• This record comes from PubMed

The potential applications of artificial intelligence in drug discovery and development

. 2021 Dec 30 ; 70 (Suppl4) : S715-S722.

Language English Country Czech Republic Media print

Document type Journal Article, Review

Development of a new dug is a very lengthy and highly expensive process since only preclinical, pharmacokinetic, pharmacodynamic and toxicological studies include a multiple of in silico, in vitro, in vivo experimentations that traditionally last several years. In the present review, we briefly report some examples that demonstrate the power of the computer-assisted drug discovery process with some examples that are published and revealing the successful applications of artificial intelligence (AI) technology on this vivid area. Besides, we address the situation of drug repositioning (repurposing) in clinical applications. Yet few success stories in this regard that provide us with a clear evidence that AI will reveal its great potential in accelerating effective new drug finding. AI accelerates drug repurposing and AI approaches are altogether necessary and inevitable tools in new medicine development. In spite of the fact that AI in drug development is still in its infancy, the advancements in AI and machine-learning (ML) algorithms have an unprecedented potential. The AI/ML solutions driven by pharmaceutical scientists, computer scientists, statisticians, physicians and others are increasingly working together in the processes of drug development and are adopting AI-based technologies for the rapid discovery of medicines. AI approaches, coupled with big data, are expected to substantially improve the effectiveness of drug repurposing and finding new drugs for various complex human diseases.

See more in PubMed

ARSHADI AK, SALEM M, COLLINS J, YUAN JS, CHAKRABARTI, DEEPMALARIA D. Artificial Intelligence Driven Discovery of Potent Antiplasmodials. Front Pharmacol. 2020;10:e1526. doi: 10.3389/fphar.2019.01526. PubMed DOI PMC

ATTIA YM, EWIDA H, AHMED MS. Chapter 8 - Successful stories of drug repurposing for cancer therapy in hepatocellular carcinoma. In: KWK TO, WCS CHO, editors. Drug Repurposing in Cancer Therapy. Academic Press, Elsevier Inc. All; 2020. pp. 213–229. DOI

BAEK M, DIMAIO F, ANISHCHENKO I, DAUPARAS J, OVCHINNIKOV S, LEE GR, WANG J, CONG Q, KINCH LN, SCHAEFFER RD, MILLÁN C, PARK H, ADAMS C, GLASSMAN CR, DEGIOVANNI A, PEREIRA JH, RODRIGUES AV, VAN DIJK AA, EBRECHT AC, OPPERMAN DJ, SAGMEISTER T, BUHLHELLER C, PAVKOV-KELLER T, RATHINASWAMY MK, DALWADI U, YIP CK, BURKE JE, GARCIA KC, GRISHIN NV, ADAMS PD, READ RJ, BAKER D. Accurate prediction of protein structures and interactions using a three-track neural network. Science. 2021;373:871–876. doi: 10.1126/science.abj8754. PubMed DOI PMC

BALFOUR H. DSP-1181: drug created using AI enters clinical trials. European Pharmaceutical Review – News on 4 February DSP-1181, 2020: drug created using AI enters clinical trials. europeanpharmaceuticalreview.com .

BARNETTE DA, DAVIS MA, DANG NL, PIDUGU AS, HUGHES T, SWAMIDASS SJ, BOYSEN G, MILLER GP. Lamisil (terbinafine) toxicity: Determining pathways to bioactivation through computational and experimental approaches. Biochem Pharmacol. 2018;156:10–21. doi: 10.1016/j.bcp.2018.07.043. PubMed DOI PMC

BARNETTE DA, DAVIS MA, FLYNN N, PIDUGU AS, SWAMIDASS SJ, MILLER GP. Comprehensive kinetic and modeling analyses revealed CYP2C9 and 3A4 determine terbinafine metabolic clearance and bioactivation. iochem Pharmacol. 2019;170:e113661. doi: 10.1016/j.bcp.2019.113661. PubMed DOI PMC

CUI W, AOUIDATE A, WANG S, YU Q, LI Y, YUAN S. Discovering Anti-Cancer Drugs via Computational Methods. Front Pharmacol. 2020;11:e733. doi: 10.3389/fphar.2020.00733. PubMed DOI PMC

GERDES H, CASADO P, DOKAL A, HIJAZI M, AKHTAR N, OSUNTOLA R, RAJEEVE V, FITZGIBBON J, TRAVERS J, BRITTON D, KHORSANDI S, CUTILLAS PR. Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs. Nat Commun. 2021;12(1):e1850. doi: 10.1038/s41467-021-22170-8. PubMed DOI PMC

HINKSON IV, BENJAMIN M, STAHLBERG EA. Accelerating therapeutics for opportunities in medicine: a paradigm shift in drug discovery. Front Pharmacol. 2020;11:e770. doi: 10.3389/fphar.2020.00770. PubMed DOI PMC

HUGHES TB, FLYNN N, DANG NL, SWAMIDASS SJ. Modeling the Bioactivation and Subsequent Reactivity of Drugs. Chem Res Toxicol. 2021;34(2):584–600. doi: 10.1021/acs.chemrestox.0c00417. PubMed DOI PMC

ISLAM MM, POLY TN, ALSINGLAWI B, LIN MC, HSU MH, LI YJ. A state-of-the-art survey on artificial intelligence to fight COVID-19. J Clin Med. 2021;10(9):1961. doi: 10.3390/jcm10091961. PubMed DOI PMC

JUMPER J, EVANS R, PRITZEL A, GREEN T, FIGURNOV M, RONNEBERGER O, TUNYASUVUNAKOOL K, BATES R, ŽÍDEK A, POTAPENKO A, BRIDGLAND A, MEYER C, KOHL SAA, BALLARD AJ, COWIE A, ROMERA-PAREDES B, NIKOLOV S, JAIN R, ADLER J, BACK T, PETERSEN S, REIMAN D, CLANCY E, ZIELINSKI M, STEINEGGER M, PACHOLSKA M, BERGHAMMER T, BODENSTEIN S, SILVER D, VINYALS O, SENIOR AW, KAVUKCUOGLU K, KOHLI P, HASSABIS D. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC

KATZUNG BG, KRUIDERING-HALL M, TREVOR AJ. Drug screening. In: WEITZ M, BOYLE PJ, editors. Katzung & Trevor's pharmacology: Examination & board review. Twelth edition. McGraw-Hill Education; New York, USA: 2019. pp. 12–14.

LAMBERTI MJ, WILKINSON M, DONZANTI BA, WOHLHIETER GE, PARIKH S, WILKINS RG, GETZ K. A study on the application and use of artificial intelligence to support drug development. Clin Ther. 2019;41:1414–1426. doi: 10.1016/j.clinthera.2019.05.018. PubMed DOI

SCHNEIDER P, WALTERS WP, PLOWRIGHT AT, SIEROKA N, LISTGARTEN J, GOODNOW RA, FISHER J, JANSEN JM, DUCA JS, RUSH TS, ZENTGRAF M, HILL JE, KRUTOHOLOW E, KOHLER M, BLANEY J, FUNATSU K, LUEBKEMANN C, SCHNEIDER G. Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov. 2020;19:353–364. doi: 10.1038/s41573-019-0050-3. PubMed DOI

STOKES JM, YANG K, SWANSON K, JIN W, CUBILLOS-RUIZ A, DONGHIA NM, MACNAIR CR, FRENCH S, CARFRAE LA, BLOOM-ACKERMANN Z, TRAN VM, CHIAPPINO-PEPE A, BADRAN AH, ANDREWS IW, CHORY EJ, CHURCH GM, BROWN ED, JAAKKOLA TS, BARZILAY R, COLLINS JJ. A deep learning approach to antibiotic discovery. Cell. 2020a;181:475–483. doi: 10.1016/j.cell.2020.04.001. PubMed DOI

STOKES JM, YANG K, SWANSON K, JIN W, CUBILLOS-RUIZ A, DONGHIA NM, MACNAIR CR, FRENCH S, CARFRAE LA, BLOOM-ACKERMANN Z, TRAN VM, CHIAPPINO-PEPE A, BADRAN AH, ANDREWS IW, CHORY EJ, CHURCH GM, BROWN ED, JAAKKOLA TS, BARZILAY R, COLLINS JJ. A deep learning approach to antibiotic discovery. Cell. 2020b;180:688–702.e13. doi: 10.1016/j.cell.2020.01.021. PubMed DOI PMC

SUMITOMO DAINIPPON PHARMA. Integrated Report. Research & Development. Sumitomo Dainippon Pharma Co., Ltd; 2020. Major products under development (as of July 30, 2020) – DP-1181. Value Chain; pp. 43–50. https://www.ds-pharma.com/ir/library/annual/pdf/2020/eng114.pdf .

VATANSEVER S, SCHLESSINGER A, WACKER D, KANISKAN HU, JIN J, ZHOU MM, ZHANG B. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions. Med Res Rev. 2020;41:1427–1473. doi: 10.1002/med.21764. PubMed DOI PMC

ZHANG L, TAN J, HAN D, ZHU H. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discovery Today. 2017;22:1680–1685. doi: 10.1016/j.drudis.2017.08.010. PubMed DOI

ZHAVORONKOV A, VANHAELEN Q, OPREA TI. Will Artificial Intelligence for Drug Discovery Impact Clinical Pharmacology? Clin Pharmacol Ther. 2020;107:780–785. doi: 10.1002/cpt.1795. PubMed DOI PMC

ZHOU YD, WANG F, TANG J, NUSSINOV R, CHENG FX. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit Health. 2020;2:E667–E676. doi: 10.1016/S2589-7500(20)30192-8. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...