Whole-Exome Sequencing Identifies a Novel Germline Variant in PTK7 Gene in Familial Colorectal Cancer
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
856620
EU Horizon 2020
CA17118
European Cooperation in Science and Technology
PubMed
35163215
PubMed Central
PMC8836109
DOI
10.3390/ijms23031295
PII: ijms23031295
Knihovny.cz E-zdroje
- Klíčová slova
- AKT signaling pathway, PTK7, colorectal cancer, familial cancer variant prioritization pipeline, familial cancers, germline variant,
- MeSH
- genetická predispozice k nemoci MeSH
- inhibitor p21 cyklin-dependentní kinasy genetika MeSH
- invazivní růst nádoru genetika MeSH
- kolorektální nádory genetika patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- molekuly buněčné adheze genetika metabolismus MeSH
- nádorový supresorový protein p53 genetika MeSH
- onkogeny MeSH
- pohyb buněk genetika MeSH
- proliferace buněk genetika MeSH
- protein vázající cAMP responzivní element genetika MeSH
- protoonkogenní proteiny c-akt genetika MeSH
- rodina MeSH
- rodokmen MeSH
- sekvenování exomu metody MeSH
- senioři MeSH
- tyrosinkinasové receptory genetika metabolismus MeSH
- zárodečné mutace genetika MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CDKN1A protein, human MeSH Prohlížeč
- CREB1 protein, human MeSH Prohlížeč
- inhibitor p21 cyklin-dependentní kinasy MeSH
- molekuly buněčné adheze MeSH
- nádorový supresorový protein p53 MeSH
- protein vázající cAMP responzivní element MeSH
- protoonkogenní proteiny c-akt MeSH
- PTK7 protein, human MeSH Prohlížeč
- tyrosinkinasové receptory MeSH
Colorectal cancer (CRC) is the third most frequently diagnosed malignancy worldwide. Only 5% of all CRC cases are due to germline mutations in known predisposition genes, and the remaining genetic burden still has to be discovered. In this study, we performed whole-exome sequencing on six members of a Polish family diagnosed with CRC and identified a novel germline variant in the protein tyrosine kinase 7 (inactive) gene (PTK7, ENST00000230419, V354M). Targeted screening of the variant in 1705 familial CRC cases and 1674 healthy elderly individuals identified the variant in an additional familial CRC case. Introduction of this variant in HT-29 cells resulted in increased cell proliferation, migration, and invasion; it also caused down-regulation of CREB, p21 and p53 mRNA and protein levels, and increased AKT phosphorylation. These changes indicated inhibition of apoptosis pathways and activation of AKT signaling. Our study confirmed the oncogenic function of PTK7 and supported its role in genetic predisposition of familial CRC.
Bioinformatics and Omics Data Analytics German Cancer Research Center 69120 Heidelberg Germany
Department of Genetics and Pathology Pomeranian Medical University 71252 Szczecin Poland
Division of Pediatric Neurooncology German Cancer Research Center 69120 Heidelberg Germany
Hopp Children's Cancer Center 69120 Heidelberg Germany
Institute of Bioinformatics International Technology Park Bengaluru 560066 India
Manipal Academy of Higher Education Manipal 576104 India
Medical Faculty Heidelberg Heidelberg University 69120 Heidelberg Germany
Molecular Genetic Epidemiology German Cancer Research Center 69120 Heidelberg Germany
Zobrazit více v PubMed
Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI
Arnold M., Sierra M.S., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66:683–691. doi: 10.1136/gutjnl-2015-310912. PubMed DOI
Lichtenstein P., Holm N.V., Verkasalo P.K., Iliadou A., Kaprio J., Koskenvuo M., Pukkala E., Skytthe A., Hemminki K. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 2000;343:78–85. doi: 10.1056/NEJM200007133430201. PubMed DOI
Jasperson K.W., Tuohy T.M., Neklason D.W., Burt R.W. Hereditary and familial colon cancer. Gastroenterology. 2010;138:2044–2058. doi: 10.1053/j.gastro.2010.01.054. PubMed DOI PMC
Lorans M., Dow E., Macrae F.A., Winship I.M., Buchanan D.D. Update on Hereditary Colorectal Cancer: Improving the Clinical Utility of Multigene Panel Testing. Clin. Color. Cancer. 2018;17:e293–e305. doi: 10.1016/j.clcc.2018.01.001. PubMed DOI
Weren R.D., Ligtenberg M.J., Kets C.M., De Voer R.M., Verwiel E.T., Spruijt L., van Zelst-Stams W.A., Jongmans M.C., Gilissen C., Hehir-Kwa J.Y., et al. A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer. Nat. Genet. 2015;47:668–671. doi: 10.1038/ng.3287. PubMed DOI
Kuiper R.P., Hoogerbrugge N. NTHL1 defines novel cancer syndrome. Oncotarget. 2015;6:34069–34070. doi: 10.18632/oncotarget.5864. PubMed DOI PMC
Yan H.N.H., Lai J.C.W., Ho S.L., Leung W.K., Law W.L., Lee J.F.Y., Chan A.K.W., Tsui W.Y., Chan A.S.Y., Lee B.C.H., et al. RNF43 germline and somatic mutation in serrated neoplasia pathway and its association with BRAF mutation. Gut. 2016;66:1645–1656. doi: 10.1136/gutjnl-2016-311849. PubMed DOI
Gala M.K., Mizukami Y., Le L.P., Moriichi K., Austin T., Yamamoto M., Lauwers G.Y., Bardeesy N., Chung D.C. Germline mutations in oncogene-induced senescence pathways are associated with multiple sessile serrated adenomas. Gastroenterology. 2014;146:520–529. doi: 10.1053/j.gastro.2013.10.045. PubMed DOI PMC
Briggs S., Tomlinson I. Germline and somatic polymerase epsilon and delta mutations define a new class of hypermutated colorectal and endometrial cancers. J. Pathol. 2013;230:148–153. doi: 10.1002/path.4185. PubMed DOI PMC
Palles C., Cazier J.-B., Howarth K.M., Domingo E., Jones A.M., Broderick P., Kemp Z., Spain S.L., Guarino E., Salguero I., et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat. Genet. 2013;45:136–144. doi: 10.1038/ng.2503. PubMed DOI PMC
Seguí N., Mina L.B., Lázaro C., Sanz-Pamplona R., Pons T., Navarro M., Bellido F., López-Doriga A., Valdés-Mas R., Pineda M., et al. Germline Mutations in FAN1 Cause Hereditary Colorectal Cancer by Impairing DNA Repair. Gastroenterology. 2015;149:563–566. doi: 10.1053/j.gastro.2015.05.056. PubMed DOI
Nieminen T.T., O’Donohue M.-F., Wu Y., Lohi H., Scherer S., Paterson A.D., Ellonen P., Abdel-Rahman W.M., Valo S., Mecklin J.-P., et al. Germline mutation of RPS20, encoding a ribosomal protein, causes predisposition to hereditary nonpolyposis colorectal carcinoma without DNA mismatch repair deficiency. Gastroenterology. 2014;147:595–598. doi: 10.1053/j.gastro.2014.06.009. PubMed DOI PMC
Kumar A., Bandapalli O.R., Paramasivam N., Giangiobbe S., Diquigiovanni C., Bonora E., Eils R., Schlesner M., Hemminki K., Försti A. Familial Cancer Variant Prioritization Pipeline version 2 (FCVPPv2) applied to a papillary thyroid cancer family. Sci. Rep. 2018;8:11635. doi: 10.1038/s41598-018-29952-z. PubMed DOI PMC
Bandapalli O.R., Paramasivam N., Giangiobbe S., Kumar A., Benisch W., Engert A., Witzens-Harig M., Schlesner M., Hemminki K., Försti A. Whole genome sequencing reveals DICER1 as a candidate predisposing gene in familial Hodgkin lymphoma. Int. J. Cancer. 2018;143:2076–2078. doi: 10.1002/ijc.31576. PubMed DOI
Peradziryi H., Tolwinski N.S., Borchers A. The many roles of PTK7: A versatile regulator of cell-cell communication. Arch. Biochem. Biophys. 2012;524:71–76. doi: 10.1016/j.abb.2011.12.019. PubMed DOI
Lhoumeau A.-C., Martinez S., Boher J.-M., Monges G., Castellano R., Goubard A., Doremus M., Poizat F., Lelong B., De Chaisemartin C., et al. Overexpression of the Promigratory and Prometastatic PTK7 Receptor Is Associated with an Adverse Clinical Outcome in Colorectal Cancer. PLoS ONE. 2015;10:e0123768. doi: 10.1371/journal.pone.0123768. PubMed DOI PMC
Mossie K., Jallal B., Alves F., Sures I., Plowman G.D., Ullrich A. Colon carcinoma kinase-4 defines a new subclass of the receptor tyrosine kinase family. Oncogene. 1995;11:2179–2184. PubMed
Stelzer G., Rosen N., Plaschkes I., Zimmerman S., Twik M., Fishilevich S., Stein T.I., Nudel R., Lieder I., Mazor Y., et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016;54:1.30.1–1.30.33. doi: 10.1002/cpbi.5. PubMed DOI
Karczewski K.J., Francioli L.C., Tiao G., Cummings B.B., Alfoldi J., Wang Q., Collins R.L., Laricchia K.M., Ganna A., Birnbaum D.P., et al. Variation across 141,456 Human Exomes and Genomes Reveals the Spectrum of Loss-of-Function Intolerance Across Human Protein-Coding Genes. bioRxiv. 2019 doi: 10.1101/531210. DOI
Tamborero D., Rubio-Perez C., Deu-Pons J., Schroeder M.P., Vivancos A., Rovira A., Tusquets I., Albanell J., Rodon J., Tabernero J., et al. Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations. bioRxiv. 2017:140475. doi: 10.1186/s13073-018-0531-8. PubMed DOI PMC
Gao J., Aksoy B.A., Dogrusoz U., Dresdner G., Gross B., Sumer S.O., Sun Y., Jacobsen A., Sinha R., Larsson E., et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013;6:pl1. doi: 10.1126/scisignal.2004088. PubMed DOI PMC
Oga T., Yamashita Y., Soda M., Kojima S., Ueno T., Kawazu M., Suzuki N., Nagano H., Hazama S., Izumiya M., et al. Genomic profiles of colorectal carcinoma with liver metastases and newly identified fusion genes. Cancer Sci. 2019;110:2973–2981. doi: 10.1111/cas.14127. PubMed DOI PMC
Hunt S.E., McLaren W., Gil L., Thormann A., Schuilenburg H., Sheppard D., Parton A., Armean I.M., Trevanion S.J., Flicek P., et al. Ensembl variation resources. Database. 2018;2018:bay119. doi: 10.1093/database/bay119. PubMed DOI PMC
UniProt Consortium UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–D515. doi: 10.1093/nar/gky1049. PubMed DOI PMC
The Cancer Genome Atlas Research Network. Weinstein J.N., Collisson E.A., Mills G.B., Shaw K.R.M., Ozenberger B.A., Ellrott K., Shmulevich I., Sander C., Stuart J.M. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013;45:1113–1120. PubMed PMC
Wang M., De Marco P., Merello E., Drapeau P., Capra V., Kibar Z. Role of the planar cell polarity gene Protein tyrosine kinase 7 in neural tube defects in humans. Birth Defects Res. Part A Clin. Mol. Teratol. 2015;103:1021–1027. doi: 10.1002/bdra.23422. PubMed DOI
Rouillard A.D., Gundersen G.W., Fernandez N.F., Wang Z., Monteiro C.D., McDermott M.G., Ma’Ayan A. The harmonizome: A collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database. 2016;2016:baw100. doi: 10.1093/database/baw100. PubMed DOI PMC
Lahiri D.K., Schnabel B. DNA isolation by a rapid method from human blood samples: Effects of MgCl2, EDTA, storage time, and temperature on DNA yield and quality. Biochem. Genet. 1993;31:321–328. doi: 10.1007/BF00553174. PubMed DOI
Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–2993. doi: 10.1093/bioinformatics/btr509. PubMed DOI PMC
Rimmer A., Phan H.T., Mathieson I., Iqbal Z., Twigg S., Wilkie A., McVean G., Lunter G. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat. Genet. 2014;46:912–918. doi: 10.1038/ng.3036. PubMed DOI PMC
Wang K., Li M., Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. doi: 10.1093/nar/gkq603. PubMed DOI PMC
1000 Genomes Project Consortium. Auton A., Brooks L.D., Durbin R.M., Garrison E.P., Kang H.M., Korbel J.O., Marchini J.L., McCarthy S., McVean G.A., et al. A global reference for human genetic variation. Nature. 2015;526:68–74. PubMed PMC
Smigielski E.M., Sirotkin K., Ward M., Sherry S.T. dbSNP: A database of single nucleotide polymorphisms. Nucleic Acids Res. 2000;28:352–355. doi: 10.1093/nar/28.1.352. PubMed DOI PMC
Lek M., Karczewski K.J., Minikel E.V., Samocha K.E., Banks E., Fennell T., O’Donnell-Luria A.H., Ware J.S., Hill A.J., Cummings B.B., et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–291. doi: 10.1038/nature19057. PubMed DOI PMC
Kircher M., Witten D.M., Jain P., O’roak B.J., Cooper G.M., Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 2014;46:310–315. doi: 10.1038/ng.2892. PubMed DOI PMC
Cooper G.M., Stone E.A., Asimenos G., NISC Comparative Sequencing Program. Green E.D., Batzoglou S., Sidow A. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005;15:901–913. doi: 10.1101/gr.3577405. PubMed DOI PMC
Siepel A., Bejerano G., Pedersen J.S., Hinrichs A.S., Hou M., Rosenbloom K., Clawson H., Spieth J., Hillier L.W., Richards S., et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005;15:1034–1050. doi: 10.1101/gr.3715005. PubMed DOI PMC
Petrovski S., Wang Q., Heinzen E.L., Allen A., Goldstein D.B. Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet. 2013;9:e1003709. doi: 10.1371/annotation/32c8d343-9e1d-46c6-bfd4-b0cd3fb7a97e. PubMed DOI PMC
Ward L.D., Kellis M. HaploReg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40:D930–D934. doi: 10.1093/nar/gkr917. PubMed DOI PMC
XLiu X., Wu C., Li C., Boerwinkle E. dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. Hum. Mutat. 2016;37:235–241. PubMed PMC
Von Holst S., Jiao X., Liu W., Kontham V., Thutkawkorapin J., Ringdahl J., Bryant P., Lindblom A. Linkage analysis revealed risk loci on 6p21 and 18p11.2-q11.2 in familial colon and rectal cancer, respectively. Eur. J. Hum. Genet. 2019;27:1286–1295. doi: 10.1038/s41431-019-0388-3. PubMed DOI PMC
Lei Y., Kim S.E., Chen Z., Cao X., Zhu H., Yang W., Shaw G.M., Zheng Y., Zhang T., Wang H., et al. Variants identified in PTK7 associated with neural tube defects. Mol. Genet. Genom. Med. 2019;7:e00584. doi: 10.1002/mgg3.584. PubMed DOI PMC
Liu K., Song G., Zhang X., Li Q., Zhao Y., Zhou Y., Xiong R., Hu X., Tang Z., Feng G. PTK7 is a novel oncogenic target for esophageal squamous cell carcinoma. World J. Surg. Oncol. 2017;15:105. doi: 10.1186/s12957-017-1172-x. PubMed DOI PMC
Gorringe K.L., Boussioutas A., Bowtell D.D.L., Melbourne Gastric Cancer Group Novel regions of chromosomal amplification at 6p21, 5p13, and 12q14 in gastric cancer identified by array comparative genomic hybridization. Genes Chromosomes Cancer. 2005;42:247–259. doi: 10.1002/gcc.20136. PubMed DOI
Ataseven B., Angerer R., Kates R., Gunesch A., Knyazev P., Högel B., Becker C., Eiermann W., Harbeck N. PTK7 expression in triple-negative breast cancer. Anticancer. Res. 2013;33:3759–3763. PubMed
Gobble R.M., Qin L.-X., Brill E.R., Angeles C.V., Ugras S., O’Connor R., Moraco N.H., Decarolis P.L., Antonescu C., Singer S. Expression profiling of liposarcoma yields a multigene predictor of patient outcome and identifies genes that contribute to liposarcomagenesis. Cancer Res. 2011;71:2697–2705. doi: 10.1158/0008-5472.CAN-10-3588. PubMed DOI PMC
Müller-Tidow C., Schwäble J., Steffen B., Tidow N., Brandt B., Becker K., Schulze-Bahr E., Halfter H., Vogt U., Metzger R., et al. High-throughput analysis of genome-wide receptor tyrosine kinase expression in human cancers identifies potential novel drug targets. Clin. Cancer Res. 2004;10:1241–1249. doi: 10.1158/1078-0432.CCR-0954-03. PubMed DOI
Shangguan D., Cao Z., Meng L., Mallikaratchy P., Sefah K., Wang H., Li Y., Tan W. Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J. Proteome Res. 2008;7:2133–2139. doi: 10.1021/pr700894d. PubMed DOI PMC
Gärtner S., Gunesch A., Knyazeva T., Wolf P., Högel B., Eiermann W., Ullrich A., Knyazev P., Ataseven B. PTK 7 is a transforming gene and prognostic marker for breast cancer and nodal metastasis involvement. PLoS ONE. 2014;9:e84472. doi: 10.1371/journal.pone.0084472. PubMed DOI PMC
Prebet T., Lhoumeau A.-C., Arnoulet C., Aulas A., Marchetto S., Audebert S., Puppo F., Chabannon C., Sainty D., Santoni M.-J., et al. The cell polarity PTK7 receptor acts as a modulator of the chemotherapeutic response in acute myeloid leukemia and impairs clinical outcome. Blood. 2010;116:2315–2323. doi: 10.1182/blood-2010-01-262352. PubMed DOI
Ataseven B., Gunesch A., Eiermann W., Kates R.E., Hoegel B., Knyazev P., Ullrich A., Harbeck N. PTK7 as a potential prognostic and predictive marker of response to adjuvant chemotherapy in breast cancer patients, and resistance to anthracycline drugs. OncoTargets Ther. 2014;7:1723–1731. doi: 10.2147/OTT.S62676. PubMed DOI PMC
Shin W.-S., Kwon J., Lee H.W., Kang M.C., Na H.-W., Lee S.-T., Park J.H. Oncogenic role of protein tyrosine kinase 7 in esophageal squamous cell carcinoma. Cancer Sci. 2013;104:1120–1126. doi: 10.1111/cas.12194. PubMed DOI PMC
Lin Y., Zhang L.-H., Wang X.-H., Xing X.-F., Cheng X.-J., Dong B., Hu Y., Du H., Li Y.-A., Zhu Y.-B., et al. PTK7 as a novel marker for favorable gastric cancer patient survival. J. Surg. Oncol. 2012;106:880–886. doi: 10.1002/jso.23154. PubMed DOI
Wang H., Li G., Yin Y., Wang J., Wang H., Wei W., Guo Q., Ma H., Shi Q., Zhou X., et al. PTK7 protein is decreased in epithelial ovarian carcinomas with poor prognosis. Int. J. Clin. Exp. Pathol. 2014;7:7881–7889. PubMed PMC
Kim J.-H., Kwon J., Lee H.W., Kang M.C., Yoon H.-J., Lee S.-T., Park J.H. Protein tyrosine kinase 7 plays a tumor suppressor role by inhibiting ERK and AKT phosphorylation in lung cancer. Oncol. Rep. 2014;31:2708–2712. doi: 10.3892/or.2014.3164. PubMed DOI
Chen R., Khatri P., Mazur P., Polin M., Zheng Y., Vaka D., Hoang C.D., Shrager J., Xu Y., Vicent S., et al. A meta-analysis of lung cancer gene expression identifies PTK7 as a survival gene in lung adenocarcinoma. Cancer Res. 2014;74:2892–2902. doi: 10.1158/0008-5472.CAN-13-2775. PubMed DOI PMC
Jiang W., He J., Lv B., Xi X., He G., He J. PTK7 expression is associated with lymph node metastasis, ALK and EGFR mutations in lung adenocarcinomas. Histol. Histopathol. 2019;35:18183. PubMed
Peradziryi H., Kaplan N.A., Podleschny M., Liu X., Wehner P., Borchers A., Tolwinski N.S. PTK7/Otk interacts with Wnts and inhibits canonical Wnt signalling. EMBO J. 2011;30:3729–3740. doi: 10.1038/emboj.2011.236. PubMed DOI PMC
Berger H., Breuer M., Peradziryi H., Podleschny M., Jacob R., Borchers A. PTK7 localization and protein stability is affected by canonical Wnt ligands. J. Cell Sci. 2017;130:1890–1903. doi: 10.1242/jcs.198580. PubMed DOI
Martinez S., Scerbo P., Giordano M., Daulat A.M., Lhoumeau A.-C., Thomé V., Kodjabachian L., Borg J.-P. The PTK7 and ROR2 Protein Receptors Interact in the Vertebrate WNT/Planar Cell Polarity (PCP) Pathway. J. Biol. Chem. 2015;290:30562–30572. doi: 10.1074/jbc.M115.697615. PubMed DOI PMC
Podleschny M., Grund A., Berger H., Rollwitz E., Borchers A. A PTK7/Ror2 Co-Receptor Complex Affects Xenopus Neural Crest Migration. PLoS ONE. 2015;10:e0145169. doi: 10.1371/journal.pone.0145169. PubMed DOI PMC
Nie X., Liu H., Liu L., Wang Y.-D., Chen W.-D. Emerging Roles of Wnt Ligands in Human Colorectal Cancer. Front. Oncol. 2020;10:1341. doi: 10.3389/fonc.2020.01341. PubMed DOI PMC
WShin W.-S., Gim J., Won S., Lee S.-T. Biphasic regulation of tumorigenesis by PTK7 expression level in esophageal squamous cell carcinoma. Sci. Rep. 2018;8:8519. PubMed PMC
Lee H.K., Chauhan S.K., Kay E., Dana R. Flt-1 regulates vascular endothelial cell migration via a protein tyrosine kinase-7-dependent pathway. Blood. 2011;117:5762–5771. doi: 10.1182/blood-2010-09-306928. PubMed DOI PMC
Wu D., Pan W. GSK3: A multifaceted kinase in Wnt signaling. Trends Biochem. Sci. 2010;35:161–168. doi: 10.1016/j.tibs.2009.10.002. PubMed DOI PMC
Golubkov V.S., Strongin A.Y. Downstream signaling and genome-wide regulatory effects of PTK7 pseudokinase and its proteolytic fragments in cancer cells. Cell Commun. Signal. 2014;12:15. doi: 10.1186/1478-811X-12-15. PubMed DOI PMC
Mouravlev A., Young D., During M.J. Phosphorylation-dependent degradation of transgenic CREB protein initiated by heterodimerization. Brain Res. 2007;1130:31–37. doi: 10.1016/j.brainres.2006.10.076. PubMed DOI
Okoshi R., Ando K., Suenaga Y., Sang M., Kubo N., Kizaki H., Nakagawara A., Ozaki T. Transcriptional regulation of tumor suppressor p53 by cAMP-responsive element-binding protein/AMP-activated protein kinase complex in response to glucose deprivation. Genes Cells. 2009;14:1429–1440. doi: 10.1111/j.1365-2443.2009.01359.x. PubMed DOI