200005)2000:10<1841::AID-EJOC1841>3.0.CO;2-9. DOI

Rogoza L.N., Salakhutdinov N.F., Tolstikov G.A. Polymethyleneamine alkaloids of animal origin: I. Metabolites of marine and microbial organisms. Russ. J. Bioorg. Chem. 2005;31:507–520. doi: 10.1007/s11171-005-0070-0. PubMed DOI

Rogoza L.N., Salakhutdinov N.F., Tolstikov G.A. Polymethyleneamine alkaloids of animal origin: II. Polyamine neurotoxins. Russ. J. Bioorg. Chem. 2006;32:23–36. doi: 10.1134/S106816200601002X. PubMed DOI

Stone R. Deja vu guides the way to new antimicrobial steroid. Science. 1993;259:1125. doi: 10.1126/science.8438163. PubMed DOI

Moore K.S., Wehrli S., Roder H., Rogers M., Forrest J.N., Jr., McCrimmon D., Zasloff M. Squalamine: An aminosterol antibiotic from the shark. Proc. Natl. Acad. Sci. USA. 1993;90:1354–1358. doi: 10.1073/pnas.90.4.1354. PubMed DOI PMC

Rao M.N., Shinnar A.E., Noecker L.A., Chao T.L., Feibush B., Snyder B., Sharkansky I., Sarkahian A., Zhang X., Jones S.R., et al. Aminosterols from the Dogfish Shark Squalus acanthias. J. Nat. Prod. 2000;63:631–635. doi: 10.1021/np990514f. PubMed DOI

Moriarty R.M., Tuladhar S.M., Guo L., Wehrli S. Synthesis of squalamine. A steroidal antibiotic from the shark. Tetrahedron Lett. 1994;35:8103–8106. doi: 10.1016/0040-4039(94)88254-1. DOI

Moriarty R.M., Enache L.A., Kinney W.A., Allen C.S., Canary J.W., Tuladhar S.M., Guo L. Stereoselective synthesis of squalamine dessulfate. Tetrahedron Lett. 1995;36:5139–5142. doi: 10.1016/00404-0399(50)10116-. DOI

Yun S.-S., Li W. Identification of squalamine in the plasma membrane of white blood cells in the sea lamprey, Petromyzon marinus. J. Lipid Res. 2007;48:2579–2586. doi: 10.1194/jlr.M700294-JLR200. PubMed DOI

Brunel J.M., Letourneux Y. Recent Advances in the Synthesis of Spermine and Spermidine Analogs of the Shark Aminosterol Squalamine. Eur. J. Org. Chem. 2003;2003:3897–3907. doi: 10.1002/ejoc.200300167. DOI

Schmidt E.J., Boswell J.S., Walsh J.P., Schellenberg M.M., Winter T.W., Li C., Allman G.W., Savage P.B. Activities of cholic acid-derived antimicrobial agents against multidrug-resistant bacteria. J. Antimicrob. Chemother. 2001;47:671–674. doi: 10.1093/jac/47.5.671. PubMed DOI

Cushnie T.P.T., Cushnie B., Lamb A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancingand antivirulence activities. Int. J. Antimicrob. Agents. 2014;44:377–386. doi: 10.1016/j.ijantimicag.2014.06.001. PubMed DOI

Sills A.K., Jr., Williams J.I., Tyler B.M., Epstein D.S., Sipos E.P., Davis J.D., McLane M.P., Pitchford S., Cheshire K., Gannon F.H., et al. Squalamine inhibits angiogenesis and solid tumor growth in vivo and perturbsembryonic vasculature. Cancer Res. 1998;58:2784–2792. PubMed

Westa C.L., Mao Y.-K., Delungahawatta T., Amin J.Y., Farhin S., McQuade R.M., Diwakarla S., Pustovit R., Stanisz A.M., Bienenstock J., et al. Squalamine restores the function of the enteric nervous system in mouse models of Parkinson’s disease. J. Parkinson’s Dis. 2020;10:1477–1491. doi: 10.3233/JPD-202076. PubMed DOI

Hoye T.R., Dvornikovs V., Fine J.M., Anderson K.R., Jeffrey C.S., Muddiman D.C., Shao F., Sorensen P.W., Wang J. Details of the structure determination of the sulfated steroids PSDS and PADS: New components of the Sea Lamprey (Petromyzon marinus) migratory pheromone. J. Org. Chem. 2007;72:7544–7550. doi: 10.1021/jo070957l. PubMed DOI

Fine J.M., Sorensen P.W. Isolation and biological activity of the multi-component sea lamprey migratory pheromone. J. Chem. Ecol. 2008;34:1259–1267. doi: 10.1007/s10886-008-9535-y. PubMed DOI

Seiler N., Knodgen B., Haegele K. N-(3-Aminopropyl)pyrrolidin-2-one, a product of spermidine catabolism in vivo. Biochem. J. 1982;208:189–197. doi: 10.1042/bj2080189. PubMed DOI PMC

Barbut D., Zasloff M. Methods for Treating Blood Pressure Conditions Using Aminosterol Compositions. 20200129528A1. U.S. Patent. 2020 April 30;

Barbut D., Zasloff M. Methods of Treating Alzheimer’s Disease Using Aminosterol Compositions. 20200038412A. U.S. Patent. 2020 February 6;

Barbut D., Zasloff M. Methods of Treating Parkinson’s Disease Using Aminosterol Compositions. 20200038413A1. U.S. Patent. 2020 February 6;

Barbut D., Zasloff M. Methods of Treating Constipation Using Aminosterol Compositions. 20200038414A1. U.S. Patent. 2020 February 6;

Barbut D., Zasloff M. Aminosterol Compositions and Methods of Using the Same for Treating Erectile Dysfunction. 20200038415A1. U.S. Patent. 2020 February 6;

Barbut D., Zasloff M. Methods of Treating Cardiac Conduction Defects Using Aminosterol Compositions. 20200038416A1. U.S. Patent. 2020 February 6;

Barbut D., Zasloff M. Methods and Compositions for Treating Cognitive Impairment. 20200038417A1. U.S. Patent. 2020 February 6;

Barbut D., Zasloff M. Methods of Treating Autism Spectrum Disorder Using Aminosterol Compositions. 20200038418A1. U.S. Patent. 2020 February 6;

Barbut D., Zasloff M. Methods of Treating Multiple System Atrophy Using Aminosterol Compositions. 20200038419A1. U.S. Patent. 2020 February 6;

Barbut D., Zasloff M. Aminosterol Compositions and Methods of Using the Same for Treating Depression. 20200038420A1. U.S. Patent. 2020 February 6;

Barbut D., Zasloff M. Aminosterol Compositions and Methods of Using the Same for Treating Schizophrenia. 20200155574A1. U.S. Patent. 2020 May 21;

Zasloff M. Methods for Treating and Preventing Viral Infections. 20200323883A1. U.S. Patent. 2020 October 15;

Selinsky B.S., Zhou Z., Fojtik K.G., Jones S.R., Dollahon N.R., Shinnar A.E. The aminosterol antibiotic squalamine permeabilizes large unilamellar phospholipid vesicles. Biochim. Biophys. Acta-Biomembr. 1998;1370:218–234. doi: 10.1016/S0005-2736(97)00265-4. PubMed DOI

Williams J.I. Squalamine: A new angiostatic steroid. Antiangiogenic Agents Cancer Ther. 1999;1:153–174. doi: 10.1007/978-1-59259-453-5_10. DOI

Savage P.B., Li C. Cholic acid derivatives: Novel antimicrobials. Expert Opin. Investig. Drugs. 2000;9:263–272. doi: 10.1517/13543784.9.2.263. PubMed DOI

Shu Y., Jones S.R., Kinney W.A., Selinsky B.S. The synthesis of spermine analogs of the shark aminosterol squalamine. Steroids. 2002;67:291–304. doi: 10.1016/S0039-128X(01)00161-1. PubMed DOI

Savage P.B. Cationic steroid antibiotics. Curr. Med. Chem.–Anti-Infect. Agents. 2002;1:293–304. doi: 10.2174/1568012023354776. DOI

Salunke D.B., Hazra B.G., Pore V.S. Bile acide-polyamine conugates as synthetic ionophores. Archivoc. 2003;9:115–125.

Choucair B., Dherbomez M., Roussakis C., El Kihel L. Synthesis of spermidinylcholestanol and spermidinylcholesterol, squalamine analogues. Tetrahedron. 2004;60:11477–11486. doi: 10.1016/j.tet.2004.09.055. PubMed DOI

Alhanout K., M Rolain J., M Brunel J. Squalamine as an Example of a New Potent Antimicrobial Agents Class: A Critical Review. Curr. Med. Chem. 2010;17:3909–3917. doi: 10.2174/092986710793205417. PubMed DOI

Bourguet-Kondracki M.-L., Brunel J.-M. Promises of the Unprecedented Aminosterol Squalamine. Outstanding Marine Molecules: Chemistry, Biology, Analysis. 1st ed. Wiley-VCH Verlag GmbH&Co., KGaA; Weinheim, Germany: 2014. pp. 265–283. Print ISBN: 9783527334650, Online ISBN: 9783527681501. DOI

Djouhri-Bouktab L., Rolain J.M., Brunel J.M. Mini-Review: Polyamines Metabolism, Toxicity and Potent Therapeutical Use. Anti-Infect. Agents. 2014;12:95–103. doi: 10.2174/22113525113119990118. DOI

Blanchet M., Brunel J.M. Bile acid derivatives: From old molecules to a new potent therapeutic use: An overview. Curr. Med. Chem. 2018;25:3613–3636. doi: 10.2174/0929867325666180309113737. PubMed DOI

Négrel S., Brunel J.-M. Synthesis and biological activities of naturally functionalized polyamines: An overview. Curr. Med. Chem. 2021;28:3406–3448. doi: 10.2174/0929867327666201102114544. PubMed DOI

Kinney W.A., Zhang X., Williams J.I., Johnston S., Michalak R.S., Deshpande M., Dostal L., Rosazza J.P.N. A short formal synthesis of squalamine from a microbial metabolite. Org. Lett. 2000;2:2921–2922. doi: 10.1021/ol0059495. PubMed DOI

Weis A.L., Bakos T., Alferiev I., Zhang X., Shao B., Kinney W.A. Synthesis of an azido spermidine equivalent. Tetrahedron Lett. 1999;40:4863–4864. doi: 10.1016/S0040-4039(99)00896-5. DOI

Wehrli S.L., Moore K.S., Roder H., Durell S., Zasloff M. Structure of the novel steroidal antibiotic squalamine determined by two-dimensional NMR spectroscopy. Steroids. 1993;58:370–378. doi: 10.1016/0039-128X(93)90040-T. PubMed DOI

Pearson A.J., Chen Y.S., Han G.R., Hsu S.Y., Ray T. A new method for the oxidation of alkenes to enones. An efficient synthesis of Δ5-7-oxo steroids. J. Chem. Soc. Perkin Trans. 1. 1985:267–273. doi: 10.1039/P19850000267. DOI

Tal D.M., Frisch G.D., Elliott W.H. Bile acids LXIX. Selective K-selectride reduction of 3,7-diketo steroids. Tetrahedron. 1984;40:851–854. doi: 10.1016/S0040-4020(01)91473-5. DOI

Arnostova L.M., Pouzar V., Drasar P. Preparation of steroid hydroxy sulfates. Synth. Commun. 1990;20:1521–1529. doi: 10.1080/00397919008052869. DOI

McGill J.M., LaBell E.S., Williams M. Hydride reagents for stereoselective reductive amination. An improved preparation of 3-endo-tropanamine. Tetrahedron Lett. 1996;37:3977–3980. doi: 10.1016/0040-4039(96)00760-5. DOI

Li C., Budge L.P., Driscoll C.D., Willardson B.M., Allman G.W., Savage P.B. Incremental conversion of outer-membrane permeabilizers into potent antibiotics for gram-negative bacteria. J. Am. Chem. Soc. 1999;121:931–940. doi: 10.1021/ja982938m. DOI

Zhang X., Rao M.N., Jones S.R., Shao B., Feibush P., McGuigan M., Tzodikov N., Feibush B., Sharkansky I., Snyder B., et al. Synthesis of squalamine utilizing a readily accessible spermidine equivalent. J. Org. Chem. 1998;63:8599–8603. doi: 10.1021/jo981344z. DOI

Liang F., Wan S., Li Z., Xiong X., Yang L., Zhou X., Wu C. Medical applications of macrocyclic polyamines. Curr. Med. Chem. 2006;13:711–727. doi: 10.2174/092986706776055706. PubMed DOI

Zhou X.D., Cai F., Zhou W.S. A new highly stereoselective construction of the sidechain of squalamine through improved Sharpless catalytic asymmetric dihydroxylation. Tetrahedron Lett. 2001;42:2537–2539. doi: 10.1016/S0040-4039(01)00191-5. DOI

Zhou X.-D., Cai F., Zhou W.-S. A stereoselective synthesis of squalamine. Tetrahedron. 2002;58:10293–10299. doi: 10.1016/S0040-4020(02)01413-8. DOI

Zhang D.-H., Cai F., Zhou X.-D., Zhou W.-S. A concise and stereoselective synthesis of squalamine. Org. Lett. 2003;5:3257–3259. doi: 10.1021/ol035062j. PubMed DOI

Kolb H.C., VanNieuwenhze M.S., Sharpless K.B. Catalytic asymmetric dihidroxylation. Chem. Rev. 1994;94:2483–2549. doi: 10.1021/cr00032a009. DOI

Iida T., Nishida S., Chang F.C., Niwa T., Goto J., Nambara T. Potential bile acid metabolites. 19. The epimeric 3alpha,6,7beta-trihydroxy- and 3alpha,6,7beta,12alpha-tetrahydroxy-5alpha-cholanoic acids. Cherm. Pharm. Bull. 1993;41:763–765. doi: 10.1248/cpb.41.763. PubMed DOI

Huang L.F., Zhou W.S., Sun L.Q., Pan X.F. Studies on steroidal plant-growth regulators. Part 29. Osmium tetroxide-catalysed asymmetric dihydroxylation of the (22E,24R)- and the (22E,24S)-24-alkyl steroidal unsaturated side chain. J. Chem. Soc. Perkin Trans. 1. 1993:1683–1686. doi: 10.1039/p19930001683. DOI

Corey E.J., Grogan M.J. Stereocontrolled syntheses of 24(S),25-epoxycholesterol and related oxysterols for studies on the activation of LXR receptors. Tetrahedron Lett. 1998;39:9351–9354. doi: 10.1016/S0040-4039(98)02181-9. DOI

Yadav J.S., Mysorekar S.V. A facile conversion of tertiary alcohols to olefins. Synth. Commun. 1989;19:1057–1060. doi: 10.1080/00397918908051028. DOI

Goodnow R., Jr., Konno K., Niwa M., Kallimopoulos T., Bukownic R., Lenares D., Nakanishi K. Synthesis of glutamate receptor antagonist philanthotoxin-433 (PhTX-433) and its analogs. Tetrahedron. 1990;46:3267–3286. doi: 10.1016/S0040-4020(01)85463-6. DOI

Okumura K., Nakamura Y., Takeuchi S., Kato I., Fujimoto Y., Ikekawa N. Formal synthesis of squalamine from desmosterol. Chem. Pharm. Bull. 2003;51:1177–1182. doi: 10.1248/cpb.51.1177. PubMed DOI

Jones S.R., Selinsky B.S., Rao M.N., Zhang X.N., Kinney W.A., Tham F.S. Efficient route to 7α-(benzoyloxy)-3-dioxolane cholestan-24(R)-ol, a key intermediate in the synthesis of squalamine. J. Org. Chem. 1998;63:3786–3789. doi: 10.1021/jo971405d. DOI

Foricher J., Furbringer C., Pfoertner K. Process for the Catalytic Oxidation of Isoprenoids Having Allylic Groups. 5,030,739. U.S. Patent. 1991 July 9;

Shen J.M., Zhou X.D., Zhou W.S. Formal synthesis of squalamine from methylhyodeoxycholanate. Acta Chim. Sin. 2006;64:1513–1516.

Zasloff M. Use of Squalamine for the Manufacture of a Medicament for Inhibiting NHE. 0831837B1. Europe Patent. 2003 May 2;

Jones S.R., Kinney W.A., Zhang X., Jones L.M., Selinsky B.S. The synthesis and characterization of analogs of the antimicrobial compound squalamine: 6β-hydroxy-3-aminosterols synthesized from hyodeoxycholic acid. Steroids. 1996;61:565–571. doi: 10.1016/S0039-128X(96)00114-6. PubMed DOI

Aher N.G., Pore V.S., Mishra N.N., Shukla P.K., Gonnade R.G. Design and synthesis of bile acid-based amino sterols as antimicrobial agents. Bioorg. Med. Chem. Lett. 2009;19:5411–5414. doi: 10.1016/j.bmcl.2009.07.117. PubMed DOI

Brunel J.M., Marc J.P. Compounds That Are Analogs of Squalamine, Used as Antibacterial Agents. 10729701B2. U.S. Patent. 2020 August 4;

Kim H.S., Choi B.S., Kwon K.S., Lee S.O., Kwak H.J., Lee C.H. Synthesis and antimicrobial activity of squalamine analogue. Bioorg. Med. Chem. 2000;8:2059–2065. doi: 10.1016/S0968-0896(00)00128-0. PubMed DOI

Choucair B., Dherbomez M., Roussakis C., El Kihel L. Synthesis of 7α- and 7β-spermidinylcholesterol, squalamine analogues. Bioorg. Med. Chem. Lett. 2004;14:4213–4216. doi: 10.1016/j.bmcl.2004.06.010. PubMed DOI

Kim H.-S., Khan S.N., Jadhav J.R., Jeong J.-W., Jung K., Kwak J.-H. A concise synthesis and antimicrobial activities of 3-polyamino-23,24-bisnorcholanes as steroid–polyamine conjugates. Bioorg. Med. Chem. Lett. 2011;21:3861–3865. doi: 10.1016/j.bmcl.2011.05.048. PubMed DOI

Salmi C., Loncle C., Vidal N., Letourneux Y., Brunel J.M. New stereoselective titanium reductive amination synthesis of 3-amino and polyaminosterol derivatives possessing antimicrobial activities. Eur. J. Med. Chem. 2008;43:540–547. doi: 10.1016/j.ejmech.2007.04.006. PubMed DOI

Salmi C., Loncle C., Vidal N., Laget M., Letourneux Y., Brunel J. New 3-aminosteroid derivatives as a new family of topical antibacterial agents active against methicillin-resistant staphylococcus aureus (MRSA) Lett. Drug Des. Discov. 2008;5:169–172. doi: 10.2174/157018008784084018. DOI

Salmi C., Loncle C., Vidal N., Laget M., Letourneux Y., Brunel J.M. Antimicrobial activities of 3-amino- and polyaminosterol analogues of squalamine and trodusquemine. J. Inzyme Inhib. Med. Chem. 2008;23:860–865. doi: 10.1080/14756360701809910. PubMed DOI

Boes A., Brunel J.M., Derouaux A., Kerff F., Bouhss A., Touze T., Breukink E., Terrak M. Squalamine and aminosterol mimics inhibit the peptidoglycan glycosyltransferase activity of PBP1B. Antibiotics. 2020;9:373. doi: 10.3390/antibiotics9070373. PubMed DOI PMC

Loncle C., Salmi C., Letourneux Y., Brunel J.M. Synthesis of new 7-aminosterol squalamine analogues with high antimicrobial activities through a stereoselective titanium reductive amination reaction. Tetrahedron. 2007;63:12968–12974. doi: 10.1016/j.tet.2007.10.032. DOI

Alhanout K., Brunel J.M., Raoult D., Rolain J.M. In vitro antibacterial activity of aminosterols against multidrug-resistant bacteria from patients with cystic fibrosis. J. Antimicrob. Chemother. 2009;64:810–814. doi: 10.1093/jac/dkp281. PubMed DOI

Alhanout K., Brunel J.M., Ranque S., Rolain J.M. In vitro antifungal activity of aminosterols against moulds isolated from cystic fibrosis patients. J. Antimicrob. Chemother. 2010;65:1307–1309. doi: 10.1093/jac/dkq089. PubMed DOI

Blanchet M., Borselli D., Brunel J.M. Polyamine derivatives: A revival of an old neglected scaffold to fight resistant Gram-negative bacteria? Future Med. Chem. 2016;8:963–973. doi: 10.4155/fmc-2016-0011. PubMed DOI

Djouhri L., Vidal N., Rolain J.M., Brunel J.M. Synthesis of new 3,20-bispolyaminosteroid squalamine analogues and evaluation of their antimicrobial activities. J. Med. Chem. 2011;54:7417–7421. doi: 10.1021/jm200506x. PubMed DOI

Sakr A., Laurent F., Brunel J.-M., Dagher T.N., Blin O., Rolain J.-M. Polyaminosteroid Analogues as Potent Antibacterial Agents Against Mupirocin- Resistant Staphylococcus aureus Strains. Anti-Infect. Agents. 2020;18:239–244. doi: 10.2174/2211352517666190723092347. DOI

Khan S.N., Kim B.J., Kim H.-S. Synthesis and antimicrobial activity of 7-fluoro-3-aminosteroids. Bioorg. Med. Chem. Lett. 2007;17:5139–5142. doi: 10.1016/j.bmcl.2007.07.001. PubMed DOI

Khabnadideh S., Tan C.L., Croft S.L., Kendrick H., Yardley V., Gilbert I.H. Squalamine analogues as potential anti-trypanosomal and anti-leishmanial compounds. Bioorg. Med. Chem. Lett. 2000;10:1237–1239. doi: 10.1016/S0960-894X(00)00196-7. PubMed DOI

Dvorken L.V., Smyth R.B., Mislow K. Stereochemistry of the 1,2,3,4-dibenz-1,3-cyclooctadiene system. J. Am. Chem. Soc. 1958;80:486–492. doi: 10.1021/ja01535a058. DOI

Blagbrough I.S., Al-Hadithi D., Geall A.J. DNA condensation by bile acid conjugates of thermine and spermine. Pharm. Pharmacol. Commun. 1999;5:139–144. doi: 10.1211/146080899128734677. DOI

Vida N., Svobodová H., Rárová L., Drašar P., Šaman D., Cvačka J., Wimmer Z. Polyamine conjugates of stigmasterol. Steroids. 2012;77:1212–1218. doi: 10.1016/j.steroids.2012.07.009. PubMed DOI

Randazzo R.A.S., Bucki R., Janmey P.A., Diamond S.L. A series of cationic sterol lipids with gene transfer and bactericidal activity. Bioorg. Med. Chem. 2009;17:3257–3265. doi: 10.1016/j.bmc.2009.03.049. PubMed DOI PMC

Blagbrough I.S., Geall A.J., Neal A.P. Polyamines and novel polyamine conjugates interact with DNA in ways that can be exploited in non-viral gene therapy. Biochem. Soc. Trans. 2003;31:397–406. doi: 10.1042/bst0310397. PubMed DOI

Geall A.J., Taylor R.J., Earll M.E., Eaton M.A.W., Blagbrough I.S. Synthesis of cholesteryl polyamine carbamates: pKa studies and condensation of calf thymus DNA. Bioconjug. Chem. 2000;11:314–326. doi: 10.1021/bc990115w. PubMed DOI

Kim H.-S., Kwon K.-C., Kim K.S., Lee C.H. Synthesis and antimicrobial activity of new 3α-Hydroxy-23,24-bisnorcholane polyamine carbamates. Bioorg. Med. Chem. Lett. 2001;11:3065–3068. doi: 10.1016/S0960-894X(01)00632-1. PubMed DOI

Savage P.B. Design, synthesis and characterization of cationic peptide and steroid antibiotics. Eur. J. Org. Chem. 2002;2002:759–768. doi: 10.1002/1099-0690(200203)2002:5<759::AID-EJOC759>3.0.CO;2-J. DOI

Lai X.Z., Feng Y., Pollard J., Chin J.N., Rybak M.J., Bucki R., Epand R.F., Epand R.M., Savage P.B. Ceragenins: Cholic acidbased mimics of antimicrobial peptides. Acc. Chem. Res. 2008;41:1233–1240. doi: 10.1021/ar700270t. PubMed DOI

Epand R.M., Epand R.F., Savage P.B. Ceragenins (cationic steroid compounds), a novel class of antimicrobial agents. Drug News Perspect. 2008;21:307–311. doi: 10.1358/dnp.2008.21.6.1246829. PubMed DOI

Leszczyńska K., Namiot A., Fein D.E., Wen Q., Namiot Z., Savage P.B., Diamond S., Janmey P.A., Bucki R. Bactericidal activities of the cationic steroid CSA-13 and the cathelicidin peptide LL-37 against Helicobacter pylori in simulated gastric juice. BMC Microbiol. 2009;9:187. doi: 10.1186/1471-2180-9-187. PubMed DOI PMC

Bucki R., Sostarecz A.G., Byfield F.J., Savage P.B., Janmey P.A. Resistance of the antibacterial agent ceragenin CSA-13 to inactivation by DNA or F-actin and its activity in cystic fibrosis sputum. J. Antimicrob. Chemother. 2007;60:535–545. doi: 10.1093/jac/dkm218. PubMed DOI

Bucki R., Namiot D.B., Namiot Z., Savage P.B., Janmey P.A. Salivary mucins inhibit antibacterial activity of the cathelicidin-derived LL-37 peptide but not the cationic steroid CSA-13. J. Antimicrob. Chemother. 2008;62:329–335. doi: 10.1093/jac/dkn176. PubMed DOI PMC

Leszczyńska K., Namiot A., Cruz K., Byfield F.J., Won E., Mendez G., Sokołowski W., Savage P.B., Bucki R., Janmey P.A. Potential of ceragenin CSA-13 and its mixture with pluronic F-127 as treatment of topical bacterial infections. J. Appl. Microbiol. 2011;110:229–238. doi: 10.1111/j.1365-2672.2010.04874.x. PubMed DOI PMC

Hoppenes M.A., Sylvester C.B., Qureshi A.T., Scherr T., Czapski D.R., Duran R.S., Savage P.B., Hayes D. Ceragenin mediated selectivity of antimicrobial silver nanoparticles. ACS Appl. Mater. Interfaces. 2014;6:13900–13908. doi: 10.1021/am504640f. PubMed DOI

Niemirowicz K., Surel U., Wilczewska A.Z., Mystkowska J., Piktel E., Gu X., Namiot Z., Kułakowska A., Savage P.B., Bucki R. Bactericidal activity and biocompatibility of ceragenin-coated magnetic nanoparticles. J. Nanobiotechnol. 2015;13:32. doi: 10.1186/s12951-015-0093-5. PubMed DOI PMC

Kikuchi K., Bernard E.M., Sadownik A., Regen S.L., Armstrong D. Antimicrobial activities of squalamine mimics. Antimicrob. Agents Chemother. 1997;41:1433–1438. doi: 10.1128/AAC.41.7.1433. PubMed DOI PMC

Saha S., Savage P.B., Bal M. Enhancement of the efficacy of erythromycin in multiple antibiotic-resistant gram-negative bacterial pathogens. J. Appl. Microbiol. 2008;105:822–828. doi: 10.1111/j.1365-2672.2008.03820.x. PubMed DOI

Lavigne J.-P., Brunel J.-M., Chevalier J., Pages J.-M. Squalamine, an original chemosensitizer to combat antibiotic-resistant Gram-negative bacteria. J. Antimicrob. Chemother. 2010;65:799–801. doi: 10.1093/jac/dkq031. PubMed DOI

Ding B., Yin N., Liu Y., Cardenas-Garcia J., Evanson R., Orsak T., Fan M., Turin G., Savage P.B. Origins of cell selectivity of cationic steroid antibiotics. J. Am. Chem. Soc. 2004;126:13642–13648. doi: 10.1021/ja046909p. PubMed DOI

Zasloff M. Formulations Comprising Aminosterols. 8623416B2. U.S. Patent. 2014 January 7;

Vicens M., Medarde M., Macias R.I.R., Larena M.G., Villafaina A., Serrano M.A., Marin J.J.G. Novel cationic and neutral glycocholic acid and polyamine conjugates able to inhibit transporters involved in hepatic and intestinal bile acid uptake. Bioorg. Med. Chem. 2007;15:2359–2367. doi: 10.1016/j.bmc.2007.01.027. PubMed DOI

Blagbrough I.S., Geall A.J. Practical synthesis of unsymmetrical polyamine amides. Tetrahedron Lett. 1998;39:439–442. doi: 10.1016/S0040-4039(97)10542-1. DOI

Chen W.-H., Shao X.-B., Moellering R., Wennersten C., Regen S.L. A bioconjugate approach toward squalamine mimics: Insight into the mechanism of biological action. Bioconjug. Chem. 2006;17:1582–1591. doi: 10.1021/bc060220n. PubMed DOI

Chen W.-H., Wennersten C., Moellering R.C., Regen S.L. Towards squalamine mimics: Synthesis and antibacterial activities of head-to-tail dimeric sterol-polyamine conjugates. Chem. Biodivers. 2013;10:385–393. doi: 10.1002/cbdv.201100431. PubMed DOI

Xiao Q., Sun J., Ju Y., Zhao Y., Cui Y. Facile synthesis of 3β-cholesterol H-phosphonates. Chem. Lett. 2003;32:522–523. doi: 10.1246/cl.2003.522. DOI

Xiao Q., Sun J., Sun Q., Ju Y., Zhao Y.F., Cui Y.X. Synthesis of AZT 5′-O-hydrogen phospholipids and their derivatives. Synthesis. 2003;2003:107–112. doi: 10.1055/s-2003-36249. DOI

Ji S.H., Xiao Q., Ju Y., Zhao Y. Synthesis of novel dimeric steroidal-nucleoside phosphoramidates. Chem. Lett. 2005;34:944–945. doi: 10.1246/cl.2005.944. DOI

Wu D., Ji S., Wu Y., Ju Y., Zhao Y. Design, synthesis, and antitumor activity of bile acid-polyamine-nucleoside conjugates. Bioorg. Med. Chem. Lett. 2007;17:2983–2986. doi: 10.1016/j.bmcl.2007.03.067. PubMed DOI

Shawakfeh K.Q., Al-Said N.H., Abboushi E.K. Synthesis of new di- and triamine diosgenin dimers. Tetrahedron. 2010;66:1420–1423. doi: 10.1016/j.tet.2009.11.037. DOI

Bajaj A., Kondaiah P., Bhattacharya S. Synthesis and gene transfection efficacies of PEI-cholesterol-based lipopolymers. Bioconjug. Chem. 2008;19:1640–1651. doi: 10.1021/bc700381v. PubMed DOI

Mishra R., Mishra S. Updates in bile acid-bioactive molecule conjugates and their applications. Steroids. 2020;159:108639–108654. doi: 10.1016/j.steroids.2020.108639. PubMed DOI

Errico S., Lucchesi G., Odino D., Muscat S., Capitini C., Bugelli C., Canale C., Ferrando R., Grasso G., Barbut D., et al. Making biological membrane resistant to the toxicity of misfolded protein oligomers: A lesson from trodusquemine. Nanoscale. 2020;12:22596–22614. doi: 10.1039/D0NR05285J. PubMed DOI

Govers R.M.T., Brunel J.M. Anti-Diabetic Aminosteroid. WO2013057422A1. Derivatives. Patent. 2013 April 25;

Pandey Z.N.R., Zhou X., Zaman T., Cruz S.A., Qin Z., Lu M., Keyhanian K., Brunel J.M., Stewart A.F.R., Chen H.H. LMO4 is required to maintain hypothalamic insulin signaling. Biochem. Biophys. Res. Commun. 2014;450:666–672. doi: 10.1016/j.bbrc.2014.06.026. PubMed DOI

Blanchet M., Borselli D., Rodallec A., Peiretti F., Vidal N., Bolla J.-M.M., Digiorgio C., Morrison K.R., Wuest W.M., Brunel J.M. Claramines: A New Class of Broad-Spectrum Antimicrobial Agents with Bimodal Activity. ChemMedChem. 2018;13:1018–1027. doi: 10.1002/cmdc.201800073. PubMed DOI

Mancini I., Defant A., Guella G. Recent synthesis of marine natural products with antibacterial activities. Anti-Infect. Agents Med. Chem. 2007;6:17–48. doi: 10.2174/187152107779314151. DOI

Pietras R.J., Weinberg O.K. Antiangiogenic Steroids in Human Cancer Therapy. Evid. Based Complement. Alternat. Med. 2005;2:49–57. doi: 10.1093/ecam/neh066. PubMed DOI PMC

Wnorowska U., Fiedoruk K., Piktel E., Prasad S.V., Sulik M., Janion M., Daniluk T., Savage P.B., Bucki R. Nanoantibiotics containing membrane-active human cathelicidin LL-37 or synthetic ceragenins attached to the surface of magnetic nanoparticles as novel and innovative therapeutic tools: Current status and potential future applications. J. Nanobiotechnol. 2020;18:3. doi: 10.1186/s12951-019-0566-z. PubMed DOI PMC

Dias C., Rauter A.P. Membrane-targeting antibiotics: Recent developments outside the peptide space. Future Med. Chem. 2019;11:211–228. doi: 10.4155/fmc-2018-0254. PubMed DOI

Butler M.W., Stahlschmidt Z.R., Ardia D.R., Davies S., Davis J., Guillette L.J., Johnson N., McCormick S.D., McGraw K.J., DeNardo D.F. Thermal sensitivity of immune function: Evidence against a generalist-specialist trade-off among endothermic and ectothermic vertebrates. Am. Nat. 2013;181:761–774. doi: 10.1086/670191. PubMed DOI

Savage P.B., Li C., Taotafa U., Ding B., Guan Q. Antibacterial properties of cationic steroid antibiotics. FEMS Microbiol. Lett. 2002;217:1–7. doi: 10.1111/j.1574-6968.2002.tb11448.x. PubMed DOI

Alhanout K., Giorgio C.D., Meo M.D., Brunel J.M. Non-Genotoxic Assessment of a Natural Antimicrobial Agent: Squalamine. Anti-Infect. Agents. 2014;12:75–79. doi: 10.2174/22113525113119990114. DOI

Salmi C., Loncle C., Vidal N., Letourneux Y., Fantini J., Maresca M., Taïeb N., Pagès J.M., Brunel J.M., Page J. Squalamine: An Appropriate Strategy against the Emergence of Multidrug Resistant Gram-Negative Bacteria? PLoS ONE. 2008;3:e2765. doi: 10.1371/journal.pone.0002765. PubMed DOI PMC

Alhanout K., Djouhri L., Vidal N., Brunel J.M., Piarroux R., Ranque S. In vitro activity of aminosterols against yeasts involved in blood stream infections. Med. Mycol. 2011;49:121–125. doi: 10.3109/13693786.2010.502189. PubMed DOI

Khelaifia S., Brunel J.M., Michel J.B., Drancourt M. In-vitro archaeacidal activity of biocides against human-associated archaea. PLoS ONE. 2013;8:e62738. doi: 10.1371/journal.pone.0062738. PubMed DOI PMC

Khelaifia S., Drancourt M. Susceptibility of archaea to antimicrobial agents: Applications to clinical microbiology. Clin. Microbiol. Infect. 2012;18:841–848. doi: 10.1111/j.1469-0691.2012.03913.x. PubMed DOI

Nicol M., Mlouka M.A.B., Berthe T., Di Martino P., Jouenne T., Brunel J.M., Dé E. Anti-persister activity of squalamine against Acinetobacter baumannii. Int. J. Antimicrob. Agents. 2019;53:337–342. doi: 10.1016/j.ijantimicag.2018.11.004. PubMed DOI

Coulibaly O., Alhanout K., L’ollivier C., Brunel J.M., Thera M.A., Djimdé A.A., Doumbo O.K., Piarroux R., Ranque S. In vitro activity of aminosterols against dermatophytes. Med. Mycol. 2013;51:309–312. doi: 10.3109/13693786.2012.724773. PubMed DOI

Kwon D.H., Lu C.D. Polyamines increase antibiotic susceptibility in pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2006;50:1623–1627. doi: 10.1128/AAC.50.5.1623-1627.2006. PubMed DOI PMC

Kwon D.H., Lu C.D. Polyamine effects on antibiotic susceptibility in bacteria. Antimicrob. Agents Chemother. 2007;51:2070–2077. doi: 10.1128/AAC.01472-06. PubMed DOI PMC

Alhanout K., Malesinki S., Vidal N., Peyrot V., Rolain J.M., Brunel J.M. New insights into the antibacterial mechanism of action of squalamine. J. Antimicrob. Chemother. 2010;65:1688–1693. doi: 10.1093/jac/dkq213. PubMed DOI

Di Pasquale E., Salmi-Smail C., Brunel J.M., Sanchez P., Fantini J., Maresca M. Biophysical studies of the interaction of squalamine and other cationic amphiphilic molecules with bacterial and eukaryotic membranes: Importance of the distribution coefficient in membrane selectivity. Chem. Phys. Lipids. 2010;163:131–140. doi: 10.1016/j.chemphyslip.2009.10.006. PubMed DOI

Selinsky B.S., Smith R., Frangiosi A., Vonbaur B., Pedersen L. Squalamine is not a proton ionophore. Biochim. Biophys. Acta-Biomembr. 2000;1464:135–141. doi: 10.1016/S0005-2736(99)00256-4. PubMed DOI

Russo T.A., Mylotte D. Expression of the K54 and O4 specific antigen has opposite effects on the bactericidal activity of squalamine against an extraintestinal isolate of Escherichia coli. FEMS Microbiol. Lett. 1998;162:311–315. doi: 10.1111/j.1574-6968.1998.tb13014.x. PubMed DOI

Ghodbane R., Ameen S.M., Drancourt M., Brunel J.M. In vitro antimicrobial activity of squalamine derivatives against mycobacteria. Tuberculosis. 2013;93:565–566. doi: 10.1016/j.tube.2013.04.006. PubMed DOI

Asmar S., Drancourt M. Chlorhexidine decontamination of sputum for culturing Mycobacterium tuberculosis. BMC Microbiol. 2015;15:155. doi: 10.1186/s12866-015-0479-4. PubMed DOI PMC

Djouhri-Bouktab L., Alhanout K., Andrieu V., Raoult D., Rolain J.M., Brunel J.M. Squalamine ointment for Staphylococcus aureus skin decolonization in a mouse model. J. Antimicrob. Chemother. 2011;66:1306–1310. doi: 10.1093/jac/dkr114. PubMed DOI

Djouhri-Bouktab L., Alhanout K., Andrieu V., Stremler N., Dubus J.C., Raoult D., Rolain J.M., Brunel J.M. Soluble squalamine tablets for the rapid disinfection of home nebulizers of cystic fibrosis patients. J. Cyst. Fibros. 2012;11:555–559. doi: 10.1016/j.jcf.2012.05.006. PubMed DOI

Hraiech S., Brégeon F., Brunel J.M., Rolain J.M., Lepidi H., Andrieu V., Raoult D., Papazian L., Roch A. Antibacterial efficacy of inhaled squalamine in a rat model of chronic Pseudomonas aeruginosa pneumonia. J. Antimicrob. Chemother. 2012;67:2452–2458. doi: 10.1093/jac/dks230. PubMed DOI

Coulibaly O., Thera M.A., Koné A.K., Siaka G., Traoré P., Djimdé A.A., Brunel J.M., Gaudart J., Piarroux R., Doumbo O.K., et al. A double-blind randomized placebo-controlled clinical trial of squalamine ointment for tinea capitis treatment. Mycopathologia. 2015;179:187–193. doi: 10.1007/s11046-014-9849-y. PubMed DOI

Zasloff M., Adams A.P., Beckerman B., Campbell A., Han Z., Luijten E., Meza I., Julander J., Mishra A., Qu W., et al. Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential. Proc. Natl. Acad. Sci. USA. 2011;108:15978–15983. doi: 10.1073/pnas.1108558108. PubMed DOI PMC

Ozaslan M. Squalamine: May be an effective viral control. Int. J. Virol. 2012;8:285–287. doi: 10.3923/ijv.2012.285.287. DOI

Perni M., Galvagnion C., Maltsev A., Meisl G., Müller M.B.D., Challa P.K., Kirkegaard J.B., Flagmeier P., Cohen S.I.A., Cascella R., et al. A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. Proc. Natl. Acad. Sci. USA. 2017;114:E1009–E1017. doi: 10.1073/pnas.1610586114. PubMed DOI PMC

Limbocker R., Staats R., Chia S., Ruggeri F.S., Mannini B., Xu C.K., Perni M., Cascella R., Bigi A., Sasser L.R., et al. Squalamine and Its Derivatives Modulate the Aggregation of Amyloid-β and α-Synuclein and Suppress the Toxicity of Their Oligomers. Front. Neurosci. 2021;15:541–558. doi: 10.3389/fnins.2021.680026. PubMed DOI PMC

Perni M., Flagmeier P., Limbocker R., Cascella R., Aprile F.A., Galvagnion C., Heller G.T., Meisl G., Chen S.W., Kumita J.R., et al. Multistep inhibition of α-synuclein aggregation and toxicity in vitro and in vivo by trodusquemine. ACS Chem. Biol. 2018;13:2308–2319. doi: 10.1021/acschembio.8b00466. PubMed DOI

Limbocker R., Mannini B., Ruggeri F.S., Cascella R., Xu C.K., Perni M., Chia S., Chen S.W., Habchi J., Bigi A., et al. Trodusquemine displaces protein misfolded oligomers from cell membranes and abrogates their cytotoxicity through a generic mechanism. Commun. Biol. 2020;3:435. doi: 10.1038/s42003-020-01140-8. PubMed DOI PMC

Errico S., Ramshini H., Capitini C., Canale C., Spaziano M., Barbut D., Calamai M., Zasloff M., Oropesa-Nuñez R., Vendruscolo M., et al. Quantitative Measurement of the Affinity of Toxic and Nontoxic Misfolded Protein Oligomers for Lipid Bilayers and of Its Modulation by Lipid Composition and Trodusquemine. ACS Chem. Neurosci. 2021;12:3189–3202. doi: 10.1021/acschemneuro.1c00327. PubMed DOI PMC

Perni M., van der Goot A., Limbocker R., van Ham T.J., Aprile F.A., Xu C.K., Flagmeier P., Thijssen K., Sormanni P., Fusco G., et al. Comparative Studies in the A30P and A53T α-Synuclein C. Elegans Strains to Investigate the Molecular Origins of Parkinson’s Disease. Front. Cell Dev. Biol. 2021;9:492–502. doi: 10.3389/fcell.2021.552549. PubMed DOI PMC

Limbocker R., Chia S., Ruggeri F.S., Perni M., Cascella R., Heller G.T., Meisl G., Mannini B., Habchi J., Michaels T.C.T., et al. Trodusquemine enhances Aβ42 aggregation but suppresses its toxicity by displacing oligomers from cell membranes. Nat. Commun. 2019;10:225. doi: 10.1038/s41467-018-07699-5. PubMed DOI PMC

Odino D., Errico S., Canale C., Ferrando R., Chiti F., Relini A. Interaction between Biomimetic Lipid Membranes and Trodusquemine: An Atomic Force Microscopy Study. Biophys. J. 2021;120:325a. doi: 10.1016/j.bpj.2020.11.2052. DOI

Zhang L., Qin Z., Sharmin F., Lin W., Ricke K.M., Zasloff M.A., Stewart A.F.R., Chen H.-H. Tyrosine Phosphatase PTP1B Impairs Presynaptic NMDA Receptor-Mediated Plasticity in a Mouse Model of Alzheimer’s Disease. Neurobiol. Dis. 2021;156:105402. doi: 10.1016/j.nbd.2021.105402. PubMed DOI

Ricke K.M., Cruz S.A., Qin Z., Farrokhi K., Sharmin F., Zhang L., Zasloff M.A., Stewart A.F.R., Chen H.-H. Neuronal Protein Tyrosine Phosphatase 1B Hastens Amyloid β-Associated Alzheimer’s Disease in Mice. J. Neurosci. 2020;40:1581–1593. doi: 10.1523/JNEUROSCI.2120-19.2019. PubMed DOI PMC

Limbocker R., Errico S., Barbut D., Knowles T.P.J., Vendruscolo M., Chiti F., Zasloff M. Squalamine and Trodusquemine: Two natural products for neurodegenerative diseases, from physical chemistry to the clinic. Nat. Prod. Rep. 2021;38 doi: 10.1039/D1NP00042J. PubMed DOI

Li D., Williams J.I., Pietras R.J. Squalamine and cisplatin block angiogenesis and growth of human ovarian cancer cells with or without HER-2 gene overexpression. Oncogene. 2002;21:2805–2814. doi: 10.1038/sj.onc.1205410. PubMed DOI

Akhter S., Nath S.K., Tse G.M., Williams J., Zasloff M., Donowitz M. Squalamine, a novel cationic steroid, specifically inhibits the brush- border NA+/H+exchanger isoform NHE3. Am. J. Physiol.-Cell Physiol. 1999;276:136–144. doi: 10.1152/ajpcell.1999.276.1.C136. PubMed DOI

Williams J.I., Weitman S., Gonzalez C.M., Jundt C.H., Marty J., Stringer S.D., Holroyd K.J., Mclane M.P., Chen Q., Zasloff M., et al. Squalamine treatment of human tumors in nu/nu mice enhances platinum-based chemotherapies. Clin. Cancer Res. 2001;7:724–733. PubMed

Teicher B.A., Williams J.I., Takeuchi H., Ara G., Herbst R.S., Buxton D. Potential of the aminosterol, squalamine in combination therapy in the rat 13,762 mammary carcinoma and the murine Lewis lung carcinoma. Anticancer Res. 1998;18:2567–2573. PubMed

Márquez-Garbán D.C., Gorrín-Rivas M., Chen H.W., Sterling C., Elashoff D., Hamilton N., Pietras R.J. Squalamine blocks tumor-associated angiogenesis and growth of human breast cancer cells with or without HER-2/neu overexpression. Cancer Lett. 2019;449:66–75. doi: 10.1016/j.canlet.2019.02.009. PubMed DOI PMC

Higgins R.D., Yan Y., Geng Y., Zasloff M., Williams J.I. Regression of retinopathy by squalamine in a mouse model. Pediatr. Res. 2004;56:144–149. doi: 10.1203/01.PDR.0000128977.55799.34. PubMed DOI

Ciulla T.A., Criswell M.H., Danis R.P., Williams J.I., McLane M.P., Holroyd K.J. Squalamine lactate reduces choroidal neovascularization in a laser-injury model in the rat. Retina. 2003;23:808–814. doi: 10.1097/00006982-200312000-00011. PubMed DOI

Genaidy M., Kazi A.A., Peyman G.A., Passos-Machado E., Farahat H.G., Williams J.I., Holroyd K.J., Blake D.A. Effect of squalamine on iris neovascularization in monkeys. Retina. 2002;22:772–778. doi: 10.1097/00006982-200212000-00014. PubMed DOI

Kinter A., Hardy E., Kinney W.J., Chao T., Zasloff M., Fauci A. MSI-1436, a novel aminosterol, inhibits HIV replication in vitro and in vivo infected mononuclear cells; Proceedings of the 4th Conference on Retroviruses and Opportunistic Infections; Washington, DC, USA. 22–26 January 1997; p. 231.

Alper S.L., Chernova M.N., Williams J., Zasloff M., Law F.Y., Knauf P.A. Differential inhibition of AE1 and AE2 anion exchangers by oxonol dyes and by novel polyaminosterol analogs of the shark antibiotic squalamine. Biochem. Cell Biol. 1998;76:799–806. doi: 10.1139/o98-082. PubMed DOI

Chernova M.N., Vandorpe D.H., Clark J.S., Williams J.I., Zasloff M.A., Jiang L., Alper S.L. Apparent receptor-mediated activation of Ca2+-dependent conductive Cl− transport by shark-derived polyaminosterols. Am. J. Physiol. Integr. Comp. Physiol. 2005;289:R1644–R1658. doi: 10.1152/ajpregu.00098.2005. PubMed DOI

Zasloff M., Williams J., Kinney W., Anderson M., McLane M. Therapeutic Uses for an Aminosterol. WO9744044. Compound. Patent. 1997 November 27;

Zasloff M., Williams J., Chen Q., Anderson M., Maeder T., Holroyd K., Jones S., Kinney W., Cheshire K., McLane M. A spermine-coupled cholesterol metabolite from the shark with potent appetite suppressant and antidiabetic properties. Int. J. Obes. 2001;25:689–697. doi: 10.1038/sj.ijo.0801599. PubMed DOI

Ahima R.S., Patel H.R., Takahashi N., Qi Y., Hileman S.M., Zasloff M.A. Appetite suppression and weight reduction by a centrally active aminosterol. Diabetes. 2002;51:2099–2104. doi: 10.2337/diabetes.51.7.2099. PubMed DOI

Roitman M.F., Wescott S., Cone J.J., McLane M.P., Wolfe H.R. MSI-1436 reduces acute food intake without affecting dopamine transporter activity. Pharmacol. Biochem. Behav. 2010;97:138–143. doi: 10.1016/j.pbb.2010.05.010. PubMed DOI PMC

Cho H. Protein tyrosine phosphatase 1B (PTP1B) and obesity. Vitam. Horm. 2013;91:405–424. doi: 10.1016/B978-0-12-407766-9.00017-1. PubMed DOI

Bence K.K., Delibegovic M., Xue B., Gorgun C.Z., Hotamisligil G.S., Neel B.G., Kahn B.B. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat. Med. 2006;12:917–924. doi: 10.1038/nm1435. PubMed DOI

Haj F.G., Zabolotny J.M., Kim Y.B., Kahn B.B., Neel B.G. Liver-specific Protein-tyrosine Phosphatase 1B (PTP1B) Re-expression Alters Glucose Homeostasis of PTP1B–/–Mice. J. Biol. Chem. 2005;280:15038–15046. doi: 10.1074/jbc.M413240200. PubMed DOI

Delibegovic M., Zimmer D., Kauffman C., Rak K., Hong E.G., Cho Y.R., Kim J.K., Kahn B.B., Neel B.G., Bence K.K. Liver-specific deletion of Protein-Tyrosine Phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes. 2009;58:590–599. doi: 10.2337/db08-0913. PubMed DOI PMC

Goldstein B.J. Protein-tyrosine phosphatase 1B (PTP1B): A novel therapeutic target for type 2 diabetes mellitus, obesity and related states of insulin resistance. Curr. Drug Targets Immune Endocr. Metabol. Disord. 2001;1:265–275. doi: 10.2174/1568008013341163. PubMed DOI

Koren S., Fantus I.G. Inhibition of the protein tyrosine phosphatase PTP1B: Potential therapy for obesity, insulin resistance and type-2 diabetes mellitus. Best Pract. Res. Clin. Endocrinol. Metab. 2007;21:621–640. doi: 10.1016/j.beem.2007.08.004. PubMed DOI

Taylor S. Inhibitors of Protein Tyrosine Phosphatase 1B (PTP1B) Curr. Top. Med. Chem. 2003;3:759–782. doi: 10.2174/1568026033452311. PubMed DOI

Lantz K.A., Hart S.G.E.E., Planey S.L., Roitman M.F., Ruiz-White I.A., Wolfe H.R., Mclane M.P. Inhibition of PTP1B by trodusquemine (MSI-1436) causes fat-specific weight loss in diet-induced obese mice. Obesity. 2010;18:1516–1523. doi: 10.1038/oby.2009.444. PubMed DOI

Pandey N.R., Zhou X., Qin Z., Zaman T., Gomez-Smith M., Keyhanian K., Anisman H., Brunel J.M., Stewart A.F.R., Chen H.-H. The LIM domain only 4 protein is a metabolic responsive inhibitor of protein tyrosine phosphatase 1B that controls hypothalamic leptin signaling. J. Neurosci. 2013;33:12647–12655. doi: 10.1523/JNEUROSCI.0746-13.2013. PubMed DOI PMC

Krishnan N., Koveal D., Miller D.H., Xue B., Akshinthala S.D., Kragelj J., Jensen M.R., Gauss C.-M., Page R., Blackledge M., et al. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat. Chem. Biol. 2014;10:558–566. doi: 10.1038/nchembio.1528. PubMed DOI PMC

Tonks N.K. Protein tyrosine phosphatases—From housekeeping enzymes to master regulators of signal transduction. FEBS J. 2013;280:346–378. doi: 10.1111/febs.12077. PubMed DOI PMC

Liu H., Wu Y., Zhu S., Liang W., Wang Z., Wang Y., Lv T., Yao Y., Yuan D., Song Y. PTP1B promotes cell proliferation and metastasis through activating src and ERK1/2 in non-small cell lung cancer. Cancer Lett. 2015;359:218–225. doi: 10.1016/j.canlet.2015.01.020. PubMed DOI

Lessard L., Labbé D.P., Deblois G., Beǵin L.R., Hardy S., Mes-Masson A.M., Saad F., Trotman L.C., Giguére V., Tremblay M.L. PTP1B is an androgen receptor-regulated phosphatase that promotes the progression of prostate cancer. Cancer Res. 2012;72:1529–1537. doi: 10.1158/0008-5472.CAN-11-2602. PubMed DOI PMC

Wang J., Liu B., Chen X., Su L., Wu P., Wu J., Zhu Z. PTP1B expression contributes to gastric cancer progression. Med. Oncol. 2012;29:948–956. doi: 10.1007/s12032-011-9911-2. PubMed DOI

Zhu S., Bjorge J.D., Fujita D.J. PTP1B contributes to the oncogenic properties of colon cancer cells through Src activation. Cancer Res. 2007;67:10129–10137. doi: 10.1158/0008-5472.CAN-06-4338. PubMed DOI

Stuible M., Doody K.M., Tremblay M.L. PTP1B and TC-PTP: Regulators of transformation and tumorigenesis. Cancer Metastasis Rev. 2008;27:215–230. doi: 10.1007/s10555-008-9115-1. PubMed DOI

Julien S.G., Dubé N., Read M., Penney J., Paquet M., Han Y., Kennedy B.P., Muller W.J., Tremblay M.L. Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis. Nat. Genet. 2007;39:338–346. doi: 10.1038/ng1963. PubMed DOI

Easty D., Gallagher W., Bennett D.C. Protein tyrosine phosphatases, new targets for cancer therapy. Curr. Cancer Drug Targets. 2006;6:519–532. doi: 10.2174/156800906778194603. PubMed DOI

Fan G., Lin G., Lucito R., Tonks N.K. Protein-tyrosine Phosphatase 1B antagonized signaling by insulin-like growth factor-1 receptor and kinase BRK/PTK6 in ovarian cancer cells. J. Biol. Chem. 2013;288:24923–24934. doi: 10.1074/jbc.M113.482737. PubMed DOI PMC

Stern M.P. Diabetes and cardiovascular disease: The “common soil” hypothesis. Diabetes. 1995;44:369–374. doi: 10.2337/diab.44.4.369. PubMed DOI

Halcox J., Misra A. Type 2 diabetes mellitus, metabolic syndrome, and mixed dyslipidemia: How similar, how different, and how to treat? Metab. Syndr. Relat. Disord. 2015;13:1–21. doi: 10.1089/met.2014.0049. PubMed DOI

Hamilton S.J., Watts G.F. Endothelial dysfunction in diabetes: Pathogenesis, significance, and treatment. Rev. Diabet. Stud. 2013;10:133–156. doi: 10.1900/RDS.2013.10.133. PubMed DOI PMC

Bornfeldt K.E., Tabas I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab. 2011;14:575–585. doi: 10.1016/j.cmet.2011.07.015. PubMed DOI PMC

Pansuria M., Xi H., Li L., Yang X.F., Wang H. Insulin resistance, metabolic stress, and atherosclerosis. Front. Biosci. (Sch. Ed.) 2012;4:916–931. doi: 10.2741/s308. PubMed DOI PMC

Rask-Madsen C., Li Q., Freund B., Feather D., Abramov R., Wu I.H., Chen K., Yamamoto-Hiraoka J., Goldenbogen J., Sotiropoulos K.B., et al. Loss of insulin signaling in vascular endothelial cells accelerates atherosclerosis in apolipoprotein e null mice. Cell Metab. 2010;11:379–389. doi: 10.1016/j.cmet.2010.03.013. PubMed DOI PMC

Thompson D., Morrice N., Grant L., Le Sommer S., Lees E.K., Mody N., Wilson H.M., Delibegovic M. Pharmacological inhibition of protein tyrosine phosphatase 1B protects against atherosclerotic plaque formation in the LDLR−/− mouse model of atherosclerosis. Clin. Sci. 2017;131:2489–2501. doi: 10.1042/CS20171066. PubMed DOI PMC

Lu B., Atala A. Small molecules and small molecule drugs in regenerative medicine. Drug Discov. Today. 2014;19:801–808. doi: 10.1016/j.drudis.2013.11.011. PubMed DOI

Smith A.M., Maguire-Nguyen K.K., Rando T.A., Zasloff M.A., Strange K.B., Yin V.P. The protein tyrosine phosphatase 1B inhibitor MSI-1436 stimulates regeneration of heart and multiple other tissues. NPJ Regen. Med. 2017;2:4. doi: 10.1038/s41536-017-0008-1. PubMed DOI PMC

Khoury Z.H., Salameh F. Trodusquemine: Potential Utility in Wound Regeneration. Regen. Eng. Transl. Med. 2021;7:118–119. doi: 10.1007/s40883-021-00211-4. DOI

Griebel G., Holmes A. 50 years of hurdles and hope in anxiolytic drug discovery. Nat. Rev. Drug Discov. 2013;12:667–687. doi: 10.1038/nrd4075. PubMed DOI PMC

Qin Z., Zhou X., Pandey N.R., Vecchiarelli H.A., Stewart C.A., Zhang X., Lagace D.C., Brunel J.M., Béïque J.C., Stewart A.F.R., et al. Chronic stress induces anxiety via an amygdalar intracellular cascade that impairs endocannabinoid signaling. Neuron. 2015;85:1319–1331. doi: 10.1016/j.neuron.2015.02.015. PubMed DOI

Krishnan N., Tonks N.K. Anxious moments for the protein tyrosine phosphatase PTP1B. Trends Neurosci. 2015;38:462–465. doi: 10.1016/j.tins.2015.06.006. PubMed DOI PMC

Qin Z., Zhang L., Cruz S.A., Stewart A.F.R., Chen H.-H. Activation of Tyrosine Phosphatase PTP1B in Pyramidal Neurons Impairs Endocannabinoid Signaling by Tyrosine Receptor Kinase TrkB and Causes Schizophrenia-like Behaviors in Mice. Neuropsychopharmacology. 2020;45:1884–1895. doi: 10.1038/s41386-020-0755-3. PubMed DOI PMC

Bhargava P., Marshall J.L., Dahut W., Rizvi N., Trocky N., Williams J.I., Hait H., Song S., Holroyd K.J., Hawkins M.J. A phase I and pharmacokinetic study of squalamine, a novel antiangiogenic agent, in patients with advanced cancers. Clin. Cancer Res. 2001;7:3912–3919. PubMed

Hao D., Hammond L.A., Eckhardt S.G., Patnaik A., Takimoto C.H., Schwartz G.H., Goetz A.D., Tolcher A.W., McCreery H.A., Mamun K., et al. A Phase I and pharmacokinetic study of squalamine, an aminosterol angiogenesis inhibitor. Clin. Cancer Res. 2003;9:2465–2471. PubMed

Herbst R.S., Hammond L.A., Carbone D.P., Tran H.T., Holroyd K.J., Desai A., Williams J.I., Bekele B.N., Hait H., Allgood V., et al. A phase I/IIA trial of continuous five-day infusion of squalamine lactate (MSI-1256F) plus carboplatin and paclitaxel in patients with advanced non-small cell lung cancer. Clin. Cancer Res. 2003;9:4108–4115. PubMed

Ciulla T., Oliver A., Gast M.J., Evizon S. Squalamine lactate for the treatment of age-related macular degeneration. Expert Rev. Ophthalmol. 2007;2:165–175. doi: 10.1586/17469899.2.2.165. DOI

Wroblewski J.J., Hu A.Y. Topical squalamine 0.2% and intravitreal ranibizumab 0.5 mg as combination therapy for macular edema due to branch and central retinal vein occlusion: An open-label, randomized study. Ophthalmic Surg. Lasers Imaging Retin. 2016;47:914–923. doi: 10.3928/23258160-20161004-04. PubMed DOI

Zeitz O., Joussen A.M. Eye drops instead of intravitreal injections? The dream of treating macular diseases by topically administered drugs. Klin. Monbl. Augenheilkd. 2017;234:1088–1093. doi: 10.1055/s-0043-113253. PubMed DOI

Rosenfeld P.J., Feuer W.J. Lessons from recent phase III trial failures: Don’t design phase III trials based on retrospective subgroup analyses from phase II trials. Ophthalmology. 2018;125:1488–1491. doi: 10.1016/j.ophtha.2018.06.002. PubMed DOI

Kesen M.R., Cousins S.W. Encyclopedia of the Eye. 1st ed. Academic Press; New York, NY, USA: 2010. pp. 257–265. DOI

Deng G., Dewa T., Regen S.L. A synthetic ionophore that recognizes negatively charged phospholipid membranes. J. Am. Chem. Soc. 1996;118:8975–8976. doi: 10.1021/ja961269e. DOI

Tessema T.D., Gassler F., Shu Y., Jones S., Selinsky B.S. Structure-activity relationships in aminosterol antibiotics: The effect of stereochemistry at the 7-OH group. Bioorg. Med. Chem. Lett. 2013;23:3377–3381. doi: 10.1016/j.bmcl.2013.03.094. PubMed DOI

Brunel J.M., Blanchet M., Marc J.P. Amide Derivatives of Squalamine for the Treatment of Infections. 0780101B2. U.S. Patent. 2020 September 22;

Qin Z., Pandey N.R., Zhou X., Stewart C.A., Hari A., Huang H., Stewart A.F.R., Brunel J.M., Chen H.-H. Functional properties of Claramine: A novel PTP1B inhibitor and insulin-mimetic compound. Biochem. Biophys. Res. Commun. 2015;458:21–27. doi: 10.1016/j.bbrc.2015.01.040. PubMed DOI

Bartolomé R.A., Martín-Regalado Á., Jaén M., Zannikou M., Zhang P., de los Ríos V., Balyasnikova I.V., Casal J.I. Protein Tyrosine Phosphatase-1B inhibition disrupts IL13Rα2-promoted invasion and metastasis in cancer cells. Cancers. 2020;12:500. doi: 10.3390/cancers12020500. PubMed DOI PMC

Krishnan N., Konidaris K.F., Gasser G., Tonks N.K. A potent, selective, and orally bioavailable inhibitor of the protein-tyrosine phosphatase PTP1B improves insulin and leptin signaling in animal models. J. Biol. Chem. 2018;293:1517–1525. doi: 10.1074/jbc.C117.819110. PubMed DOI PMC

Lou Y., Schapman D., Mercier D., Alexandre S., Dé E., Brunel J.-M., Kébir N., Thébault P. Modification of poly(dimethyl siloxane) surfaces with an antibacterial claramine-derivative through click-chemistry grafting. React. Funct. Polym. 2022;170:105102. doi: 10.1016/j.reactfunctpolym.2021.105102. DOI

Birteksoz-Tan A.S., Zeybek Z., Hacioglu M., Savage P.B., Bozkurt-Guzel C. In vitro activities of antimicrobial peptides and ceragenins against Legionella pneumophila. J. Antibiot. 2019;72:291–297. doi: 10.1038/s41429-019-0148-1. PubMed DOI

Hashemi M.M., Holden B.S., Durnas B., Buck R., Savage P.B. Ceragenins as mimics of endogenous antimicrobial peptides. J. Antimicrob. Agents. 2017;3:1–11. doi: 10.4172/2472-1212.1000141. DOI

Howell M.D., Streib J.E., Kim B.E., Lesley L.J., Dunlap A.P., Geng D., Feng Y., Savage P.B., Leung D.Y.M. Ceragenins: A class of antiviral compounds to treat orthopox infections. J. Investig. Dermatol. 2009;129:2668–2675. doi: 10.1038/jid.2009.120. PubMed DOI PMC

Moscoso M., Esteban-Torres M., Menéndez M., García E. In vitro bactericidal and bacteriolytic activity of ceragenin CSA-13 against planktonic cultures and biofilms of Streptococcus pneumoniae and other pathogenic Streptococci. PLoS ONE. 2014;9:e101037. doi: 10.1371/journal.pone.0101037. PubMed DOI PMC

Li C., Peters A.S., Meredith E.L., Allman G.W., Savage P.B. Design and synthesis of potent sensitizers of gram-negative bacteria based on a cholic acid scaffolding. J. Am. Chem. Soc. 1998;120:2961–2962. doi: 10.1021/ja973881r. DOI

Oyardi O., Savage P.B., Akcali A., Erturan Z., Bozkurt-Guzel C. Ceragenins exhibiting promising antimicrobial activity against various multidrug resistant Gram negative bacteria. Istanbul J. Pharm. 2019;48:68–72. doi: 10.26650/IstanbulJPharm.2018.400730. DOI

Dao A., Mills R.J., Kamble S., Savage P.B., Little D.G., Schindeler A. The application of ceragenins to orthopedic surgery and medicine. J. Orthop. Res. 2020;38:1883–1894. doi: 10.1002/jor.24615. PubMed DOI

Mills R.J., Boyling A., Cheng T.L., Peacock L., Savage P.B., Tägil M., Little D.G., Schindeler A. CSA-90 reduces periprosthetic joint infection in a novel rat model challenged with local and systemic Staphylococcus aureus. J. Orthop. Res. 2020;38:2065–2073. doi: 10.1002/jor.24618. PubMed DOI

Williams D.L., Sinclair K.D., Jeyapalina S., Bloebaum R.D. Characterization of a novel active release coating to prevent biofilm implant-related infections. J. Biomed. Mater. Res. Part B Appl. Biomater. 2013;101:1078–1089. doi: 10.1002/jbm.b.32918. PubMed DOI

Sinclair K.D., Pham T.X., Williams D.L., Farnsworth R.W., Loc-Carrillo C.M., Bloebaum R.D. Model development for determining the efficacy of a combination coating for the prevention of perioperative device related infections: A pilot study. J. Biomed. Mater. Res. Part B Appl. Biomater. 2013;101:1143–1153. doi: 10.1002/jbm.b.32924. PubMed DOI

Sinclair K.D., Pham T.X., Farnsworth R.W., Williams D.L., Loc-Carrillo C., Horne L.A., Ingebretsen S.H., Bloebaum R.D. Development of a broad spectrum polymer-released antimicrobial coating for the prevention of resistant strain bacterial infections. J. Biomed. Mater. Res. Part A. 2012;100:2732–2738. doi: 10.1002/jbm.a.34209. PubMed DOI PMC

Gu X., Jennings J.D., Snarr J., Chaudhary V., Pollard J.E., Savage P.B. Optimization of ceragenins for prevention of bacterial colonization of hydrogel contact lenses. Investig. Opthalmol. Vis. Sci. 2013;54:6217–6223. doi: 10.1167/iovs.13-12664. PubMed DOI

Jueati R., Jittikoon J., Vajragupta O., Pimthon J. Molecular dynamics and experimental investigations of membrane perturbation by ceragenin CSA-13. Mahidol Univ. J. Pharm. Sci. 2012;39:25–32.

Bozkurt-Guzel C., Savage P.B., Gerceker A.A. In vitro activities of the novel ceragenin CSA-13, alone or in combination with colistin, tobramycin, and ciprofloxacin, against Pseudomonas aeruginosa strains isolated from cystic fibrosis patients. Chemotherapy. 2011;57:505–510. doi: 10.1159/000335588. PubMed DOI

Mitchell G., Silvis M.R., Talkington K.C., Budzik J.M., Dodd C.E., PbBuba J., Oki E.A., Trotta K.L., Licht D., Jimenez-Morales D., et al. Ceragenins and antimicrobial peptides kill bacteria through distinct mechanisms. bioRxiv. 2020 doi: 10.1101/2020.10.20.346411. PubMed DOI PMC

Damar-Çelik D., Mataracı-Kara E., Savage P.B., Özbek-Çelik B. Antibacterial and antibiofilm activities of ceragenins against Achromobacter species isolated from cystic fibrosis patients. J. Chemother. 2021;33:216–227. doi: 10.1080/1120009X.2020.1819702. PubMed DOI

Hashemi M., Mmuoegbulam A., Holden B., Coburn J., Wilson J., Taylor M., Reiley J., Baradaran D., Stenquist T., Deng S., et al. Susceptibility of Multidrug-Resistant Bacteria, isolated from water and plants in Nigeria, to Ceragenins. Int. J. Environ. Res. Public Health. 2018;15:2758. doi: 10.3390/ijerph15122758. PubMed DOI PMC

Hashemi M.M., Holden B.S., Coburn J., Taylor M.F., Weber S., Hilton B., Zaugg A.L., McEwan C., Carson R., Andersen J.L., et al. Proteomic analysis of resistance of gram-negative bacteria to chlorhexidine and impacts on susceptibility to colistin, antimicrobial peptides, and ceragenins. Front. Microbiol. 2019;10:210. doi: 10.3389/fmicb.2019.00210. PubMed DOI PMC

Hacioglu M., Oyardi O., Bozkurt-Guzel C., Savage P.B. Antibiofilm activities of ceragenins and antimicrobial peptides against fungal-bacterial mono and multispecies biofilms. J. Antibiot. 2020;73:455–462. doi: 10.1038/s41429-020-0299-0. PubMed DOI

Hacioglu M., Haciosmanoglu E., Birteksoz-Tan A.S., Bozkurt-Guzel C., Savage P.B. Effects of ceragenins and conventional antimicrobials on Candida albicans and Staphylococcus aureus mono and multispecies biofilms. Diagn. Microbiol. Infect. Dis. 2019;95:114863. doi: 10.1016/j.diagmicrobio.2019.06.014. PubMed DOI

Olekson M.A., You T., Savage P.B., Leung K.P. Antimicrobial ceragenins inhibit biofilms and affect mammalian cell viability and migration in vitro. FEBS Open Bio. 2017;7:953–967. doi: 10.1002/2211-5463.12235. PubMed DOI PMC

Savage P.B. 846 Effects of Ceragenins on Pseudomonas Aeruginosa biofilm formation in burn wounds in a porcine model. J. Burn Care Res. 2020;41:S262–S263. doi: 10.1093/jbcr/iraa024.418. DOI

Piktel E., Pogoda K., Roman M., Niemirowicz K., Tokajuk G., Wróblewska M., Szynaka B., Kwiatek W.M., Savage P.B., Bucki R. Sporicidal activity of ceragenin CSA-13 against Bacillus subtilis. Sci. Rep. 2017;7:44452. doi: 10.1038/srep44452. PubMed DOI PMC

Ghosh S., Joseph G., Korza G., He L., Yuan J.H., Dong W., Setlow B., Li Y.Q., Savage P.B., Setlow P. Effects of the microbicide ceragenin CSA-13 on and properties of Bacillus subtilis spores prepared on two very different media. J. Appl. Microbiol. 2019;127:109–120. doi: 10.1111/jam.14300. PubMed DOI

Chmielewska S.J., Skłodowski K., Piktel E., Suprewicz Ł., Fiedoruk K., Daniluk T., Wolak P., Savage P.B., Bucki R. NDM-1 carbapenemase-producing Enterobacteriaceae are highly susceptible to ceragenins CSA-13, CSA-44, and CSA-131. Infect. Drug Resist. 2020;13:3277–3294. doi: 10.2147/IDR.S261579. PubMed DOI PMC

Bozkurt-Guzel C., Inci G., Oyardi O., Savage P.B. Synergistic activity of ceragenins against carbapenem-resistant Acinetobacter baumannii strains in both checkerboard and dynamic time-kill assays. Curr. Microbiol. 2020;77:1419–1428. doi: 10.1007/s00284-020-01949-w. PubMed DOI PMC

Wnorowska U., Piktel E., Durnaś B., Fiedoruk K., Savage P.B., Bucki R., Durna B., Fiedoruk K., Savage P.B., Bucki R. Use of ceragenins as a potential treatment for urinary tract infections. BMC Infect. Dis. 2019;19:369. doi: 10.1186/s12879-019-3994-3. PubMed DOI PMC

Ozbek-Celik B., Damar-Celik D., Mataraci-Kara E., Bozkurt-Guzel C., Savage P.B. Comparative in vitro activities of first and second-generation ceragenins alone and in combination with antibiotics against Multidrug-Resistant Klebsiella pneumoniae strains. Antibiotics. 2019;8:130. doi: 10.3390/antibiotics8030130. PubMed DOI PMC

Durnaś B., Wnorowska U., Pogoda K., Deptuła P., Wątek M., Piktel E., Głuszek S., Gu X., Savage P.B., Niemirowicz K., et al. Candidacidal activity of selected ceragenins and human cathelicidin LL-37 in experimental settings mimicking infection sites. PLoS ONE. 2016;11:e0157242. doi: 10.1371/journal.pone.0157242. PubMed DOI PMC

Hashemi M.M., Rovig J., Holden B.S., Taylor M.F., Weber S., Wilson J., Hilton B., Zaugg A.L., Ellis S.W., Yost C.D., et al. Ceragenins are active against drug-resistant Candida auris clinical isolates in planktonic and biofilm forms. J. Antimicrob. Chemother. 2018;73:1537–1545. doi: 10.1093/jac/dky085. PubMed DOI

Hacioglu M., Guzel C.B., Savage P.B., Tan A.S.B. Antifungal susceptibilities, in vitro production of virulence factors and activities of ceragenins against Candida spp. isolated from vulvovaginal candidiasis. Med. Mycol. 2019;57:291–299. doi: 10.1093/mmy/myy023. PubMed DOI

Niemirowicz K., Piktel E., Wilczewska A., Markiewicz K., Durnaś B., Wątek M., Puszkarz I., Wróblewska M., Niklińska W., Savage P.B., et al. Core–shell magnetic nanoparticles display synergistic antibacterial effects against Pseudomonas aeruginosa and Staphylococcus aureus when combined with cathelicidin LL-37 or selected ceragenins. Int. J. Nanomed. 2016;11:5443–5455. doi: 10.2147/IJN.S113706. PubMed DOI PMC

Durnaś B., Piktel E., Wątek M., Wollny T., Góźdź S., Smok-Kalwat J., Niemirowicz K., Savage P.B., Bucki R. Anaerobic bacteria growth in the presence of cathelicidin LL-37 and selected ceragenins delivered as magnetic nanoparticles cargo. BMC Microbiol. 2017;17:167. doi: 10.1186/s12866-017-1075-6. PubMed DOI PMC

Niemirowicz K., Durnaś B., Tokajuk G., Piktel E., Michalak G., Gu X., Kułakowska A., Savage P.B., Bucki R. Formulation and candidacidal activity of magnetic nanoparticles coated with cathelicidin LL-37 and ceragenin CSA-13. Sci. Rep. 2017;7:4610. doi: 10.1038/s41598-017-04653-1. PubMed DOI PMC

Hashemi M., Holden B., Taylor M., Wilson J., Coburn J., Hilton B., Nance T., Gubler S., Genberg C., Deng S., et al. Antibacterial and antifungal activities of poloxamer Mmicelles containing ceragenin CSA-131 on ciliated tissues. Molecules. 2018;23:596. doi: 10.3390/molecules23030596. PubMed DOI PMC

Piktel E., Bucki R. Therapeutic potential of ceragenins and nanosystems containing membrane active compounds in the anti-cancer therapies. Postępy Pol. Med. Farm. 2019;6:21–32. doi: 10.5604/01.3001.0013.2315. DOI

Kuroda K., Fukuda T., Okumura K., Yoneyama H., Isogai H., Savage P.B., Isogai E. Ceragenin CSA-13 induces cell cycle arrest and antiproliferative effects in wild-type and p53 null mutant HCT116 colon cancer cells. Anticancer Drugs. 2013;24:826–834. doi: 10.1097/CAD.0b013e3283634dd0. PubMed DOI

Piktel E., Prokop I., Wnorowska U., Król G., Cieśluk M., Niemirowicz K., Savage P.B., Bucki R. Ceragenin CSA-13 as free molecules and attached to magnetic nanoparticle surfaces induce caspase-dependent apoptosis in human breast cancer cells via disruption of cell oxidative balance. Oncotarget. 2018;9:21904–21920. doi: 10.18632/oncotarget.25105. PubMed DOI PMC

Niemirowicz K., Prokop I., Wilczewska A., Wnorowska U., Piktel E., Wątek M., Savage P., Bucki R. Magnetic nanoparticles enhance the anticancer activity of cathelicidin LL-37 peptide against colon cancer cells. Int. J. Nanomed. 2015;10:3843–3853. doi: 10.2147/IJN.S76104. PubMed DOI PMC

Piktel E., Markiewicz K.H., Wilczewska A.Z., Daniluk T., Chmielewska S., Niemirowicz-Laskowska K., Mystkowska J., Paprocka P., Savage P.B., Bucki R. Quantification of synergistic effects of ceragenin CSA-131 combined with iron oxide magnetic nanoparticles against cancer cells. Int. J. Nanomed. 2020;15:4573–4589. doi: 10.2147/IJN.S255170. PubMed DOI PMC

Kazakova O.B., Giniyatullina G.V., Medvedeva N.I., Tolstikov G.A. Synthesis of a triterpene-spermidine conjugate. Russ. J. Org. Chem. 2012;48:1366–1369. doi: 10.1134/S1070428012100181. DOI

Kazakova O.B., Giniyatullina G.V., Tolstikov G.A., Baikova I.P., Zaprutko L., Apryshko G.N. Synthesis and antitumor activity of aminopropoxy derivatives of betulin, erythrodiol, and uvaol. Russ. J. Bioorg. Chem. 2011;37:369–379. doi: 10.1134/S1068162011030101. PubMed DOI

Giniyatullina G.V., Smirnova I.E., Kazakova O.B., Yavorskaya N.P., Golubeva I.S., Zhukova O.S., Pugacheva R.B., Apryshko G.N., Poroikov V.V. Synthesis and anticancer activity of aminopropoxytriterpenoids. Med. Chem. Res. 2015;24:3423–3436. doi: 10.1007/s00044-015-1392-y. DOI

Kazakova O.B., Giniyatullina G.V., Mustafin A.G., Babkov D.A., Sokolova E.V., Spasov A.A. Evaluation of cytotoxicity and α-glucosidase inhibitory activity of amide and polyamino-derivatives of lupane triterpenoids. Molecules. 2020;25:4833–4856. doi: 10.3390/molecules25204833. PubMed DOI PMC

Giniyatullina G.V., Flekhter O.B., Tolstikov G.A. Synthesis of squalamine analogues on the basis of lupane triterpenoids. Mendeleev Commun. 2009;19:32–33. doi: 10.1016/j.mencom.2009.01.013. DOI

Giniyatullina G.V., Kazakova O.B. Synthesis of O- and N-aminopropyltriterpenoids based on messagenin. Chem. Nat. Compd. 2018;54:913–916. doi: 10.1007/s10600-018-2511-z. DOI

Giniyatullina G.V., Kazakova O.B. Synthesis and cytotoxicity of lupane mono- and bis-piperazinylamides. Chem. Nat. Compd. 2021;57:698–705. doi: 10.1007/s10600-021-03453-4. DOI

Giniyatullina G.V., Kazakova O.B., Sorokina I.V., Zhukova N.A., Tolstikova T.G., Tolstikov G.A. Synthesis of aminopropylamino derivatives of betulinic and oleanolic acids. Russ. J. Bioorg. Chem. 2013;39:329–337. doi: 10.1134/S1068162013020064. PubMed DOI

Kazakova O.B., Giniyatullina G.V., Tolstikov G.A. Synthesis of A-secomethylenamino- and substituted amidoximotriterpenoids. Russ. J. Bioorg. Chem. 2011;37:619–625. doi: 10.1134/S1068162011050086. PubMed DOI PMC

Borselli D., Lieutaud A., Thefenne H., Garnotel J., Pagès E.M., Brunel J.M., Bolla J.M. Polyamino-isoprenic derivatives block intrinsic resistance of P. aeruginosa to doxycycline and chloramphenicol in vitro. PLoS ONE. 2016;11:e0154490. doi: 10.1371/journal.pone.0154490. PubMed DOI PMC

Berti L., Bolla J.M., Brunel J.M., Casanova J.P.F., Lorenzi V. Use of Polyaminoisoprenyl Derivatives in Antibiotic or Antiseptic. WO2012113891Al. Treatment. Patent. 2012 August 30;

Lieutaud A., Pieri C., Bolla J.M., Brunel J.M. New polyaminoisoprenyl antibiotics enhancers against two multidrug-resistant gram-negative bacteria from Enterobacter and Salmonella species. J. Med. Chem. 2020;63:10496–10508. doi: 10.1021/acs.jmedchem.0c01335. PubMed DOI

Heller L., Knorrscheidt A., Flemming F., Wiemann J., Sommerwerk S., Pavel I.Z., Al-Harrasi A., Csuk R. Synthesis and proapoptotic activity of oleanolic acid derived amides. Bioorg. Chem. 2016;68:137–151. doi: 10.1016/j.bioorg.2016.08.004. PubMed DOI

Giniyatullina G.V., Kazakova O.B., Salimova E.V., Tolstikov G.A. Synthesis of new betulonic and oleanonic acid amides. Chem. Nat. Compd. 2011;47:68–72. doi: 10.1007/s10600-011-9832-5. DOI

Emmerich D., Vanchanagiri K., Baratto L.C., Schmidt H., Paschke R. Synthesis and studies of anticancer properties of lupane-type triterpenoid derivatives containing a cisplatin fragment. Eur. J. Med. Chem. 2014;2014:460–466. doi: 10.1016/j.ejmech.2014.01.031. PubMed DOI

Csuk R., Schwarz S., Kluge R., Ströhl D. Synthesis and biological activity of some antitumor active derivatives from glycyrrhetinic acid. Eur. J. Med. Chem. 2010;45:5718–5723. doi: 10.1016/j.ejmech.2010.09.028. PubMed DOI

Kazakova O.B., Giniyatullina G.V., Medvedeva N.I., Tolstikov G.A., Apryshko G.N. Synthesis and cytotoxicity of triterpene seven-membered cyclic amines. Russ. J. Bioorg. Chem. 2014;40:198–205. doi: 10.1134/S106816201402006X. PubMed DOI

Medvedeva N.I., Kazakova O.B., Lopatina T.V., Smirnova I.E., Giniyatullina G.V., Baikova I.P., Kataev V.E. Synthesis and antimycobacterial activity of triterpenic A-ring azepanes. Eur. J. Med. Chem. 2018;143:464–472. doi: 10.1016/j.ejmech.2017.11.035. PubMed DOI

Lia T., Fana P., Ye Y., Luo Q., Lou H. Ring A-modified derivatives from the natural triterpene 3-O-acetyl-11-keto-β-boswellic acid and their cytotoxic activity. Anti-Cancer Agents Med. Chem. 2017;17:1153–1167. doi: 10.2174/1871520616666161207144031. PubMed DOI

Antimonova A.N., Uzenkova N.V., Petrenko N.I., Shakirov M.M., Shul’ts E.E., Tolstikov G.A. Synthesis of betulonic acid amides. Chem. Nat. Compd. 2008;44:327–333. doi: 10.1007/s10600-008-9054-7. DOI

Bai K.K., Yu Z., Chen F.L., Li F., Li W.Y., Guo Y.H. Synthesis and evaluation of ursolic acid derivatives as potent cytotoxic agents. Bioorg. Med. Chem. Lett. 2012;22:2488–2493. doi: 10.1016/j.bmcl.2012.02.009. PubMed DOI

Ma C.M., Cai S.Q., Cui J.R., Wang R.Q., Tu P.F., Hattori M., Daneshtalab M. The cytotoxic activity of ursolic acid derivatives. Eur. J. Med. Chem. 2005;40:582–589. doi: 10.1016/j.ejmech.2005.01.001. PubMed DOI

Schwarz S., Lucas S.D., Sommerwerk S., Csuk R. Amino derivatives of glycyrrhetinic acid as potential inhibitors of cholinesterases. Bioorg. Med. Chem. 2014;22:3370–3378. doi: 10.1016/j.bmc.2014.04.046. PubMed DOI

Cheng S.Y., Wang C.M., Cheng H.L., Chen H.J., Hsu Y.M., Lin Y.C., Chou C.-H. Biological activity of oleanane triterpene derivatives obtained by chemical derivatization. Molecules. 2013;18:13003–13019. doi: 10.3390/molecules181013003. PubMed DOI PMC

Gu W., Hao Y., Zhang G., Wang S.F., Miao T.T., Zhang K.P. Synthesis, in vitro antimicrobial and cytotoxic activities of new carbazole derivatives of ursolic acid. Bioorg. Med. Chem. Lett. 2015;25:554–557. doi: 10.1016/j.bmcl.2014.12.021. PubMed DOI

Liang Z., Zhang L., Li L., Liu J., Li H., Zhang L., Chen L., Cheng K., Zheng M., Wen X., et al. Identification of pentacyclic triterpenes derivatives as potent inhibitors against glycogen phosphorylase based on 3D-QSAR studies. Eur. J. Med. Chem. 2011;46:2011–2021. doi: 10.1016/j.ejmech.2011.02.053. PubMed DOI

Lan P., Wang J., Zhang D.M., Shu C., Cao H.H., Sun P.H., Wu X.M., Ye W.C., Chen W.M. Synthesis and antiproliferative evaluation of 23-hydroxybetulinic acid derivatives. Eur. J. Med. Chem. 2011;46:2490–2502. doi: 10.1016/j.ejmech.2011.03.038. PubMed DOI

Tian T., Liu X., Lee E.S., Sun J., Feng Z., Zhao L., Zhao C. Synthesis of novel oleanolic acid and ursolic acid in C-28 position derivatives as potential anticancer agents. Arch. Pharm. Res. 2017;40:458–468. doi: 10.1007/s12272-016-0868-8. PubMed DOI

Urano E., Ablan S.D., Mandt R., Pauly G.T., Sigano D.M., Schneider J.P., Martin D.E., Nitz T.J., Wild C.T., Freed E.O. Alkyl amine bevirimat derivatives are potent and broadly active HIV-1 maturation inhibitors. Antimicrob. Agents Chemother. 2016;60:190–197. doi: 10.1128/AAC.02121-15. PubMed DOI PMC

Salvador J.A.R., Leal A.S., Valdeira A.S., Gonçalves B.M.F., Alho D.P.S., Figueiredo S.A.C., Silvestre S.M., Mendes V.I.S. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment. Eur. J. Med. Chem. 2017;142:95–130. doi: 10.1016/j.ejmech.2017.07.013. PubMed DOI

Luo S., Li P., Li S., Du Z., Hu X., Fu Y., Zhang Z. N, N-Dimethyl tertiary amino group mediated dual pancreas- and lung-targeting therapy against acute pancreatitis. Mol. Pharm. 2017;14:1771–1781. doi: 10.1021/acs.molpharmaceut.7b00028. PubMed DOI

Rodŕigues-Hernández D., Demuner A.J., Barbosa L.C.A., Csuk R., Heller L. Hederagenin as a triterpene template for the development of new antitumor compounds. Eur. J. Med. Chem. 2015;105:57–62. doi: 10.1016/j.ejmech.2015.10.006. PubMed DOI

Ortiz A., Soumeillant M., Savage S.A., Strotman N.A., Haley M., Benkovics T., Nye J., Xu Z., Tan Y., Ayers S., et al. Synthesis of HIV-maturation inhibitor BMS-955176 from betulin by an enabling oxidation strategy. J. Org. Chem. 2017;82:4958–4963. doi: 10.1021/acs.joc.7b00438. PubMed DOI

Spivak A., Khalitova R., Nedopekina D., Dzhemileva L., Yunusbaeva M., Odinokov V., D’yakonov V., Dzhemilev U. Synthesis and evaluation of anticancer activities of novel C-28 guanidine-functionalized triterpene acid derivatives. Molecules. 2018;23:3000. doi: 10.3390/molecules23113000. PubMed DOI PMC

Kahnt M., Hoenke S., Fischer L., Al-Harrasi A., Csuk R. Synthesis and cytotoxicity evaluation of DOTA-conjugates of ursolic acid. Molecules. 2019;24:2254–2273. doi: 10.3390/molecules24122254. PubMed DOI PMC

Cao M., Gao Y., Zhan M., Qiu N., Piao Y., Zhou Z., Shen Y. Glycyrrhizin acid and glycyrrhetinic acid modified polyethyleneimine for targeted DNA delivery to hepatocellular carcinoma. Int. J. Mol. Sci. 2019;20:5074–5098. doi: 10.3390/ijms20205074. PubMed DOI PMC

Bildziukevich U., Malík M., Özdemir Z., Rárová L., Janovská L., Šlouf M., Šaman D., Šarek J., Wimmer Z. Spermine amides of selected triterpenoid acids: Dynamic supramolecular systems formation influences cytotoxicity of the drugs. J. Mater. Chem. B. 2020;8:484–491. doi: 10.1039/C9TB01957J. PubMed DOI

Spivak A.Y., Khalitova R.R., Nedopekina D.A., Gubaidullin R.R. Antimicrobial properties of amine- and guanidine-functionalized derivatives of betulinic, ursolic and oleanolic acids: Synthesis and structure/activity evaluation. Steroids. 2020;154:108530–108542. doi: 10.1016/j.steroids.2019.108530. PubMed DOI

Bildziukevich U., Vida N., Rárová L., Kolár M., Šaman D., Havlíček L., Drašar P., Wimmer Z. Polyamine derivatives of betulinic acid and β-sitosterol: A comparative investigation. Steroids. 2015;100:27–35. doi: 10.1016/j.steroids.2015.04.005. PubMed DOI

Bildziukevich U., Kaletová E., Šaman D., Sievänen E., Kolehmainen E.T., Šlouf M., Wimmer Z. Spectral and microscopic study of self-assembly of novel cationic spermine amides of betulinic acid. Steroids. 2017;117:90–96. doi: 10.1016/j.steroids.2016.07.007. PubMed DOI

Kazakova O.B., Brunel J.M., Khusnutdinova E.F., Negrel S., Giniyatullina G.V., Lopatina T.V., Petrova A.V. A-ring modified triterpenoids and their spermidine-aldimines with strong antibacterial activity. Molbank. 2019;2019:M1078–M1086. doi: 10.3390/M1078. DOI

Qian K., Kuo R., Chen C., Huang L., Morris-Natschke S.L., Lee K. Anti-AIDS agents 81. Design, synthesis, and structure-activity relationship study of betulinic acid and moronic acid derivatives as potent HIV maturation inhibitors. J. Med. Chem. 2010;53:3133–3141. doi: 10.1021/jm901782m. PubMed DOI PMC

Rodríguez-Hernández D., Barbosa L.C.A., Demuner A.J., Martins J.P.A., Fischer (nee Heller) L., Csuk R. Hederagenin amide derivatives as potential antiproliferative agents. Eur. J. Med. Chem. 2019;168:436–446. doi: 10.1016/j.ejmech.2019.02.057. PubMed DOI

Özdemir Z., Saman D., Bertula K., Lahtinen M., Bednarova L., Pazderkova M., Rarova L., Nonappa, Wimmer Z. Rapid self-healing and thixotropic organogelation of amphiphilic oleanolic acid−spermine conjugates. Langmuir. 2021;37:2693–2706. doi: 10.1021/acs.langmuir.0c03335. PubMed DOI

Kazakova O., Rubanik L., Smirnova I., Poleschuk N., Petrova A., Kapustsina Y., Baikova I., Tret’yakova E., Khusnutdinova E. Synthesis and in vitro activity of oleanolic acid derivatives against Chlamydia trachomatis and Staphylococcus aureus. Med. Chem. Res. 2021;30:1408–1418. doi: 10.1007/s00044-021-02741-6. DOI

Khusnutdinova E.F., Sinou V., Babkov D.A., Kazakova O.B., Brunel J.M. Development of new antimicrobial oleanonic acid polyamine conjugates. Antibiotics. 2022;11:94. doi: 10.3390/antibiotics11010094. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...